Exercise-1

> Marked questions are recommended for Revision.

PART - I : SUBJECTIVE QUESTIONS

Section (A) : Arithmetic Progression

- A-1. In an A.P. the third term is four times the first term, and the sixth term is 17; find the series.
- **A-2.** Find the sum of first 35 terms of the series whose p^{th} term is $\frac{p}{2}$ + 2.
- A-3. Find the number of integers between 100 & 1000 that are divisible by 7
- **A-4.** Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
- A-5. The sum of first p-terms of an A.P. is q and the sum of first q terms is p, find the sum of first (p + q) terms.
- A-6. The sum of three consecutive numbers in A.P. is 27, and their product is 504, find them.
- A-7. The fourth power of the common difference of an arithmetic progression with integer entries is added to the product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer.
- **A-8.** If a, b, c are in A.P., then show that:
 - (i) $a^2 (b + c), b^2 (c + a), c^2 (a + b)$ are also in A.P.
 - (ii) b + c a, c + a b, a + b c are in A.P.
- A-9. There are n A.M's between 3 and 54, such that the 8th mean: $(n 2)^{th}$ mean:: 3: 5. The value of n is.

Section (B) : Geometric Progression

- **B-1.** The third term of a G.P. is the square of the first term. If the second term is 8, find its sixth term.
- **B-2.** The continued product of three numbers in G.P. is 216, and the sum of the products of them in pairs is 156; find the numbers
- B-3. The sum of infinite number of terms of a G.P. is 4 and the sum of their cubes is 192. Find the series.
- **B-4.** The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 & the third is increased by 1, we obtain three consecutive terms of a G.P., find the numbers.
- **B-5.** If the pth, qth & rth terms of an AP are in GP. Find the common ratio of the GP.
- **B-6.** If a, b, c, d are in G.P., prove that :
 - (i) $(a^2 b^2)$, $(b^2 c^2)$, $(c^2 d^2)$ are in G.P.
 - (ii) $\frac{1}{a^2 + b^2}$, $\frac{1}{b^2 + c^2}$, $\frac{1}{c^2 + d^2}$ are in G.P.

B-7. Let five geometric means are inserted between $\frac{32}{3}$ and $\frac{243}{2}$ then find sum of all the geometric means.

Section (C) : Harmonic and Arithmetic Geometric Progression

C-1. Find the 4th term of an H.P. whose 7th term is $\frac{1}{20}$ and 13th term is $\frac{1}{38}$.

C-2. Insert three harmonic means between 1 and 7.

C-3. If $\frac{a-x}{px} = \frac{a-y}{qy} = \frac{a-z}{rz}$ and p, q, r are in A.P. then prove that x, y, z are in H.P.

C-4. If a^2 , b^2 , c^2 are in A.P. show that b + c, c + a, a + b are in H.P.

C-5. If b is the harmonic mean between a and c, then prove that $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$.

- **C-6.** Sum the following series
 - (i) $1 + \frac{2}{2} + \frac{3}{2^2} + \frac{4}{2^3} + \dots$ to n terms. (ii) (ii) (iii) (ii
- **C-7.** Find the sum of n terms of the series the r^{th} term of which is $(2r + 1)2^r$.

Section (D) : Relation between A.M., G.M., H.M

- **D-1.** Using the relation $A.M. \ge G.M.$ prove that
 - (i) $(x^2y + y^2z + z^2x)(xy^2 + yz^2 + zx^2) \ge 9x^2y^2z^2$. (x, y, z are positive real number)
 - (ii) $(a + b) \cdot (b + c) \cdot (c + a) > abc$; if a, b, c are positive real numbers

D-2. If x > 0, then find greatest value of the expression $\frac{x^{100}}{1 + x + x^2 + x^3 + \dots + x^{200}}$.

- **D-3.** The H.M. between two numbers is $\frac{16}{5}$, their A.M. is A and G.M. is G. If $2A + G^2 = 26$, then find the numbers.
- **D-4.** If a, b, c are positive real numbers and sides of the triangle, then prove that $(a + b + c)^3 \ge 27 (a + b c) (c + a b) (b + c a)$
- **D-5.** If $a_1 > 0$ for all i = 1, 2, 3 n then prove that $(1 + a_1 + a_{1}^2) (1 + a_2 + a_{2}^2) \dots (1 + a_n + a_{n}^2) \ge 3^n(a_1 a_2 a_3 \dots a_n)$

Section (E) : Summation of series

- E-1. Find the sum to n-terms of the sequence. $1 + 5 + 13 + 29 + 61 + \dots$ up to n terms (i) (ii) 🔊 3 + 33 + 333 + 3333 + up to n terms
- $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ to n terms. E-2.
- (i) If $t_n = 3^n 2^n$ then find $\sum_{n=1}^{k} t_n$. E-3.
 - (ii) If $t_n = n(n + 2)$ then find $\sum_{i=1}^{k} t_n$.
 - Find the sum to n terms of the series $1^2 2^2 + 3^2 4^2 + 5^2 6^2 +$ (iii)
 - 10² + 13² + 16² + upto 10 terms (iv)

(v) **a** If
$$\sum_{r=1}^{n} I(r) = n(2n^2 + 9n + 13)$$
, then find the $\sum_{r=1}^{n} \sqrt{I(r)}$

Find the sum to n-terms of the sequence. E-4.

(i)
$$\frac{1}{125} + \frac{1}{257} + \frac{1}{5}$$

- $\frac{1}{1.3.5} + \frac{1}{3.5.7} + \frac{1}{5.7.9} + \dots$ 1 . 3 . 2² + 2 . 4 . 3² + 3 . 5 . 4² +
- (ii)a

(B) 2

PART - II : ONLY ONE OPTION CORRECT TYPE

Section (A) : Arithmetic Progression

(A) 1

A-1.	The first term of an A.F expressed as	P. of consecutive integer	is $p^2 + 1$. The sum of (2p	+ 1) terms of this series can be		
	(A) (p + 1) ²	(B) (2p + 1) (p + 1) ²	(C) (p + 1) ³	(D) p ³ + (p + 1) ³		
A-2.	If a_1, a_2, a_3, \dots are in A $a_1 + a_2 + a_3 + \dots + a_{23}$.P. such that $a_1 + a_5 + a_1$ + a_{24} is equal to	$a_0 + a_{15} + a_{20} + a_{24} = 225$, the second	hen		
	(A) 909	(B) 75	(C) 750	(D) 900		
A-3.	If the sum of the first : A.P. 57, 59, 61,, the	2n terms of the A.P. 2, n n equals	5, 8,, is equal to the	e sum of the first n terms of the		
	(A) 10	(B) 12	(C) 11	(D) 13		
A-4.	The sum of integers fro	om 1 to 100 that are divis	sible by 2 or 5 is			
	(A) 2550	(B) 1050	(C) 3050	(D) none of these		
A-5.	Let 6 Arithmetic means and b (a > b). If $A_1^2 - A_2^2$	$A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ and $A_{2}^{2} + A_{3}^{2} - A_{4}^{2} + A_{5}^{2} - A_{6}^{2}$	e inserted between two c is equal to prime numbe	onsecutive natural number a r then 'b' is equal to		

(C) 3

(D) 4

Section (B) : Geometric Progression

- **B-1.** The third term of a G.P is 4. The product of the first five terms is (A) 4^3 (B) 4^5 (C) 4^4 (D) 4
- B-2. If S is the sum to infinity of a G.P. whose first term is 'a', then the sum of the first n terms is

(A)
$$S\left(1-\frac{a}{S}\right)^n$$
 (B) $S\left[1-\left(1-\frac{a}{S}\right)^n\right]$ (C) $a\left[1-\left(1-\frac{a}{S}\right)^n\right]$ (D) $S\left[1-\left(1-\frac{S}{a}\right)^n\right]$
B-3. For a sequence (a_n) , $a_1 = 2$ and $\frac{a_{n+1}}{a_n} = \frac{1}{3}$. Then $\sum_{r=1}^{2n} a_r$ is
(A) $\frac{20}{2} \left[4+19 \times 3\right]$ (B) $3\left(1-\frac{1}{3^{20}}\right)$ (C) $2\left(1-3^{2n}\right)$ (D) $\left(1-\frac{1}{3^{20}}\right)$
B-4.3: a, β be the roots of the equation $x^2 - 3x + a = 0$ and γ, δ the roots of $x^2 - 12x + b = 0$ and numbers a, β, γ, δ (in this order) form an increasing G.P., then
(A) $a = 3, b = 12$ (B) $a = 12, b = 3$ (C) $a = 2, b = 32$ (D) $a = 4, b = 16$
B-5. One side of an equilateral triangle is 24 cm. The mid-points of its sides are joined to form another triangle whose mid - points are in turn joined to form sull another triangle. This process continues indefinitely. Then the sum of the perimeters of all the triangles is
(A) 144 cm (B) 212 cm (C) 288 cm (D) 172 cm
B-6. Let 3 geometric means G-1, G-2, G-3 are inserted between two positive number a and b such that $\frac{G_3-G_2}{G_2-G_1}=2$, then $\frac{b}{a}$ equal to
(A) 2 (B) 4 (C) 8 (D) 16
Section (C) : Harmonic and Arithmetic Geometric Progression
C-1. If the 3rd, 6th and last term of a H.P. are, $\frac{1}{3}, +\frac{1}{5}, \frac{3}{203}$ then the number of terms is equal to
(A) 10 (B) 102 (C) 99 (D) 101
C-2. If a, b, c are in H.P. then the value of $\frac{b+a}{b-c}$ is
(A) 1 (B) 3 (C) 4 (D) 2
C-3. If the roots of the equation $x^3 - 11x^2 + 36x - 36 = 0$ are in H.P. then the middle root is
(B) a perfect square of an integer
(C) a prime number
C-4. Let the positive numbers a, b, c, d be in A.P. Then $abc, abd, acd, bcd are:$
(A) 9 (B) 5 (C) 1 (D) 4
C-5. If $3+\frac{1}{4}(3+d)+\frac{1}{4^2}(3+2d)+...., +upto $\infty = 8$, then the value of d is :
(A) 9 (B) 5 (C) 1 (D) 4
C-6. Let 'n 'Arithmetic Means and 'n 'Harmonic Means are inserted between two positive number 'a' and 'b'.
If sum of all Arithmetic Means is equal to sum of reciprocal all Harmonic means, then product of numbers is equal to sum of reciprocal all Harmonic means, then product of numbers is equal$

(A) 1 (B) 2 (C) $\frac{1}{2}$ (D) 3

C-7. Let a_1 , $a_2 a_3$ be in A.P. and h_1 , h_2 , h_3 ,..... in H.P. If $a_1 = 2 = h_1$ and $a_{30} = 25 = h_{30}$ then ($a_7 h_{24} + a_{14} h_{17}$) equal to : (A) 50 (B) 100 (C) 200 (D) 400

C-8. Statement 1 : 3,6,12 are in G.P., then 9,12,18 are in H.P.

Statement 2 : If three consecutive terms of a G.P. are positive and if middle term is added in these terms, then resultant will be in H.P.

- (A) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is correct explanation for STATEMENT-1
- (B) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is not correct explanation for STATEMENT-1
- (C) STATEMENT-1 is true, STATEMENT-2 is false
- (D) STATEMENT-1 is false, STATEMENT-2 is true

C-9.
$$S = 3^{10} + 3^9 + \frac{3^9}{4} + \frac{3^7}{2} + \frac{5.3^6}{16} + \frac{3^6}{16} + \frac{7.3^4}{64} + \dots$$
 upto infinite terms, then $\left(\frac{25}{36}\right)S$ equals to (A) 6^9 (B) 3^{10} (C) 3^{11} (D) 2. 3^{10}

C-10	The sum of infinite series	$\frac{1.3}{2} + \frac{3.5}{2^2} +$	$\frac{5.7}{2^3} + \frac{7.9}{2^4} + \dots \infty$	
	(A) 21 (E	B) 22	(C) 23	(D) 24

Section (D) : Relation between A.M., G.M., H.M

- **D-1.** If $x \in R$, the numbers $5^{1+x} + 5^{1-x}$, a/2, $25^x + 25^{-x}$ form an A.P. then 'a' must lie in the interval: (A) [1, 5] (B) [2, 5] (C) [5, 12] (D) [12, ∞)
- **D-2.** If A, G & H are respectively the A.M., G.M. & H.M. of three positive numbers a, b, & c, then the equation whose roots are a, b, & c is given by : (A) $x^3 - 3Ax^2 + 3G^3x - G^3 = 0$ (B) $x^3 - 3Ax^2 + 3(G^3/H)x - G^3 = 0$ (C) $x^3 + 3Ax^2 + 3(G^3/H)x - G^3 = 0$ (D) $x^3 - 3Ax^2 - 3(G^3/H)x + G^3 = 0$
- D-3. A If a, b, c, d are positive real numbers such that a + b + c + d = 2, then M = (a + b) (c + d) satisfies the relation:
 (A) 0 ≤ M ≤ 1
 (B) 1 ≤ M ≤ 2
 (C) 2 ≤ M ≤ 3
 (D) 3 ≤ M ≤ 4

D-4. If a + b + c = 3 and a > 0, b > 0, c > 0, the greatest value of $a^2b^3c^2$. (A) $\frac{3^{10}.2^4}{7^7}$ (B) $\frac{3^9.2^4}{7^7}$ (C) $\frac{3^9.2^5}{7^7}$ (D) $\frac{3^{10}.2^5}{7^7}$

D-5. If P, Q be the A.M., G.M. respectively between any two rational numbers a and b, then P – Q is equal to

(A)
$$\frac{a-b}{a}$$
 (B) $\frac{a+b}{2}$ (C) $\frac{2ab}{a+b}$ (D) $\left(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{2}}\right)^2$

Section (E) : Summation of series

E-1 If
$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
, then value of $1 + \frac{3}{2} + \frac{5}{3} + \dots + \frac{2n-1}{n}$ is
(A) $2n - H_n$ (B) $2n + H_n$ (C) $H_n - 2n$ (D) $H_n + n$

E-2. Statement 1: The sum of the first 30 terms of the sequence 1,2,4,7,11,16, 22,..... is 4520.

Statement 2 : If the successive differences of the terms of a sequence form an A.P., then general term of sequence is of the form $an^2 + bn + c$.

- (A) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is correct explanation for STATEMENT-1
- (B) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is not correct explanation for STATEMENT-1
- STATEMENT-1 is true, STATEMENT-2 is false (C)
- (D) STATEMENT-1 is false, STATEMENT-2 is true

E-3.

The value of
$$\sum_{r=1}^{n} \frac{1}{\sqrt{a+r \quad x} + \sqrt{a+(r-1) \quad x}}$$
 is
(A)
$$\frac{n}{\sqrt{a} + \sqrt{a+nx}}$$
 (B)
$$\frac{n}{\sqrt{a} - \sqrt{a+nx}}$$
 (C)
$$\frac{\sqrt{a+nx} - \sqrt{a}}{2x}$$

(D)
$$\frac{\sqrt{a} + \sqrt{a + n - x}}{x}$$

The value of $(1.1^2 + 3.2^2 + 5.3^2 + + upto 10 \text{ terms})$ is equal to : E-4. (A) 6050

(B) 5965 (C) 5665

(D) 5385

PART - III : MATCH THE COLUMN

1.	Colum	n – I	Column – II			
	(A)	The cofficient of x^{49} in the product $(x - 1) (x - 3) (x - 5) (x - 7) \dots (x - 99)$	(p)	-2500		
	(B)	Let S _n denote sum of first n terms of an A.P. If S _{2n} = 3S _n , then $\frac{S_{3n}}{S_n}$ is	(q)	9		
	(C)	The sum $\sum_{r=2}^{\infty} \frac{1}{r^2 - 1}$ is equal to:	(r)	3/4		
	(D)	The length,breadth, height of a rectangular box are in G.P. (length > breadth > height) The volume is 27, the total surface area is 78. Then the length is	(s)	6		
		nn – I		Column – II		
2.2	Colum	n – I	Colum	n – II		
2.24	Colum (A)	n – I The value of xyz is 15/2 or 18/5 according as the series a, x, y, z, b are in an A.P. or H.P. then 'a + b' equals where a, b are positive integers.	Colum (p)	n – II 2		
2.24	Colum (A) (B)	n – I The value of xyz is 15/2 or 18/5 according as the series a, x, y, z, b are in an A.P. or H.P. then 'a + b' equals where a, b are positive integers. The value of $2^{\frac{1}{4}} 4^{\frac{1}{8}} 8^{\frac{1}{16}}\infty$ is equal to	Colum (p) (q)	n – II 2 1		
2.为	Colum (A) (B) (C)	n – I The value of xyz is 15/2 or 18/5 according as the series a, x, y, z, b are in an A.P. or H.P. then 'a + b' equals where a, b are positive integers. The value of $2^{\frac{1}{4}} 4^{\frac{1}{8}} 8^{\frac{1}{16}} \infty$ is equal to If x, y, z are in A.P., then (x + 2y - z) (2y + z - x) (z + x - y) = kxyz, where k ∈ N, then k is equal to	Colum (p) (q) (r)	n – II 2 1 3		

10.	Let T_r and S_r be the r th term and sum up to r th term of a series respectively. If for an odd number n, S_n =								
	n and $T_n = \frac{T_{n-1}}{n^2}$ then T_m (m being even) is								
	(A) $\frac{2}{1+m^2}$ (B) $\frac{2m^2}{1+m^2}$	(C) $\frac{(m+1)^2}{2+(m+1)^2}$	(D) $\frac{2(m+1)^2}{1+(m+1)^2}$						
11.	If $1^2 + 2^2 + 3^2 + \dots + 2003^2 = (2003) (4007) (33)$ (1) $(2003) + (2) (2002) + (3) (2001) + \dots + (2003)$ (A) 2005 (B) 2004	34) and 3) (1) = (2003) (334) (x)., (C) 2003	then x equals (D) 2001						
12.১	If $\sum_{r=1}^{n} t_r = \frac{n(n+1)(n+2)(n+3)}{8}$, then $\sum_{r=1}^{n} \frac{1}{t_r}$ equa	ls							
	$(A)\left(\frac{1}{(n+1)(n+2)}-\frac{1}{2}\right)$	$(B)\left(\frac{1}{\left(n+1\right)\left(n+2\right)}-\frac{1}{2}\right)$							
	(C) $\left(\frac{1}{(n+1)(n+2)} + \frac{1}{2}\right)$	(D) $\left(\frac{1}{(n-1)(n-2)} + \frac{1}{2}\right)$							
13.	If $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ upto $\infty = \frac{\pi^2}{6}$, then $\frac{1}{1^2} + \frac{1}{3^2}$	$\frac{1}{2} + \frac{1}{5^2} + \dots =$							
	(A) $\pi^2/12$ (B) $\pi^2/24$	(C) π ² /8	(D) π ² /4						

PART - II : SINGLE AND DOUBLE VALUE INTEGER TYPE

- 1. A man arranges to pay off a debt of Rs. 3600 by 40 annual installments which form an arithmetic series. When 30 of the installments are paid he dies leaving a third of the debt unpaid. Find the value of the first installment.
- 2. In a circle of radius R a square is inscribed, then a circle is inscribed in the square, a new square in the circle and so on for n times. If the ratio of the limit of the sum of areas of all the circles to the limit of the sum of areas of all the squares as $n \to \infty$ is k, then find the value of $\frac{4k}{\pi}$.
- 3. If the common difference of the A.P. in which $T_7 = 9$ and $T_1T_2T_7$ is least, is 'd' then 20d is-
- **4.** The number of terms in an A.P. is even ; the sum of the odd terms is 24, sum of the even terms is 30, and the last term exceeds the first by 10½; find the number of terms.
- 5. If x > 0, and $\log_2 x + \log_2 \left(\sqrt{x}\right) + \log_2 \left(\sqrt[4]{x}\right) + \log_2 \left(\sqrt[8]{x}\right) + \log_2 \left(\sqrt[16]{x}\right) + \dots = 4$, then find x.
- **6.** Given that α , γ are roots of the equation $Ax^2 4x + 1 = 0$ and β , δ the roots of the equation $Bx^2 6x + 1 = 0$, then find value of (A + B), such that α , β , γ & δ are in H.P.
- 7. Find the sum of the infinitely decreasing G.P. whose third term, three times the product of the first and fourth term and second term form an A.P. in the indicated order, with common difference equal to 1/8.
- 8. If a, b, c are in GP, a b, c a, b c are in HP, then the value of a + 4b + c is

- 9. a, a_1 , a_2 , a_3 ,..., a_{2n} , b are in A.P. and a, g_1 , g_2 , g_3 ,...., g_{2n} , b are in G.P. and h is the harmonic mean of a and b, if $\frac{a_1 + a_{2n}}{g_1 g_{2n}} + \frac{a_2 + a_{2n-1}}{g_2 g_{2n-1}} + \dots + \frac{a_n + a_{n+1}}{g_n g_{n+1}} +$ is equal $\frac{Kn}{20h}$ to , then find value of K.
- **10.** If the arithmetic mean of two numbers a & b (0 < a < b) is 6 and their geometric mean G and harmonic mean H satisfy the relation $G^2 + 3H = 48$. Then find the value of (2a b)

11. S = $\frac{5}{13}$ + $\frac{55}{(13)^2}$ + $\frac{555}{(13)^3}$ + + ... up to ∞, then find the value of 36S.

12. If $\frac{25}{k} = 1^2 - \frac{2^2}{5} + \frac{3^2}{5^2} - \frac{4^2}{5^3} + \frac{5^2}{5^4} - \frac{6^2}{5^5} + \dots \infty$, then find the value of k

- **13.** If $x_1 > 0$, i = 1, 2, ..., 50 and $x_1 + x_2 + ... + x_{50} = 50$, then find the minimum value of $\frac{1}{x_1} + \frac{1}{x_2} + + \frac{1}{x_{50}}$.
- 14. If a_1 , a_2 , a_3 , a_4 are positive real numbers such that $a_1 + a_2 + a_3 + a_4 = 16$ then find maximum value of $(a_1 + a_2)(a_3 + a_4)$.
- **15.** If S₁, S₂, S₃ are the sums of first n natural numbers, their squares, their cubes respectively, then is $\frac{S_3(1+8S_1)}{S_2^2}$ equal to
- **16.** If S = $\frac{1}{1+1^2+1^4} + \frac{2}{1+2^2+2^4} + \frac{3}{1+3^2+3^4} + \dots \infty$, then find the value of 14S.

PART - III : ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

- 1.aThe interior angles of a polygon are in A.P. If the smallest angle is 120° & the common difference is 5°,
then the number of sides in the polygon is :
(A) 7 (B) 9 (C) 16 (D) 5
- 2. If 1, $\log_y x$, $\log_z y$, -15 $\log_x z$ are in A.P., then (A) $z^3 = x$ (B) $x = y^{-1}$ (C) $z^{-3} = y$ (D) $x = y^{-1} = z^3$
- **3.** If a_1, a_2, \dots, a_n are distinct terms of an A.P., then (A) $a_1 + 2a_2 + a_3 = 0$ (B) $a_1 - 2a_2 + a_3 = 0$ (C) $a_1 + 3a_2 - 3a_3 - a_4 = 0$ (D) $a_1 - 4a_2 + 6a_3 - 4a_4 + a_5 = 0$
- 4. First three terms of the sequence 1/16, a, b, 1/6 are in geometric series and last three terms are in harmonic series if

A) $a = \frac{1}{9}$, $b = \frac{1}{12}$	(B) $a = \frac{1}{12}$, $b = \frac{1}{9}$
C) $a = 1, b = -\frac{1}{4}$	(D) a = $-\frac{1}{4}$, b = 1

 5.2
 Which of the following numbers is/are composite (A)1111.....1 (91 digits)
 (B)1111.....1 (81 digits)

 (C)1111.....1 (75 digits)
 (D)1111.....1 (105 digits)

6. Three numbers a, b, c between 2 and 18 are such that (i) their sum is 25 (ii) the numbers 2, a, b, are in A.P.

(iii) the number b, c, 18 are in G.P. then which of the following options are correct. (C) b + c = 20(B) b = 8(D) a + b + c = 25(A) a = 57. Consider an infinite geometric series with first term 'a' and common ratio r. If the sum is 4 and the second term is 3/4, then: (B) $a = 2, r = \frac{3}{8}$ (C) $a = \frac{3}{2}, r = \frac{1}{2}$ (D) $a = 3, r = \frac{1}{4}$ (A) $a = \frac{7}{4}, r = \frac{3}{7}$ For the series $2 + \left(\sqrt{2} + \frac{1}{\sqrt{2}}\right) + \left((2\sqrt{2} - 1) + \frac{1}{2}\right) + \left(\left(3\sqrt{2} - 2\right) + \frac{1}{2\sqrt{2}}\right) + \dots$ 8. (A) $S_n = \sqrt{2} \left(\sqrt{2} + n - 1\right) - n + \left(\frac{\left(2^{n/2} - 1\right)}{\left(\sqrt{2} - 1\right) 2^{\frac{n-1}{2}}}\right)$ (B) $T_n = \sqrt{2} \left(\sqrt{2} + n - 1\right) - n + \left(\frac{1}{2}\right)^{\frac{n-1}{2}}$ (C) $S_n = \frac{n}{2} \left(3 + (n-1)\sqrt{2} - n \right) + \left(\frac{\left(2^{n/2} - 1\right)}{\left(\sqrt{2} - 1\right) 2^{\frac{n-1}{2}}} \right)$ (D) $S_n = \frac{n}{2} \left(3 + (n-1)\sqrt{2} - n \right) +$ If $a_k a_{k-1} + a_{k-1} a_{k-2} = 2a_k a_{k-2}$, $k \ge 3$ and $a_1 = 1$, here $S_p = \sum_{k-1}^p \frac{1}{a_k}$ and given that $\frac{S_{2p}}{S_p}$ does not depend on 9.2 p then $\frac{1}{a_{2016}}$ may be (A) 4031 (B) 1 (C) 2016 (D) 2017/2 If $\frac{a_{k+1}}{a_k}$ is constant for every $k \ge 1$. If $n > m \Rightarrow a_n > a_m$ and $a_1 + a_n = 66$, $a_2a_{n-1} = 128$ and $\sum_{i=1}^n a_i = 126$ 10. then (C) $\frac{a_{k+1}}{a_k} = 2$ (D) $\frac{a_{k+1}}{a_k} = 4$ (A) n = 6(B) n = 5 11. The sides of a right triangle form a G.P. The tangent of the smallest angle is (B) $\sqrt{\frac{\sqrt{5}-1}{2}}$ (A) $\sqrt{\frac{\sqrt{5}+1}{2}}$ (C) $\sqrt{\frac{2}{\sqrt{5}+1}}$ (D) $\sqrt{\frac{2}{\sqrt{5}-1}}$ 12. If b_1 , b_2 , b_3 ($b_1 > 0$) are three successive terms of a G.P. with common ratio r, the value of r for which the inequality $b_3 > 4b_2 - 3b_1$ holds is given by (C) r = 3.5(A) r > 3 (B) 0 < r < 1 (D) r = 5.2If a satisfies the equation $a^{2017} - 2a + 1 = 0$ and $S = 1 + a + a^2 + \dots + a^{2016}$. then posible value(s) of S 13. is/are (A) 2016 (B) 2018 (C) 2017 (D) 2 Let a, x, b be in A.P; a, y, b be in G.P and a, z, b be in H.P. If x = y + 2 and a = 5z, then 14. (D) a = 1/4, b = 9/4(A) $y^2 = xz$ (B) x > y > z(C) a = 9, b = 115.2 Which of the following is/are TRUE Equal numbers are always in A.P., G.P. and H.P. (A) If a, b, c be in H.P., then $a - \frac{b}{2}, \frac{b}{2}, c - \frac{b}{2}$ will be in AP (B)

- (C) If G_1 and G_2 are two geometric means and A is the arithmetic mean inserted between two positive numbers, then the value of $\frac{G_1^2}{G_2} + \frac{G_2^2}{G_1}$ is 2A.
- (D) Let general term of a G.P. (with positive terms) with common ratio r be T_{k+1} and general term of another G.P. (with positive terms) with common ratio r be T'_{k+1} , then the series whose general term $T''_{k+1} = T_{k+1} + T'_{k+1}$ is also a G.P. with common ratio r.
- **16.** If the arithmetic mean of two positive numbers a & b (a > b) is twice their geometric mean, then a: b is: (A) $2 + \sqrt{3} : 2 - \sqrt{3}$ (B) $7 + 4\sqrt{3} : 1$ (C) $1: 7 - 4\sqrt{3}$ (D) $2: \sqrt{3}$
- **17.** If $\sum_{r=1}^{n} r(r+1) (2r+3) = an^4 + bn^3 + cn^2 + dn + e$, then (A) a + c = b + d (B) e = 0(C) a, b - 2/3, c - 1 are in A.P. (D) c/a is an integer
- **18.** The roots of the equation $x^4 8x^3 + ax^2 bx + 16 = 0$, are positive, if (A) a = 24 (B) a = 12 (C) b = 8 (D) b = 32

19. Let $a_1, a_2, a_3, \dots, a_n$ is the sequence whose sum of first 'n' terms is represented by $S_n = an^3 + bn^2 + cn, n \in \mathbb{N}$. If $a = \frac{a_1 + a_3 - xa_2}{y}$ then (A) H.C.F of (x,y) is 2 (B) H.C.F. of (x,y) is 3 (C) L.C.M of (x,y) is 6 (D) x + y = 8

PART - IV : COMPREHENSION

Comprehension #1 (Q.1 & 2)

We know that $1 + 2 + 3 + \dots = \frac{n(n+1)}{2} = f(n)$, $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)}{6} = g(n)$, $1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2 = h(n)$

1. Even natural number which divides g(n) - f(n), for every $n \ge 2$, is (A) 2 (B) 4 (C) 6

(D) none of these

Comprehension # 2 (Q.3 & 4)

In a sequence of (4n + 1) terms the first (2n + 1) terms are in AP whose common difference is 2, and the last (2n + 1) terms are in GP whose common ratio 0.5. If the middle terms of the AP and GP are equal, then

- **3.** Middle term of the sequence is
 - (A) $\frac{n \cdot 2^{n+1}}{2^n 1}$ (B) $\frac{n \cdot 2^{n+1}}{2^{2n} 1}$ (C) $n \cdot 2^n$ (D) None of these

4. First term of the sequence is

(A)
$$\frac{4n+2n \cdot 2^{n}}{2^{n}-1}$$
 (B) $\frac{4n-2n \cdot 2^{n}}{2^{n}-1}$ (C) $\frac{2n-n \cdot 2^{n}}{2^{n}-1}$ (D) $\frac{2n+n \cdot 2^{n}}{2^{n}-1}$

Comprehension # 3 (Q.5 to 7)

Let $\Delta^1 T_n = T_{n+1} - T_n$, $\Delta^2 T_n = \Delta^1 T_{n+1} - \Delta^1 T_n$, $\Delta^3 T_n = \Delta^2 T_{n+1} - \Delta^2 T_n$,, and so on, where $T_1, T_2, T_3, \dots, T_{n-1}, T_n, T_{n+1}, \dots$ are the terms of infinite G.P. whose first term is a natural number and common ratio is equal to 'r'.

- 5. If $\Delta^2 T_1 = 36$, then sum of all possible integral values of r is equal to : (A) 8 (B) 4 (C) 5 (D) -2
- 6. Let $\sum_{n=1}^{\infty} T_n = \frac{7}{3}$ and $r = \frac{p}{7}$ then sum of squares of all possible value of p is equal to : (A) 42 (B) 46 (C) 45 (D) 30
- 7. If $\Delta^7 T_n = \Delta^3 T_n$, then 'r' can be equal to (A) 2 (B) 4 (C) 7 (D) -2

Exercise-3

> Marked questions are recommended for Revision.

* Marked Questions may have more than one correct option.

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

(A) $\frac{n(4n^2-1) c^2}{6}$ (B) $\frac{n(4n^2+1) c^2}{3}$ (C) $\frac{n(4n^2-1) c^2}{3}$ (D) $\frac{n(4n^2+1) c^2}{6}$

2. Let S_k , k = 1, 2, ..., 100, denote the sum of the infinite geometric series whose first term is $\frac{k-1}{k}$ and the

common ratio is
$$\frac{1}{k}$$
. Then the value of $\frac{100^2}{100!} + \sum_{k=1}^{100} |(k^2 - 3k + 1) S_k|$ is

[IIT-JEE - 2010, Paper-1, (3, 0), 84]

3. Let $a_1, a_2, a_3, \dots, a_{11}$ be real numbers satisfying $a_1 = 15, 27 - 2a_2 > 0$ and $a_k = 2a_{k-1} - a_{k-2}$ for $k = 3, 4, \dots, 11$. If $\frac{a_1^2 + a_2^2 + \dots + a_{11}^2}{11} = 90$, then the value of $\frac{a_1 + a_2 + \dots + a_{11}}{11}$ is equal to [IIT-JEE - 2010, Paper-2, (3, 0), 79]

4. Let $a_1, a_2, a_3, \dots, a_{100}$ be an arithmetic progression with $a_1 = 3$ and $S_p = \sum_{i=1}^{p} a_i$, $1 \le p \le 100$. For any integer n with $1 \le n \le 20$, let m = 5n. If $\frac{S_m}{S_n}$ does not depend on n, then a_2 is

[IIT-JEE 2011, Paper-1, (4, 0), 80]

5. The minimum value of the sum of real numbers a^{-5} , a^{-4} , $3a^{-3}$, 1, a^8 and a^{10} where a > 0 is

[IIT-JEE 2011, Paper-1, (4, 0), 80]

- 6. Let a_1, a_2, a_3, \dots be in harmonic progression with $a_1 = 5$ and $a_{20} = 25$. The least positive integer n for which $a_n < 0$ is [IIT-JEE 2012, Paper-2, (3, -1), 66] (C) 24 (B) 23 (A) 22 (D) 25 Let $S_n = \sum_{k=1}^{4n} (-1)^{\frac{k(k+1)}{2}} k^2$. Then S_n can take value(s) [JEE (Advanced) 2013, Paper-1, (4, -1)/60] 7.*æ (C) 1120 (D) 1332 (A) 1056 (B) 1088 A pack contains n card numbered from 1 to n. Two consecutive numbered card are removed from the 8.2 pack and the sum of the numbers on the remaining cards is 1224. If the smaller of the numbers on the removed cards is k, then k - 20 =[JEE (Advanced) 2013, Paper-1, (4, -1)/60] Let a,b,c be positive integers such that $\frac{b}{a}$ is an integer. If a,b,c are in geometric progression and the 9. arithmetic mean of a,b,c is b + 2, then the value of $\frac{a^2 + a - 14}{a+1}$ is [JEE (Advanced) 2014, Paper-1, (3, 0)/60] Suppose that all the terms of an arithmetic progression (A.P.) are natural numbers. If the ratio of the 10. sum of the first seven terms to the sum of the first eleven terms is 6 : 11 and the seventh term lies in between 130 and 140, then the common difference of this A.P. is [JEE (Advanced) 2015, P-2 (4, 0) / 80] The least value of $\alpha \in \mathbb{R}$ for which $4\alpha x^2 + \frac{1}{x} \ge 1$, for all x > 0, is 11. [JEE (Advanced) 2016, Paper-1, (3, -1)/62] (B) $\frac{1}{32}$ (C) $\frac{1}{27}$ (D) $\frac{1}{25}$ (A) $\frac{1}{64}$ 12. Let $b_i > 1$ for i = 1,2,...,101. Suppose $\log_{e}b_1, \log_{e}b_2, \dots, \log_{e}b_{101}$ are in Arithmetic progression (A.P.) with the common difference log_e 2. Suppose a_1, a_2, \dots, a_{101} are in A.P. such that $a_1 = b_1$ and $a_{51} = b_{51}$. If $t = b_1 + b_2 + \dots + b_{51}$ and $s = a_1 + a_2 + \dots + a_{51}$, then [JEE (Advanced) 2016, Paper-2, (3, -1)/62] (A) s > t and $a_{101} > b_{101}$ (B) s > t and $a_{101} < b_{101}$ (D) s < t and $a_{101} < b_{101}$ (C) s < t and $a_{101} > b_{101}$ 13.
 - 13.The sides of a right angled triangle are in arithmetic progression. If the triangle has area 24, then what
is the length of its smallest side?[JEE(Advanced) 2017, Paper-1,(3, 0)/61]
- Let X be the set consisting of the first 2018 terms of the arithmetic progression 1, 6, 11, ..., and Y be the set consisting of the first 2018 terms of the arithmetic progression 9, 16, 23, Then, the number of elements in the set X ∪ Y is _____. [JEE(Advanced) 2018, Paper-1,(3, 0)/60]

PART - II : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1.A person is to count 4500 currency notes. Let a_n denote the number of notes he counts in the nth
minute. If $a_1 = a_2 = \dots = a_{10} = 150$ and a_{10} , a_{11} ,....are in an AP with common difference -2, then the time
taken by him to count all notes is
(1) 34 minutes[AIEEE 2010 (8, -2), 144]
(4) 24 minutes

A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of service will be Rs. 11040 after : [AIEEE 2011, I, (4, -1), 120]
 (1) 18 months
 (2) 19 months
 (3) 20 months
 (4) 21 months
 (4) 21 months

3.	Let a _n be the n th term of	an A.P. If $\sum_{r=1}^{100} a_{2r} = \alpha$ and	$\sum_{n=1}^{100} a_{2n-1} = \beta$, then t	the common difference of the A.P. is :
		r=1	r=1	[AIEEE 2011, II, (4, –1), 120]
	(1) α – β	(2) $\frac{\alpha-\beta}{100}$	(3) β – α	$(4) \ \frac{\alpha-\beta}{200}$
4.	The sum of first 20 term	ns of the sequence 0.7, 0).77, 0.777,, is	[AIEEE - 2013, (4, –1),360]
	(1) $\frac{7}{81}$ (179 – 10 ⁻²⁰)	(2) $\frac{7}{9}$ (99 - 10 ⁻²⁰)	(3) $\frac{7}{81}$ (179 + 10	0^{-20}) (4) $\frac{7}{9}$ (99 + 10 ⁻²⁰)
5.	If (10) ⁹ + 2(11) ¹ (10) ⁸ +	3(11)² (10) ⁷ +	⊦ 10 (11) ⁹ = k(10) ⁹	, then k is equal to [JEE(Main) 2014, (4, – 1), 120]
	(1) 100	(2) 110	(3) $\frac{121}{10}$	(4) $\frac{441}{100}$
6.	Three positive number numbers are in A.P. Th (1) $2 - \sqrt{3}$	s form an increasing G en the common ratio of t (2) 2 + $\sqrt{3}$	P. If the middle t he G.P. is [(3) $\sqrt{2} + \sqrt{3}$	term in this G.P. is doubled, the new [JEE(Main) 2014, (4, -1), 120] (4) $3 + \sqrt{2}$
7.	If m is the A. M. of two	o distinct real numbers l	and $n(l, n > 1)$ and	nd G_1 , G_2 and G_3 are three geometric
	means between l and	n, then $G_1^4 + 2G_2^4 + G_3^4$	equals :	[JEE(Main) 2015, (4, – 1), 120]
	(1) 4 <i>P</i> mm	(2) 4 <i>l</i> m² n	(3) 4 <i>l</i> mn ²	(4) 4 <i>P</i> m ² n ²
8.	The sum of first 9 terms	s of the series $\frac{1^3}{1} + \frac{1^3}{1}$	$\frac{2^3}{1}$ + $\frac{1^3 + 2^3 + 3^3}{1 + 2^3 + 3^3}$	+is :
		1 1+	3 1+3+5	[JEE(Main) 2015. (4. – 1). 120]
	(1) 71	(2) 96	(3) 142	(4) 192
9.	If the 2 nd , 5 th and 9 th term	ns of a non-constant A.P.	are in G.P., then	the common ratio of this G.P. is: [JEE(Main) 2016, (4, – 1), 120]
	(1) $\frac{4}{3}$	(2) 1	(3) $\frac{7}{4}$	$(4) \frac{8}{5}$
10.	If the sum of the first te	n terms of the series $\begin{pmatrix} 13\\ -5\\ 5 \end{pmatrix}$	$\left(2\frac{2}{5}\right)^2 + \left(2\frac{2}{5}\right)^2 + \left(3\frac{1}{5}\right)^2$	$\int_{-\infty}^{\infty} + 4^{2} + \left(4\frac{4}{5}\right)^{2} + \dots \text{ is } \frac{16}{5} \text{ m, then m}$
	(1) 101	(2) 100	(3) 99	[JEE(Main) 2016, (4, - 1), 120] (4) 102
11.2	For any three positive r	eal numbers a, b and c,	9(25a ² + b ²) + 25($c^{2} - 3ac) = 15b(3a + c)$, Then
	(1) b , c and a are in G. (3) a, b and c are in A.F	P.	(2) b, c and a are (4) a, b and c are	e in A.P. e in G.P.
12.	Let a,b,c \in R. If f(x) =	ax ² + bx + c is such that	a + b + c = 3 and	d f(x + y) = f(x) + f(y) + xy, $\forall x, y \in R$,
	then $\sum_{n=1}^{10} f(n)$ is equal to)	I	[JEE(Main) 2017, (4, – 1), 120]
	(1) 330	(2) 165	(3) 190	(4) 225
13.	If, for a positive integer has two consecutive int (1) 12	n, the quadratic equation tegral solutions, then n is (2) 9	n, x(x + 1) + (x + 1 equal to (3) 10	$I)(x + 2) + \dots + (x + \overline{n-1})(x + n) = 10n$ [JEE(Main) 2017, (4, -1), 120] (4) 11
14.	Let a ₁ , a ₂ , a ₃ ,, a ₄₉ b	be in A.P. such that $\sum_{k=0}^{12} a_{k=0}$	$_{4k+1} = 416$ and as	$a_{3} + a_{43} = 66$. If
	$a_1^2 + a_2^2 + \dots + a_{17}^2 = 14$	0 m, then m is equal to	: 1	[JEE(Main) 2018, (4, – 1), 120]
	(1) 34	(2) 33	(3) 66	(4) 68

15.	Let A be the sum of the first 20 terms and B be sum of the first 40 terms of the series 1^2 + 2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 + If B – 2A = 100 λ , then λ is equal to :								
			[JEE(I	Main) 2018, (4, - 1), 120]					
	(1) 464	(2) 496	(3) 232	(4) 248					
16.	The sum of the following	ng series							
	$1+6+rac{9(1^2+2^2+3^2)}{7}+$	$\frac{12(1^2+2^2+3^2+4^2)}{9} +$	$\frac{15(1^2+2^2++5^2)}{11}+$	up to 15 terms, is :					
		[JEE(Main) 2019, Online (09-0	01-19),P-2 (4, – 1), 120]					
	(1) 7510	(2) 7830	(3) 7520	(4) 7820					
17.	If 5, 5r, $5r^2$ are the lenge	gths of the sides of a tria [JEE(angle, then r cannot be ea Main) 2019, Online (10-0	qual to : 01-19),P-1 (4, – 1), 120]					
	(1) $\frac{3}{2}$	(2) $\frac{3}{4}$	(3) $\frac{7}{4}$	(4) $\frac{5}{4}$					
18.	The sum of all two digit	positive numbers which [JEE]	n when divided by 7 yield Main) 2019, Online (10-0	2 or 5 as remainder is : 01-19),P-1 (4, – 1), 120]					

(1) 1356	(2) 1256	(3) 1365	(4) 1465	
----------	----------	----------	----------	--

Answers

EXERCISE # 1

						PAF	RT-I						
Section	on (A)												
A-1.	2, 5, 8,		A-2.	160	A-3.	128	A-4.	19668	A-5.	–(p + q) A-6.	4, 9, 14	
A-9.	16												
Section	Section (B) :												
B-1.	128	B-2.	2, 6, 18	8 or 18,	6, 2	B-3.	6, –3, 3	/2,	B-4.	3, 7, 11	or 12, 7	7, 2	
B-5.	$\frac{q-r}{p-q}$	B-7.	211										
Section	on (C)												
C-1.	<u>1</u> 11	C-2.	$\frac{14}{11}, \frac{14}{8}$	$\frac{1}{4}, \frac{14}{5}$		C-6.	(i)	$4-\frac{2+2}{2^{n-2}}$	<u>n</u>	(ii) $\frac{8}{3}$			
C-7.	n.2 ⁿ⁺² -	- 2 ^{n + 1} + 2	2.										
Section	on (D)	:											
D-2.	1 201	D-3.	2, 8										
Section	on (E) :	:											
E-1.	(i) 2 ^{n + 2}	² – 3n – 4	4(ii) <u>1</u> 27	(10 ^{n + 1}	– 9n – 1	0)	E-2.	<u>n . 2ⁿ –</u> 2 ^r	$\frac{1}{2^{n}+1}$				
E٥	(i) $\frac{1}{2} (3^{k+1} + 1) - 2^{k+1}$ (ii) $\frac{1}{6} k(k+1) (2k+7)$							(iii) $-\frac{n(n+1)}{2}$ if n is even, $\frac{n(n+1)}{2}$ if n is odd					
Е-Э.	⁽¹⁾ 2 ⁽	0 11)	2	6	(1(1 1) (2	,	()	2 "	1110 000	2	— 111115	odd	
E-3.	(iv) 62	65	(v) $\sqrt{\frac{3}{2}}$	(n ² + 3n)	(1(1))		()	2 "		2	— 11115	ouu	
E-3. E-4.	(iv) 620 (i)	$\frac{1}{12} - \frac{1}{2}$	(v) $\sqrt{\frac{3}{2}}$ $\frac{1}{4(2n+1)}$	$(n^{2} + 3n)$ (2n + 3)	(ii) <u>n</u> 10	(n + 1)	(n + 2) (2 " (n + 3) (2	2n + 3)	2	— 11 11 15	odd	
E-3. E-4.	(iv) 620 (iv) 620	$\frac{1}{12} - \frac{1}{2}$	(v) $\sqrt{\frac{3}{2}}$ $\frac{1}{4(2n+1)}$	$(n^2 + 3n)$ (2n + 3)	(ii) <u>n</u> 10	(n + 1) PAR	(n + 2) (RT-II	2 II (n + 3) (2	2n + 3)	2	— 11115	odd	
E-3. E-4. Sectio	(iv) 2 (iv) 620 (i) on (A)	$\frac{1}{12} - \frac{1}{2}$	(v) $\sqrt{\frac{3}{2}}$ $\frac{1}{4(2n+1)}$	$(n^2 + 3n)$ (2n + 3)	(ii) <u>n</u> 10	(n + 1) PAR	(n + 2) (?T-II	2 " (n + 3) (2	2n + 3)	2			
E-3. E-4. Section A-1.	(iv) 2 (iv) 62((i) (i) Dn (A) (D)	$\frac{1}{12} - \frac{1}{2}$	(v) $\sqrt{\frac{3}{2}}$ $\frac{1}{4(2n+1)}$ (D)	$(n^{2} + 3n)$ (2n + 3) A-3.	(ii) <u>n</u> 10 (C)	(n + 1) PAR	(n + 2) (RT-II (C)	2 " (n + 3) (2 	2n + 3)	2			
E-3. E-4. Section A-1. Section	(iv) 2 (iv) 62((i) on (A) (D) on (B)	$\frac{1}{12} - \frac{1}{2}$	(v) $\sqrt{\frac{3}{2}}$ $\frac{1}{4(2n+1)}$ (D)	$(n^{2} + 3n)$ (2n + 3) (2n + 3) A-3.	(ii) <u>n</u> 10 (C)	(n + 1) PAR A-4.	(n + 2) (RT-II (C)	2 " (n + 3) (2 A-5 .	2n + 3) (C)				
E-3. E-4. Section A-1. Section B-1.	(iv) 2 (iv) 62((i) on (A) (D) on (B) (B)	$\frac{1}{12} - \frac{1}{2}$: A-2. B-2.	(v) $\sqrt{\frac{3}{2}}$ $\frac{1}{4(2n+1)}$ (D) (B)	$(n^{2} + 3n)$ (2n + 3) (2n + 3) A-3. B-3.	(ii) <u>n</u> (ii) <u>10</u> (C) (B)	(n + 1) PAR A-4. B-4.	(n + 2) (RT-II (C) (C)	2 " (n + 3) (2 A-5. B-5.	(C)	B-6.	(D)		
E-3. E-4. Section A-1. Section B-1. Section	(iv) 2 (iv) 62((i) (D) (D) (D) (B) (B) (C) (C) (C)	$\frac{1}{12} - \frac{1}{2}$ A-2. B-2. :	(v) $\sqrt{\frac{3}{2}}$ $\frac{1}{4(2n+1)}$ (D) (B)	$(n^{2} + 3n)$ (2n + 3) (2n + 3) A-3. B-3.	(ii) <u>n</u> (ii) <u>10</u> (C) (B)	(n + 1) PAR A-4. B-4.	(n + 2) (RT-II (C) (C)	2 " (n + 3) (2 A-5. B-5.	2n + 3) (C) (A)	B-6.	(D)		
E-3. E-4. Section A-1. Section B-1. Section C-1.	(i) 2 (iv) 62((i) (D) (D) (D) (C) (B) (C) (A)	$\frac{1}{12} - \frac{1}{2}$: A-2. B-2. : C-2.	(v) $\sqrt{\frac{3}{2}}$ $\frac{1}{4(2n+1)}$ (D) (B) (D)	$(n^{2} + 3n)$ (2n + 3) (2n + 3) A-3 . B-3 . C-3 .	(ii) <u>n</u> (ii) <u>10</u> (C) (B) (C)	(n + 1) PAR A-4. B-4. C-4.	(n + 2) (<u>R</u>T-II (C) (C) (D)	2 " (n + 3) (2 A-5. B-5. C-5.	2n + 3) (C) (A)	B-6. C-6.	(D) (A)	С-7.	(B)
E-3. E-4. Section A-1. Section B-1. Section C-1. C-8.	(i) 2 (iv) 62((i) (D) (D) (D) (C) (B) (B) (B) (C) (A) (A) (A)	$\frac{1}{12} - \frac{1}{2}$	(v) $\sqrt{\frac{3}{2}}$ $\frac{1}{4(2n+1)}$ (D) (B) (D) (B)	(n ² + 3n) (2n + 3) (2n + 3)	(((((((((((((((((((((((((((((((((((((((n + 1) PAR A-4. B-4. C-4.	(m + 2) (RT-II (C) (C) (D)	2 " (n + 3) (2 A-5. B-5. C-5.	2n + 3) (C) (A) (A)	B-6. C-6.	(D) (A)	с-7.	(B)
E-3. E-4. Section A-1. Section B-1. Section C-1. C-8. Section	(i) 2 (iv) 62((i) (D) (D) (D) (C) (B) (C) (A) (A) (A) (A) (A) (C)	$ \begin{array}{c} 1 \\ \frac{1}{12} - \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} - \frac{1}{2} \\ 1$	(v) $\sqrt{\frac{3}{2}}$ $\frac{1}{4(2n+1)}$ (D) (B) (D) (B)	(n ² + 3n) (2n + 3) (2n + 3)	((((((((((((((((((((((((((((((((((((((n + 1) PAR A-4. B-4. C-4.	(m + 2) (RT-II (C) (C) (D)	2 " (n + 3) (2 A-5. B-5. C-5.	2n + 3) (C) (A) (A)	B-6. C-6.	(D) (A)	С-7.	(B)
E-3. E-4. Section A-1. Section B-1. Section C-1. C-8. Section D-1.	(i) 2 (iv) 62((i) (i) (i) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	$ \begin{array}{c} $	(v) $\sqrt{\frac{3}{2}}$ $\frac{1}{4(2n+1)}$ (D) (B) (D) (B) (B)	(n ² + 3n) (2n + 3) (2n + 3)	((((((((((((((((((((((((((((((((((((((n + 1) PAR A-4. B-4. C-4. D-4.	(m) (n + 2) (<u>RT-II</u> (C) (C) (D) (A)	2 " (n + 3) (2 A-5. B-5. C-5. D-5.	2n + 3) (C) (A) (A) (D)	B-6. C-6.	(D) (A)	с-7.	(B)
E-3. E-4. Section A-1. Section B-1. Section C-1. C-8. Section D-1. Section	(i) 2 (iv) 62((i) (i) (i) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	$\frac{1}{12} - \frac{1}{2}$	(v) $\sqrt{\frac{3}{2}}$ $\frac{1}{4(2n+1)}$ (D) (B) (D) (B) (B)	(n ² + 3n) (2n + 3) (2n + 3)	(((((((((((((((((((((((((((((((((((((((n + 1) PAR A-4. B-4. C-4. D-4.	(n + 2) (RT-II (C) (C) (D) (A)	2 " (n + 3) (2 A-5. B-5. C-5. D-5.	2n + 3) (C) (A) (A) (D)	B-6. C-6.	(D) (A)	с-7.	(B)

						PAR	T-III						
1.	$(A) \rightarrow ($	(p),	$(B) \to ($	s),	$(C) \rightarrow ($	(q),	$(D) \rightarrow (q)$						
2.	$(A) \rightarrow ($	(s),	$(B) \to ($	p),	$(C) \rightarrow ($	(s),	$(D) \to (p)$						
					E	XERC	ISE #	2					
						PAF	RT-I						
1.	(A)	2.	(D)	3.	(A)	4.	(C)	5.	(A)	6.	(A)	7.	(C)
8.2	(A)	9.	(C)	10.	(D)	11.	(A)	12.	(A)	13.	(C)		
						PAF	RT-II						
1.	51	2.	2	3.	33	4.	8	5.	4	6.	11	7.	2
8.	0	9.	40	10.	0	11.	65	12.	54	13.	50	14.	64
15.	9	16.	7										
						PAR	T-III						
1.	(B)	2.	(ABCD)) 3.	(BD)	4.	(BD)	5.	(ABCD) 6.	(ABCD) 7.	(D)
8.	(BC)	9.	(AB)	10.	(AC)	11.	(BC)	12.	(ABCD) 13.	(CD)	14.	(ABC)
15.	(CD)	16.	(ABC)	17.	(ABCD)) 18.	(AD)	19.	(ACD)				
						PAR	T-IV						
1.	(A)	2.	(D)	3.	(A)	4.	(B)	5.	(A)	6.	(B)	7.	(A)
					E	XERC	ISE #	3					
						PAR	T – I						
1. 4.	(C) 3 or 9, accord accepta	2. both 3 ingly the able.)	3 and 9 (T e second	3. The com term ca	0 mon diff an be ei	ference ther 3, d	of the a or 9 ; th	rithmatic ius the a	: progres answers	ssion ca 3, or 9	n be eith), or both	ner 0 or n 3 and	6, and 9 are
5.	8	6.	(D)	7.*	(AD)	8.	5	9.	4	10.	9	11.	(C)
12.	(B)	13.	6	14.	3748								
						PAR	T - II						
1.	(1)	2.	(4)	3.	(2)	4.	(3)	5.	(1)	6.	(2)	7.	(2)
8.	(2)	9.	(1)	10.	(1)	11.	(2)	12.	(1)	13.	(4)	14.	(1)
15.	(4)	16.	(4)	17.	(3)	18.	(1)						

Advance Level Problems (ALP)

- **1.** Prove that $\sqrt{2}, \sqrt{3}, \sqrt{5}$ cannot be terms of a single A.P.
- 2. If the sum of the first m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that $(m + n)\left(\frac{1}{m} \frac{1}{p}\right) = (m + p)\left(\frac{1}{m} \frac{1}{n}\right)$.
- **3.** If a and b are pth and qth terms of an AP, then find the sum of its (p + q) terms
- 4. In an A.P. of which 'a' is the lst term, if the sum of the lst 'p' terms is equal to zero, show that the sum of the next 'q' terms is $-\frac{a(p+q)q}{p-1}$.
- 5. If $\frac{a + be^y}{a be^y} = \frac{b + ce^y}{b ce^y} = \frac{c + de^y}{c de^y}$, then show that a,b,c,d are in G.P.
- 6. The sum of the first ten terms of an AP is 155 & the sum of first two terms of a GP is 9. The first term of the AP is equal to the common ratio of the GP & the first term of the GP is equal to the common difference of the AP. Find the two progressions.
- Find the sum in the nth group of sequence,
 (i) (1), (2, 3); (4, 5, 6, 7); (8, 9,, 15);
 - (ii) (1), (2, 3, 4), (5, 6, 7, 8, 9),.....
- **8.** Let a, b be positive real numbers. If a, A_1 , A_2 , b are in arithmetic progression, a, G_1 , G_2 , b are in geometric progression and a, H_1 , H_2 , b are in harmonic progression, show that

$$\frac{G_1 G_2}{H_1 H_2} = \frac{A_1 + A_2}{H_1 + H_2} = \frac{(2a + b) (a + 2b)}{9 ab}$$

- 9. If total number of runs scored in n matches is $\left(\frac{n+1}{4}\right)(2^{n+1}-n-2)$ where n > 1 and the runs scored in the kth match are given by k. 2^{n+1-k} , where $1 \le k \le n$, find n
- **10.** Let $a_1, a_2,..., a_n$ be positive real numbers in geometric progression. For each n, let A_n , G_n , H_n be respectively the arithmetic mean, geometric mean & harmonic mean of $a_1, a_2,..., a_n$. Prove that $G = \prod_{k=1}^{n} (A_k + H_k)^{\frac{1}{2n}}$, Where G is geometric mean between $G_1, G_2, ..., G_n$.
- **11.** If a, b, c are in A.P., p, q, r are in H.P. and ap, bq, cr are in G.P., then find $\frac{p}{r} + \frac{r}{p}$.
- 12. If the sum of the roots of the quadratic equation, $ax^2 + bx + c = 0$ is equal to sum of the squares of their reciprocals, then prove that $\frac{a}{c}$, $\frac{b}{a}$, $\frac{c}{b}$ are in H.P.
- **13.** If a, b, c are in H.P.; b, c, d are in G.P.; and c, d, e are in A.P. such that $(ka b)^2 e = ab^2$ then value of k.
- 14. The value of x + y + z is 15 if a, x, y, z, b are in AP while the value of (1/x) + (1/y) + (1/z) is 5/3 if a, x, y, z, b are in HP. Find a and b.
- **15.** If n is a root of the equation $x^2(1 ac) x(a^2 + c^2) (1 + ac) = 0$ and if n HM's are inserted between a and c, show that the difference between the first and the last mean is equal to ac(a c).

16. If a, b, c are positive real numbers, then prove that

(i)
$$b^2 c^2 + c^2 a^2 + a^2 b^2 \ge abc (a + b + c).$$

(ii)
$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}$$

(iii)
$$\frac{2}{a+b} + \frac{2}{b+c} + \frac{2}{c+a} \ge \frac{9}{a+b+c}$$

17. Solve the equation $(2 + x_1 + x_2 + x_3 + x_4)^5 = 6250 x_1 x_2 x_3 x_4$ where $x_1, x_2, x_3, x_4 > 0$.

18. Let a_1, a_2, \dots, a_n , be real numbers such that

 $\sqrt{a_1} + \sqrt{a_2 - 1} + \sqrt{a_3 - 2} + \dots + \sqrt{a_n - (n - 1)} = \frac{1}{2} (a_1 + a_2 + \dots + a_n) - \frac{n(n - 3)}{4}$ then find the value of $\sum_{i=1}^{100} a_i$

19. If $a_i \in R$, $i = 1, 2, 3, \dots$ and all a_i 's are distinct such that $\left(\sum_{i=1}^{n-1} a_i^2\right) + 6\left(\sum_{i=1}^{n-1} a_i - a_{i+1}\right) + 9\sum_{i=2}^n a_i^2 \le 0$ and $a_1 = 8$ then find the sum of first five terms.

- **20.** Let $\{a_n\}$ and $\{b_n\}$ are two sequences given by $a_n = (x)^{1/2^n} + (y)^{1/2^n}$ and $b_n = (x)^{1/2^n} (y)^{1/2^n}$ for all $n \in N$. Then find $a_1a_2a_3....a_n$.
- **21.** Given that $a_1, a_2, a_3, \dots, a_n$ form an A.P. find then following sum $\sum_{i=1}^{10} \frac{a_i a_{i+1} a_{i+2}}{a_i + a_{i+2}}$ Given that $a_1 = 1$; $a_2 = 2$
- **22.** Find sum of the series $\frac{n}{1.2.3} + \frac{n-1}{2.3.4} + \frac{n-2}{3.4.5} + \dots$ up to n terms..
- 23. Find the value of $S_n = \sum_{n=1}^n \frac{3^n \cdot 5^n}{(5^n 3^n)(5^{n+1} 3^{n+1})}$ and hence S_{∞} .
- 24. Circles are inscribed in the acute angle α so that every neighbouring circles touch each other. If the radius of the first circle is R, then find the sum of the radii of the first n circles in terms of R and α .
- **25.** Let A, G, H be A.M., G.M. and H.M. of three positive real numbers a, b, c respectively such that $G^2 = AH$, then prove that a, b, c are terms of a GP.
- **26.** If $S_n = \sum_{r=1}^n t_r = \frac{1}{6}n$ (2n² + 9n + 13), then $\sum_{r=1}^{\infty} \frac{1}{r \cdot \sqrt{t_r}}$ equals
- **27.** In the quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$, $\Delta = b^2 4ac$ and $\alpha + \beta$, $\alpha^2 + \beta^2$, $\alpha^3 + \beta^3$ are in G.P. where α , β are the root of $ax^2 + bx + c = 0$, then prove that $c\Delta = 0$
- 28. If sum of first n terms of an A.P. (having positive terms) is given by $S_n = (1 + 2T_n) (1 T_n)$ where T_n is the nth term of series, then $T_2^2 = \frac{\sqrt{a} \sqrt{b}}{4}$, ($a \in N, b \in N$), then find the value of (a + b)

Answer Key (ALP)

3.
$$\frac{p+q}{2} \left[a+b+\frac{a-b}{p-q} \right]$$
6.
$$(3+6+12+....); (2/3+25/3+625/6+....) G.P.$$

$$(2+5+8+....); \left(\frac{25}{2}+\frac{79}{6}+\frac{83}{6}+.....\right) A.P.$$
7.
$$(i) 2^{n-2} (2^{n}+2^{n-1}-1) \quad (ii) (n-1)^{3}+n^{3}$$
9.
$$7$$
11.
$$\frac{a}{c}+\frac{c}{a}$$
13.
$$2$$
14.
$$a=1, b=9 \text{ or } b=1, a=9$$
18.
$$5050$$
19.
$$\frac{488}{81}$$
20.
$$\frac{x-y}{b_{n}}$$
21.
$$\frac{495}{2}$$
22.
$$\frac{n(n+1)}{4(n+2)}$$
23.
$$\frac{3}{4}$$
24.
$$\frac{R\left(1-\sin\frac{\alpha}{2}\right)}{2\sin\frac{\alpha}{2}} \left[\left(\frac{1+\sin\frac{\alpha}{2}}{1-\sin\frac{\alpha}{2}}\right)^{n} -1 \right]$$
26.
$$1$$
28.
$$6$$