

Q.1	The eccentricity of the ellipse given by the equation $9x^2 + 5y^2 - 30y = 0$ is						
	(a) $\frac{1}{3}$	(b) $\frac{2}{3}$	(c) $\frac{3}{4}$	$(d)\frac{5}{6}$			
Q.2	The latus rectum of the conic represented by $3x^2 + 4y^2 - 6x + 8y - 50$ is						
	(a) 3	(b) $\frac{\sqrt{3}}{2}$	(c) $\frac{2}{\sqrt{2}}$	$(d) \frac{4}{\sqrt{2}}$			
Q.3	If the separation between the foci is 2 and the distance between the directrices is 5, then the						
	equation of the ellipse in standard form is						
	(a) $6x^2 + 10y^2 = 5$	(b) $6x^2 + 10y^2 = 15$	(c) $x^2 + 3y^2 = 10$	(d) $10x^2 + 6y^2 = 15$			
Q.4	The equation $\frac{x^2}{2-r} + \frac{y^2}{r-5} + 1 = 0$ represents an ellipse if and only if.						
	(a) r > 2	(b) r > 5	(c) 2 < r < 5	(d) r < 2			
Q.5	The total distance from any point on the ellipse $3x^2 + 4y^2 = 24$ to its foci is						
	(a) 8√2	(b) 4√2	(c) 16√2	(d) 6			
Q.6	The coordinates of one o	of the foci of the ellipse 4x	$x^2 + 9y^2 = 1$ are.	7=			
	(a) $\left(\frac{\sqrt{5}}{6}, 0\right)$	(b) $(\frac{\sqrt{5}}{3}, 0)$	(c) $\left(\frac{\sqrt{5}}{4}, 0\right)$	(d) $(\frac{\sqrt{5}}{5}, 0)$			
Q.7	The length of the latus re	ectum of the ellipse repre	sented by	-			
	$x = 3(\cos t + \sin t), y = 4$	4(cos t – sin t) is determi	ned by				
	(a) $\frac{5\sqrt{2}}{2}$	(b) $\frac{7\sqrt{2}}{2}$	(c) $\frac{9\sqrt{2}}{2}$	(d) $\sqrt{2}$			
0.8	The count of values for c	such that the straight lin	e v = 4x + c touches the c	$\operatorname{curve} \frac{x^2}{2} + \frac{y^2}{2} = 1$, are			
•	(a) 0	(b) 1	(c) 2	(d) Infinite			
0.9	Tangents are extended t	To the ellipse $\frac{x^2}{x} + \frac{y^2}{y} = 1$	at the extremities of the l	latus rectum. The area			
X	rangents are extended to the empse $\frac{1}{9} + \frac{1}{5} = 1$ at the extremities of the facts rectain. The area						
	(a) 27	$\frac{27}{27}$	$(c)^{\frac{27}{27}}$	(d) $\frac{27}{27}$			
0.10	(d) 27	$\binom{0}{2}$	$\binom{6}{4}$	$(u)_{55}$			
Q.10	intercented by the tange	nts between the coordinates $+2y =$	the axes is given by the loc	points of the segments			
	(a) $x^2 + 2y^2 = 4x^2y^2$		(b) $2x^2 + y^2 = 4x^2y^2$				
	(c) $2x^2 + y^2 = 4$		(d) $x^2 + 2y^2 = 4$				
Q.11	If the line $px + qy = 1$ in	tersects the ellipse $x^2 + 4$	$4y^2 = 4$ at points where the	ne eccentric angles			
	vary by $\frac{\pi}{3}$ then r ² is equa	l to					
	(a) $\frac{3}{4}(4p^2 + q^2)$	(b) $\frac{4}{3}(4p^2 + q^2)$	$(c)\frac{2}{3}(4p^2+q^2)$	$(d)\frac{3}{4}(p^2+4q^2)$			
Q.12	The smallest area of the t	triangle created by any tai	ngent to the ellipse is $\frac{x^2}{x^2}$ +	$\frac{y^2}{12} = 1$ with coordinate			
	– axes is.		- a²	02			
	(a) $\frac{a^2+b^2}{a^2+b^2}$	(h) $\frac{(a+b)^2}{(a+b)^2}$	(c) ah	(d) $\frac{(a-b)^2}{(a-b)^2}$			
0.13	$\frac{\alpha}{2}$	$^{(C)}_{2}$	e foci onto any tangent to t	the ellipse $3x^2 + 4y^2 =$			
Q.15	12 is.		e loei onto any tangent to t	ine empse sx + iy =			
	(a) 4	(b) 3	(c) $2\sqrt{3}$	(d) 6			
0.14	If the line $lx + my + n =$	0 is a normal to the ellips	$se \frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$, then				
• -	$(a^2 + b^2)^2$	·····	$a^2 b^2$ $(a^2-b^2)^2$				
	(a) $\frac{1}{1^2} + \frac{1}{m^2} = \frac{1}{n^2}$		(b) $\frac{1^2}{1^2} - \frac{1^2}{1^2} = \frac{1^2}{1^2}$				
	(c) $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{n^2}$		$(d) \frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{(a^2 + b^2)^2}{n^2}$				

Q.15	If the normal to the ellipse $\frac{x^2}{14} + \frac{y^2}{5} = 1$ at the point θ intersect curve at the again at the point 2θ						
	then $\cos \theta$ is equal to.	-2	3	-3			
	(a) $\frac{2}{3}$	(b) $\frac{2}{3}$	(c) $\frac{3}{4}$	$(d)\frac{3}{4}$			
Q.16	The equation describing (a) $x^2 + y^2 = 4$	the director circle of the (b) $x^2 + y^2 = 9$	ellipse $4x^2 + 9y^2 = 36$ is (c) $x^2 + y^2 = 13$	given by (d) $x^2 + y^2 = 5$			
Q.17	The eccentricity of the e	llipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ that goe	es through the points (2, 2) and (-3, 1) is			
	(a) $\frac{1}{\sqrt{5}}$	(b) $\sqrt{\frac{2}{5}}$	(c) $\sqrt{\frac{3}{5}}$	(d) $\sqrt{\frac{4}{5}}$			
Q.18	In an ellipse, where the distance between the foci is 8 and the distance between the directrices is 25, the ratio of the length of the major axis to the minor axis is						
	(a) $\frac{5}{\sqrt{17}}$	(b) $\frac{3}{\sqrt{17}}$	(c) $\frac{4}{\sqrt{17}}$	$(d) \frac{6}{\sqrt{17}}$			
Q.19	The radius of the circle t	hat passes through the p	oint where the ellipse int	ersects $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and			
	x - y = 0.15 (a) $\frac{12}{12}$	(b) $\frac{12\sqrt{2}}{2}$	(c) $\frac{6\sqrt{2}}{2}$	(d) $\frac{9\sqrt{2}}{2}$			
Q.20	If the distance between	the directrices is four	times the distance betw	een the foci, then the			
	(a) $\frac{1}{2}$	(b) $\frac{1}{\sqrt{2}}$	(c) $\frac{1}{4}$	$(d)\frac{1}{6}$			
Q.21	Consider the ellipse,5x ² the ellipse. The sum of the	$+9y^2 = 45$, let F_1 and F_2 ne distances $PF_1 + PF_2$ is.	, where F_1 and F_2 are its f_2 .	foci and P is a point on			
0 22	(a) 3 If the focal distance of o	(b) $2\sqrt{3}$	(c) 6	(d) $2\sqrt{5}$			
Q.22	respectively, denoted as	k) and the distance betwee	en the foci is 2h, then the e	quation of the ellipse is.			
	(a) $\frac{x^2}{h^2} + \frac{y^2}{k^2} = 1$	(b) $\frac{x^2}{k^2} + \frac{y^2}{k^2 - h^2} = 1$	(c) $x^2 + \frac{y^2}{k^2} = 1$	(d) $\frac{x^2}{h^2} + y^2 = 1$			
Q.23	The sum of the squares	of the perpendiculars from	m two points on $\frac{x^2}{a^2} + \frac{y^2}{b^2} =$	1 the minor axis, each			
	at a distance $\sqrt{a^2 - b^2}$ fr	om the center is.					
	(a) a ²	(b) b ²	(c) $2a^2$	(d) 2b ²			
Q.24	The line $2x + y = 3$ integrates the normals at these points	rsects the ellipse $4x^2 + y^2$ nts. then tan θ is equal to	² = 5 at points P and Q. If	θ is the angle between			
	$(a)\frac{1}{2}$	(b) $\frac{3}{4}$	(c) $\frac{3}{5}$	(d) 5			
0.25	The number of points of	n the ellipse $\frac{x^2}{2} + \frac{y^2}{2} = 1$ f	rom which a pair of perp	endicular tangents can			
C C	be drawn to the ellipse $\frac{x}{2}$	$\frac{y^2}{2} + \frac{y^2}{2} = is.$		0			
	(a) 2	6 9 101 (b) 3	(c) 4	(d) 1			
Q.26	A common tangent is 9x	$x^{2} + 16y^{2} = 144.y^{2} = x - 100$	$+4$ and $x^2 + y^2 - 12x + 32$	2 = 0 is			
	(a) $y = 3$	(b) $y = -3$	(c) $x = 4$	(d) $x = -4$			
Q.27	The equation of the chor	d of the ellipse $x^2 + 4y^2 =$	= 4 with the midpoint at (\cdot	$-1, \frac{1}{2}$) is			
0.20	(a) $x - 2y + 2 = 0$ The noise of the line $y + z$	(b) $x + 2y = 0$	(c) $3x - 2y + 4 = 0$	(d) $2x - 2y + 3 = 0$			
Q.20	(a) $(2,2)$	(b) $\left(\frac{2}{7}, \frac{3}{7}\right)$	(c) $\left(\frac{2}{7}, 2\right)$ (c) $\left(\frac{2}{7}, 2\right)$	(d) $(2, \frac{3}{5})$			
0 29	The locus of the midnoi	nts of the portions of th	$\frac{1}{2}$ e tangents to the ellipse $\frac{2}{2}$	$\frac{x^2}{x^2} + \frac{y^2}{y^2} = 1$ intercepted			
Q	hetween the axes is			b^2 b^2 b^2			
	(a) $a^2 + b^2 - 4$	(b) $x^2 + y^2 - 4$	(a) $x^2 + y^2 - 16$	(d) $x^2 + y^2 - 25$			
0.00	(a) $\frac{1}{x^2} + \frac{1}{y^2} - 4$	$(D)\frac{1}{a^2} + \frac{1}{b^2} - 4$	$(c)\frac{1}{a^2} + \frac{1}{b^2} - 10$	$(u)\frac{1}{a^2} + \frac{1}{b^2} - 23$			
Q.30	A rod of given length mo Any point on the rod, ex that its endpoints lie o midpoint, traces	oves in such a way that its ccluding the midpoint, tra n two fixed perpendicu	s endpoints lie on two fixe aces. A rod of given lengtl lar lines. Any point on t	ed perpendicular lines. n moves in such a way he rod, excluding the			

(a) À circle (b) A parabola (c) An ellipse (d) A straight line

				22		
Q.31	The locus of the feet of the perpendiculars drawn from the center to the ellipse $\frac{x}{9} + \frac{y}{4} = 1$ on any					
	tangents on it is.					
	(a) $(x^2 + y^2)^2 = 9x^2 + 4$	$4y^2$	(b) $(x^2 + y^2)^2 = 4x^2 + 9y^2$			
	(c) $(x^2 + y^2)^2 = 3x^2 + 2$	2y2	(d) $(x^2 + y^2)^2 = 2x^2 + 3y^2$			
Q.32	The locus of the foot of t $x^2 = y^2$	the perpendicular from an	y focus onto any tangent	to $\frac{x}{a^2} + \frac{y}{b^2} = 1$ is.		
	(a) $\frac{x}{a^2} + \frac{y}{b^2} = 1$	(b) $x^2 + y^2 = a^2 + b^2$	(c) $x^2 + y^2 = a^2$	(d) $x^2 + y^2 = a^2 - b^2$		
Q.33	The locus of the foot of t	he perpendicular from the	center to any tangent of t	he ellipse $\frac{x}{a^2} + \frac{y}{b^2} = 1$ is		
	(a) A circle		(b) A pair of straight line	es		
	(c) Another ellipse		(d) Curve of degree 4			
Q.34	If tangents are drawn t	to the ellipse $x^2 + 2y^2 =$	2 at all points on the ellipsented between the geo	pse, excluding its four		
	vertices, then the midpoints of the tangents intercepted between the coordinate axes lie on t					
		x^2 y^2	x^2 y^2			
	(a) $\frac{1}{4x^2} + \frac{1}{2y^2} = 1$	(b) $\frac{1}{2} + \frac{3}{4} = 1$	(c) $\frac{1}{4} + \frac{3}{2} = 1$	(d) $\frac{1}{2x^2} + \frac{1}{4y^2} = 1$		
Q.35	Given that the length of	the latus rectum of an ellip	se, with its major axis alo	ng the x-axis and center		
	at the origin, is 8, and Determine which of the	the distance between th following points lies on it	ne foci is equal to the le	ngth of its minor axis.		
	(a) $(4\sqrt{3}, 2\sqrt{3})$	(b) $(4\sqrt{3}, 2\sqrt{2})$	(c) $(4\sqrt{2}, 2\sqrt{2})$	(d) $(4\sqrt{2}, 2\sqrt{3})$		
Q.36	If the tangents to the ell	ipse $4x^2 + y^2 = 8$ at the po	pints (1, 2) and (a, b) are	perpendicular to each		
	other, then the value of	a ² is equal to.				
	$(a)\frac{64}{17}$	(b) $\frac{2}{17}$	(c) $\frac{4}{17}$	$(d)\frac{128}{17}$		
Q.37	In an ellipse centered a	t the origin, if the differer	nce between the lengths of	of the major and minor		
-	axes is 10, and one of th	e foci is located at $(0,5\sqrt{3})$), then the length of its lat	us rectum is.		
	(a) 5	(b) 6	(c) 8	(d) 10		
Q.38	If the tangent at a point	(α, β) (where $\beta > 0$) to the	ne parabola $y^2 = x$ is also	a tangent to the ellipse		
	$x^2 + 2y^2 = 1$, then the value $\sqrt{2}$	alue of a is equal to	_	_		
	(a) $\sqrt{2} - 1$	(b) $\sqrt{2} + 1$	(c) $2\sqrt{2} + 1$	(d) $2\sqrt{2} - 1$		
Q.39	If the line $x - 2y = 12$ is	s tangent to the ellipse $\frac{x}{a^2}$ -	$+\frac{y}{b^2} = 1$ at the point $(3, \frac{-5}{2})$) then the length of the		
	latus rectum of the ellip	se is.				
0.40	(a) 5 The tengent and normal	(b) $8\sqrt{3}$	(c) $12\sqrt{2}$	(d) 9		
Q.40	I ne tangent and normal to the ellipse $3x^2 + 5y^2 = 32$ at the point $P(2, 2)$ intersect the x-axis at (
	$(a) \frac{16}{2}$	(b) $\frac{14}{14}$	$\frac{34}{34}$	(d) $\frac{68}{68}$		
0.41	$(a) \frac{1}{3}$	$(0)\frac{1}{3}$	$(0)\frac{1}{15}$	$(u) \frac{1}{15}$		
Q.41	If the normal to the ellip	$pse 3x^2 + 4y^2 = 12$ at a point of the po	oint P on it is parallel to t	he line $2x + y = 4$, and is equal to		
	$\sqrt{61}$	$5\sqrt{5}$	$\sqrt{157}$	$\sqrt{221}$		
	(a) $\frac{1}{2}$	(b) $\frac{1}{2}$	(c) $\frac{1}{2}$	(d) $\frac{1}{2}$		
Q.42	Through which of the fo	ollowing points does an el	llipse, with foci at (0, 2) a	and $(0, -2)$ and a minor		
	axis of length 4, pass?					
0.42	(a) $(\sqrt{2}, 2)$	(b) $(2,2\sqrt{2})$	(c) $(1,2\sqrt{2})$	(d) $(2, \sqrt{2})$		
Q.45	the length of its latus re	ctum is?	iu the distance between n	s un ecu ices is 12, men		
	(a) $\frac{3}{\sqrt{2}}$	(b) $\sqrt{3}$	(c) $3\sqrt{2}$	(d) $2\sqrt{3}$		
0.44	If a and as are the acces	$\frac{x^2}{x}$	$\pm \frac{y^2}{y^2} - 1$ and the hyperbo	$\ln \frac{x^2}{x} - \frac{y^2}{x} - 1$		
ү. тт	in e ₁ and e ₂ are the etter	$\frac{1}{18}$	$\mp \frac{1}{4} = 1$ and the hyperbo	$a\frac{1}{9} = \frac{1}{4} = 1$		
	respectively and (e_1, e_2)	(b) 15	$5x^{2} + 3y^{2} = \kappa \tanh n \kappa \ln n \kappa \log n$	qual to.		
0.45	$x^2 + y^2 = 1(- x + x)$	(0) 10	(v) 1/			
Q.45	$\operatorname{Let}_{a^2} + \frac{1}{b^2} = 1(a > b) b$	e a given empse, length of	whose latus rectum is 10.	in its eccentricity is the		
	maximum value of the f	unction, $\phi(t) = \frac{5}{12} + t - t^2$	² then $a^2 + b^2$ is equal to			
	(a) 135	(b) 116	(c) 126	(d) 145		

- Consider x = 4 as one of the directrices to an ellipse with its center at the origin and find its Q.46 eccentricity. $\frac{1}{2}$. If P(1, β), $\beta > 0$ is a point on this ellipse, then the equation of the normal to it at P is (a) 7x - 4y = 1 (b) 4x - 2y = 1 (c) 4x - 3y = 2 (d) 8x - 2y = 5Which of the following points lies on the locus of the foot of the perpendicular drawn upon any Q.47 tangent to the ellipse, $\frac{x^2}{4} + \frac{y^2}{2} = 1$ from any of its foci? (a) (1,2) (c) $(-1, \sqrt{3})$ (b) $(-2,\sqrt{3})$ (d) $(-1, \sqrt{2})$ If the normal at one end of a latus rectum of an ellipse passes through an extremity of the minor Q.48 axis, then the eccentricity 'e' of the ellipse satisfies. (a) $e^2 + 2e - 1 = 0$ (b) $e^2 + e - 1 = 0$ (c) $e^4 + 2e^2 - 1 = 0$ (d) $e^4 + e^2 - 1 = 0$ If the points of intersection of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the circle $x^2 + y^2 = 4b, b > 4$ lie on the Q.49 curve $y^2 = 3x^2$, then *b* is equal to (a) 5 (b) 6 (c) 12 (d) 10 Let's consider a tangent drawn to the ellipse $\frac{x^2}{27} + y^2 = 1$ at $(3\sqrt{3}\cos\theta, \sin\theta)$ where $\theta \in (0, \frac{\pi}{2})$ The Q.50
 - value of θ , such that the sum of intercepts on the axes made by this tangent is minimized, is equal to. (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{8}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{3}$

Determine the coordinates of the foci, vertices, major axis length, minor axis length, eccentricity, and the length of the latus rectum for the ellipse.

 $\frac{x^2}{100} + \frac{y^2}{400} = 1$ Q.1

- Q.2
- $\frac{x^2}{49} + \frac{y^2}{36} = 1$ $36x^2 + 4y^2 = 144$ Q.3 $4x^2 + 9y^2 = 36$
- **Q.4**

Determine the equation representing the ellipse that meets the specified criteria:

- Q.5 Vertices $(0, \pm 13)$, foci $(0, \pm 5)$
- Ends of major axis (\pm 3, 0), ends of minor axis (0, \pm 2) Q.6
- b = 3, c = 4, center at the origin; foci on the x axis Q.7
- Major axis on the x-axis and passes through the points (4,3) and (6,2) Q.8
- Find the co-ordinates of the foci and the vertices of the ellipse $x^2 + 4v^2 = 16$. Q.9
- If $\frac{x^2}{64} + \frac{y^2}{36} = 1$ represents the equation of an ellipse, then find the distance between its foci. Q.10
- If the eccentricity of an ellipse is $\frac{\sqrt{13}}{7}$ and distance between its foci is, $2\sqrt{13}$, then find the length of Q.11 the latus rectum of the ellipse.
- The minimum and maximum distance of a point, $(\frac{9}{5}, \frac{12}{5})$ from the ellipse, $4(3x + 4y)^2 + 9(4x y)^2$ Q.12 $(3y)^2 = 900$ are m and M then the value of m + M is equal to.
- The minimum distance of the center of the ellipse $9x^2 + 16y^2 = 144$ from the chord of contact of Q.13 mutually perpendicular tangents of the ellipse is ℓ then 5ℓ is equal to.

ANSWER KEY - LEVEL - I

Q.	1	2	3	4	5	6	7	8	9	10
Ans.	b	а	b	С	b	а	С	С	а	а
Q.	11	12	13	14	15	16	17	18	19	20
Ans.	а	С	b	С	b	С	b	а	b	а
Q.	21	22	23	24	25	26	27	28	29	30
Ans.	С	b	С	С	а	С	а	С	а	С
Q.	31	32	33	34	35	36	37	38	39	40
Ans.	а	С	d	d	b	b	а	b	d	d
Q.	41	42	43	44	45	46	47	48	49	50
Ans.	b	а	С	d	С	b	С	d	С	С

ANSWER KEY - LEVEL - II

- $F(0, \pm 10\sqrt{3}); V(0_{L} \pm 20);$ Major axis =40 ; Minor axis = 20 , e = $\frac{\sqrt{3}}{2}$ 1. Latus rectum = 10
- $F(\pm\sqrt{13}, 0)$; $V(\pm7,0)$ Major axis =14; Minor axis = 12, $e = \frac{\sqrt{13}}{7}$, Latus rectum = $\frac{72}{7}$ 2.
- $F(0, \pm 4\sqrt{2})$; $V(0 \pm 6)$: Major axis = 12; Minor axis = 4, $e = \frac{2\sqrt{2}}{3}$, Latus rectum = $\frac{4}{3}$ 3.
- $F(\pm\sqrt{5}, 0)$; $V(\pm 3, 0)$ Major axis = 6 ; Minor axis = 4 , $e = \frac{\sqrt{5}}{3}$, Latus rectum $= \frac{8}{3}$ 4.

- 5. $\frac{x^2}{144} + \frac{y^2}{169} = 1$ 6. $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 7. $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 8. $x^2 + 4y^2 = 52 \text{ or } \frac{x^2}{52} + \frac{y^2}{13} = 1$