Exercise-1

PART - I : SUBJECTIVE QUESTIONS

Section (A): Matrix, Algebra of Matrix, Transpose, symmetric and skew symmetric matrix

A-1. Construct a 3 × 2 matrix whose elements are given by $a_{ij} = 2i - j$.

A-2. If $\begin{bmatrix} x-y & 1 & z \\ 2x-y & 0 & w \end{bmatrix} = \begin{bmatrix} -1 & 1 & 4 \\ 0 & 0 & 5 \end{bmatrix}$, find x, y, z, w.

A-3. Let $A + B + C = \begin{bmatrix} 4 & -1 \\ 0 & 1 \end{bmatrix}$, $4A + 2B + C = \begin{bmatrix} 0 & -1 \\ -3 & 2 \end{bmatrix}$ and $9A + 3B + C = \begin{bmatrix} 0 & -2 \\ 2 & 1 \end{bmatrix}$ then find A

A-4. If $A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \\ 5 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 5 & 6 \\ 7 & -8 & 2 \end{bmatrix}$, will AB be equal to BA. Also find AB & BA.

A-5. If
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
, then show that $A^3 = \begin{bmatrix} 7 & -12 \\ 3 & -5 \end{bmatrix}$

A-6. If
$$A = \begin{bmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{bmatrix}$$
 show that $(I + A) = (I - A) \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$

A-7. Given $F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$. If $x \in R$ Then for what values of y, F(x + y) = F(x) F(y).

A-8. Let $A = [a_{ij}]_{n \times n}$ where $a_{ij} = i^2 - j^2$. Show that A is skew-symmetric matrix.

A-9. If $C = \begin{bmatrix} 1 & 4 & 6 \\ 7 & 2 & 5 \\ 9 & 8 & 3 \end{bmatrix} \begin{bmatrix} 0 & 2 & 3 \\ -2 & 0 & 4 \\ -3 & -4 & 0 \end{bmatrix} \begin{bmatrix} 1 & 7 & 9 \\ 4 & 2 & 8 \\ 6 & 5 & 3 \end{bmatrix}$, then trace of $C + C^3 + C^5 + \dots + C^{99}$ is

Section (B) : Determinant of Matrix

		U	1	seca	
B-1.	If the minor of three-one element (i.e. $\rm M_{31})$ in the determinant	tanα	$-\text{sec}\alpha$	$tan \alpha$	is 1 then find the
		1	0	1	
	value of α . ($0 \le \alpha \le \pi$).				

Using	the properties of determinants, evalulate:		
	23 6 11		0 c b
(i)	36 5 26	(ii)	-c 0 a
	63 13 37		−b −a 0
	103 115 114 113 116 104		$\left \sqrt{13} + \sqrt{3} 2\sqrt{5} \sqrt{5}\right $
(iii)	111 108 106 + 108 106 111.	(iv)	$\sqrt{15} + \sqrt{26}$ 5 $\sqrt{10}$
	104 113 116 115 114 103		$3+\sqrt{65}$ $\sqrt{15}$ 5

B-3. Prove that :

B-2.

(i)	a b c = $(a - b) (b - c) (c - a) (a + b + c)$
	a ³ b ³ c ³
(ii)	$\begin{vmatrix} a & b+c & a^{2} \\ b & c+a & b^{2} \\ c & a+b & c^{2} \end{vmatrix} = -(a+b+c)(a-b)(b-c)(c-a)$
(iii)	$\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4 abc$
(iv)	If $\begin{vmatrix} 1 & a^2 & a^4 \\ 1 & b^2 & b^4 \\ 1 & c^2 & c^4 \end{vmatrix} = (a+b)(b+c)(c+a)\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$

B-4. If a, b, c are positive and are the pth, qth, rth terms respectively of a G.P., show without expanding that, $\begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} = 0.$

B-5. Find the non-zero roots of the equation,

(i) $\Delta = \begin{vmatrix} a & b & ax+b \\ b & c & bx+c \\ ax+b & bx+c & c \end{vmatrix} = 0.$ (ii) $\begin{vmatrix} 15-2x & 11 & 10 \\ 11-3x & 17 & 16 \\ 7-x & 14 & 13 \end{vmatrix} = 0$

B-6. If $S_r = \alpha^r + \beta^r + \gamma^r$ then show that $\begin{vmatrix} S_0 & S_1 & S_2 \\ S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \end{vmatrix} = (\alpha - \beta)^2 (\beta - \gamma)^2 (\gamma - \alpha)^2$.

B-7. Show that $\begin{vmatrix} a_1 I_1 + b_1 m_1 & a_1 I_2 + b_1 m_2 & a_1 I_3 + b_1 m_3 \\ a_2 I_1 + b_2 m_1 & a_2 I_2 + b_2 m_2 & a_2 I_3 + b_2 m_3 \\ a_3 I_1 + b_3 m_1 & a_3 I_2 + b_3 m_2 & a_3 I_3 + b_3 m_3 \end{vmatrix} = 0.$

B-8. If $\begin{vmatrix} e^x & \sin x \\ \cos x & \ln(1+x) \end{vmatrix} = A + Bx + Cx^2 + \dots$, then find the value of A and B.

Section (C) : Cofactor matrix, adj matrix and inverse of matrix

C-1. If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$ and $AB - CD = 0$ find D.

C-2. (i) A Prove that (adj adj A) = $|A|^{n-2} A$ (ii) Find the value of |adj adj adj A| in terms of |A|

C-3. If $A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} \& B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$, find $(AB)^{-1}$

C-4. If A is a symmetric and B skew symmetric matrix and (A + B) is non-singular and $C = (A + B)^{-1} (A - B)$, then prove that (i) $C^{T} (A + B) C = A + B$ (ii) $C^{T} (A - B) C = A - B$

C-5. If $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix}$, $A^{-1} = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -4 & 3 & c \\ 5/2 & -3/2 & 1/2 \end{bmatrix}$, then find values of a & c.

Section (D) : Charactristic equation and system of equations

D-1. For the matrix $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$ find a & b so that $A^2 + aA + bI = 0$. Hence find A^{-1} .

D-2. Find the total number of possible square matrix A of order 3 with all real entries, whose adjoint matrix B has characteristics polynomial equation as $\lambda^3 - \lambda^2 + \lambda + 1 = 0$.

D-3. If $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix}$, show that $A^3 = (5A - I) (A - I)$

D-4. Apply Cramer's rule to solve the following simultaneous equations.

i)
$$2x + y + 6z = 46$$

 $5x - 6y + 4z = 15$
 $7x + 4y - 3z = 19$
(ii) $x + 2y + 3z = 2$
 $x - y + z = 3$
 $5x - 11y + z = 17$

D-5. Solve using Cramer's rule: $\frac{4}{x+5} + \frac{3}{y+7} = -1$ & $\frac{6}{x+5} - \frac{6}{y+7} = -5$.

D-6. Find those values of c for which the equations: 2x+3y=3 (c+2)x+(c+4)y=c+6 $(c+2)^2x+(c+4)^2y=(c+6)^2$ are consistent. Also solve above equations for these values of c.

D-7. Solve the following systems of linear equations by matrix method.

(i)	2x - y + 3z = 8	(ii)	x + y + z = 9
	-x + 2y + z = 4		2x + 5y + 7z = 52
	3x + y - 4z = 0		2x + y - z = 0

D-8. Investigate for what values of λ , μ the simultaneous equations x + y + z = 6; x + 2y + 3z = 10 & $x + 2y + \lambda z = \mu$ have; A unique solution (a) An infinite number of solutions. (b) (c) No solution. Determine the product $\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ and use it to solve the system of D-9. equations x - y + z = 4, x - 2y - 2z = 9, 2x + y + 3z = 1. [3 −2 3] Compute A^{-1} , if $A = \begin{bmatrix} 2 & 1 & -1 \end{bmatrix}$. Hence solve the matrix equations D-10. 4 -3 2 $\begin{bmatrix} 3 & 0 & 3 \\ 2 & 1 & 0 \\ 4 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix} + \begin{bmatrix} 2y \\ z \\ 3y \end{bmatrix}.$ **D-11.** Which of the following statement(s) is/are true: 4x - 5y - 2z = 2S1: The system of equations 5x - 4y + 2z = 3 is Inconsistent. 2x + 2y + 8z = 1S2 : A matrix 'A' has 6 elements. The number of possible orders of A is 6. $\begin{bmatrix} 10 & 0 \\ 0 \end{bmatrix}$, then |A| = 10. For any 2×2 matrix A, if A (adjA) = S3 : S4 : If A is skew symmetric, then B'AB is also skew symmetric.

PART - II : ONLY ONE OPTION CORRECT TYPE

Section (A): Matrix, Algebra of Matrix, Transpose, symmetric and skew symmetric matrix,

A-1.
$$\begin{bmatrix} x^{2} + x & x \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ -x + 1 & x \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 5 & 1 \end{bmatrix}$$
 then x is equal to -
(A) - 1 (B) 2 (C) 1 (D) No value of x
A-2. If $A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $B = \begin{bmatrix} -5 & 4 & 0 \\ 0 & 2 & -1 \\ 1 & -3 & 2 \end{bmatrix}$, then
(A) $AB = \begin{bmatrix} -5 & 8 & 0 \\ 0 & 4 & -2 \\ 3 & -9 & 6 \end{bmatrix}$ (B) $AB = \begin{bmatrix} -2 & -1 & 4 \end{bmatrix}$ (C) $AB = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ (D) AB does not exist
A-3. If $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then $B = (A) I\cos \theta + J\sin \theta$ (B) $I\cos \theta - J\sin \theta$ (C) $I\sin \theta + J\cos \theta$ (D) $- I\cos \theta + J\sin \theta$

- A-4. In an upper triangular matrix $A = [a_{ij}]_{n \times n}$ the elements $a_{ij} = 0$ for (A) i < j (B) i = j (C) i > j (D) i \le j
- A-5. If A = diag (2, -1, 3), B = diag (-1, 3, 2), then $A^2B = (A) \text{ diag } (5, 4, 11)$ (B) diag (-4, 3, 18) (C) diag (3, 1, 8) (D) B
- A-6. If A is a skew- symmetric matrix, then trace of A is (A) 1 (B) -1 (C) 0 (D) none of these
- **A-7.** Let $A = \begin{bmatrix} p & q \\ q & p \end{bmatrix}$ such that det(A) = r where p, q, r all prime numbers, then trace of A is equal to (A) 6 (B) 5 (C) 2 (D) 3
- **A-8.** $A = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$ and $(A^8 + A^6 + A^4 + A^2 + I) V = \begin{bmatrix} 31 \\ 62 \end{bmatrix}$. (Where I is the (2 × 2) identity matrix), then the product of all elements of matrix V is (A) 2 (B) 1 (C) 3 (D) -2
- **A-9.** Let $A = \begin{bmatrix} 3x^2 \\ 1 \\ 6x \end{bmatrix}$, $B = [a b c] and C = \begin{bmatrix} (x+2)^2 & 5x^2 & 2x \\ 5x^2 & 2x & (x+1)^2 \\ 2x & (x+2)^2 & 5x^2 \end{bmatrix}$ Where a, b, c and $x \in R$, Given that tr (AB) = tr(C), then the value of (a + b + c). (A) 7 (B) 2 (C) 1 (D) 4

Section (B) : Determinant of Matrix

B-1. If A and B are square matrices of order 3 such that |A| = -1, |B| = 3, then |3AB| is equal to (A) - 9 (B) - 81 (C) - 27 (D) 81

cos⁻¹ x cos⁻¹ y cos⁻¹ z $|\cos^{-1}y \cos^{-1}z \cos^{-1}x|$ such that |A| = 0, then maximum value of x + y + z is B-2. Let A = $\cos^{-1} z \cos^{-1} x \cos^{-1} y$ (B) 0 (A) 3 (C) 1 (D) 2 -1 2 1 The absolute value of the determinant $\begin{vmatrix} 3 \\ + 2\sqrt{2} \\ 2 \\ + 2\sqrt{2} \\ 1 \end{vmatrix}$ is: B-3. $3 - 2\sqrt{2} 2 - 2\sqrt{2} 1$ (A) 16√2 (B) 8√2 (C) 8 (D) none

B-4. If α , $\beta \& \gamma$ are the roots of the equation $x^3 + px + q = 0^{-1}$ then the value of the determinant $\begin{vmatrix} \alpha \\ \beta \\ \gamma \end{vmatrix}$

α β

$$\begin{array}{cccc} (A) \ p & (B) \ q & (C) \ p^2 - 2q & (D) \ none \\ \\ \textbf{B-5.} & \text{If } a, \ b, \ c > 0 \ \& \ x, \ y, \ z \ \in \ \mathsf{R}^{\cdot} \ \text{then the determinant}} \left| \begin{array}{c} \left(a^x + a^{-x}\right)^2 & \left(a^x - a^{-x}\right)^2 & 1 \\ \left(b^y + b^{-y}\right)^2 & \left(b^y - b^{-y}\right)^2 & 1 \\ \left(c^z + c^{-z}\right)^2 & \left(c^z - c^{-z}\right)^2 & 1 \end{array} \right| = \\ \\ (A) \ a^x b^y c^z & (B) \ a^{-x} b^{-y} c^{-z} & (C) \ a^{2x} b^{2y} c^{2z} & (D) \ zero \end{array}$$

 b^2c^2 bc b + c **B-6.** If a, b & c are non-zero real numbers, then $D = \begin{vmatrix} c^2 a^2 & c a \\ c^2 + a \end{vmatrix}$ a^2b^2 ab a + b(B) a² b² c² (A) abc (C) bc + ca + ab (D) zero $|b_1 + c_1 - c_1 + a_1 - a_1 + b_1|$ The determinant $\begin{vmatrix} b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \end{vmatrix} =$ B-7. $|b_3 + c_3 + c_3 + a_3 + a_3 + b_3|$ $(A) \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} (B) 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} (C) 3 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ (D) none of these x x + y x + y + z If x, y, $z \in \mathbb{R}$ & $\Delta = \begin{vmatrix} 2x & 5x + 2y & 7x + 5y + 2z \end{vmatrix} = -16$ then value of x is B-8. 3x 7x + 3y 9x + 7y + 3z(B) – 3 (C) 2 (A) – 2 (D) 3 $|\cos(\theta+\phi)| - \sin(\theta+\phi) |\cos 2\phi|$ **B-9.** The determinant sinθ cosθ sin∮ is: $-\cos\theta$ sinθ cos∳ (A) 0 (C) independent of ϕ (B) independent of θ (D) independent of $\theta \& \phi$ both

B-10. ➤ Let A be set of all determinants of order 3 with entries 0 or 1, B be the subset of A consisting of all determinants with value 1 and C be the subset of A consisting of all determinants with value –1. Then STATEMENT -1 : The number of elements in set B is equal to number of elements in set C. and

STATEMENT-2 : $(B \cap C) \subset A$

- (A) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is correct explanation for STATEMENT-1
- (B) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is not correct explanation for STATEMENT-1
- (C) STATEMENT-1 is true, STATEMENT-2 is false
- (D) STATEMENT-1 is false, STATEMENT-2 is true
- (E) Both STATEMENTS are false

Section (C) : Cofactor matrix, adj matrix and inverse of matrix.

If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, then adj A =C-1. $(A) \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix} \qquad (B) \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \qquad (C) \begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix} \qquad (D) \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$ C-2. Identify statements S₁, S₂, S₃ in order for true(T)/false(F) $\begin{bmatrix} \cos \theta & -\sin \theta & 0 \end{bmatrix}$ S_1 : If $A = | \sin \theta | \cos \theta | 0 |$ then adj A = A'1 0 0 [a 0 0] [a 0 0] $S_2: \text{ If } A = \left| \begin{array}{cc} 0 & b & 0 \end{array} \right|, \text{ then } A^{-1} = \left| \begin{array}{cc} 0 & b & 0 \end{array} \right|$ 0 0 c 0 0 c S_3 : If B is a non-singular matrix and A is a square matrix, then det ($B^{-1}AB$) = det (A) (B) FTT (A) TTF (C) TFT (D) TTT

 \sim

C-3. If A, B are two n x n non-singular matrices, then
(A) AB is non-singular
(C) (AB)⁻¹ = A⁻¹ B⁻¹
(D) (AB)⁻¹ does not exist
C-4. Let A =
$$\begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$$
 and B = $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and X be a matrix such that A = BX, then X is equal to
(A) $\frac{1}{2} \begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix}$ (B) $\frac{1}{2} \begin{bmatrix} -2 & 4 \\ 3 & 5 \end{bmatrix}$ (C) $\begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix}$ (D) none of these
C-5. Let A = $\begin{bmatrix} -1 & 2 & -3 \\ -2 & 0 & 3 \\ 3 & -3 & 1 \end{bmatrix}$ be a matrix, then (det A) x (adj A⁻¹) is equal to
(A) $O_{3\times3}$ (B) I_3 (C) $\begin{bmatrix} -1 & 2 & -3 \\ -2 & 0 & 3 \\ 3 & -3 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 3 & -3 & 1 \\ 3 & 0 & -2 \\ -1 & 2 & -3 \end{bmatrix}$
C-6. STATEMENT-1 : If A = $\begin{bmatrix} a^2 + x^2 & ab - cx & ac + bx \\ ab + xc & b^2 + x^2 & bc - ax \\ ac - bx & bc + ax & c^2 + x^2 \end{bmatrix}$ and B = $\begin{bmatrix} x & c & -b \\ -c & x & a \\ b & -a & x \end{bmatrix}$, then |A| = |B|^2.

- : If A^c is cofactor matrix of a square matrix A of order n then $|A^{c}| = |A|^{c}$ STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is correct explanation for (A)
 - STATEMENT-1
- STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is not correct explanation (B) for STATEMENT-1
- (C) STATEMENT-1 is true, STATEMENT-2 is false
- (D) STATEMENT-1 is false, STATEMENT-2 is true
- (E) Both STATEMENTS are false

Section (D) : Characteristic equation and system of equations

D-1.	$ \text{If A} = \begin{vmatrix} 1 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 0 & 3 \end{vmatrix}$	2 1 is a root of polynom 3	hial $x^3 - 6x^2 + 7x + k = 0$,	then the value of k is
	(A) 2	(B) 4	(C) –2	(D) 1
D-2	If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	(where $bc \neq 0$) satisfies	the equations $x^2 + k = 0$,	then
	(A) a + d = 0 & a	K = A	(B) a – d = 0 &	K = A

- (C) a + d = 0 & k = -|A|(D) $a + d \neq 0 \& k = |A|$
- **D-3.** If the system of equations x + 2y + 3z = 4, x + py + 2z = 3, $x + 4y + \mu z = 3$ has an infinite number of solutions and solution triplet is

(A)
$$p = 2, \mu = 3$$
 and $(5 - 4\lambda, \lambda - 1, \lambda)$
(B) $p = 2, \mu = 4$ and $(5 - 4\lambda, \frac{\lambda - 1}{2}, 2\lambda)$
(C) $3p = 2\mu$ and $(5 - 4\lambda, \lambda - 1, 2\lambda)$
(D) $p = 4, \mu = 2$ and $(5 - 4\lambda, \frac{\lambda - 1}{2}, \lambda)$

D-4. Let λ and α be real. Find the set of all values of λ for which the system of linear equations have infinite solution \forall real values of α .

 $\lambda x + (\sin \alpha)y + (\cos \alpha)z = 0$ $x + (\cos \alpha)y + (\sin \alpha)z = 0$ $-x + (\sin \alpha) y + (\cos \alpha) z = 0$ (A) $(-\infty, \sqrt{2}) \cup (\sqrt{2}, \infty)$ (B) - 1

(C)
$$(-5, -\sqrt{2})$$
 (D) None of these

D-6.	iue solutio none nere s	on.		
	(A) 1	(B) 2 (C) 3 (D) 4	1	
		PART - III : MATCH THE COLUMN		
1.	Colum		Colui	nn II
	(A)	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 0 \text{ then } \mathbf{x} =$	(p)	2
	(B)	If A is a square matrix of order 3×3 and k is a scalar, then adj (kA) = k ^m adj A, then m is	(q)	- 2
	(C)	If $A = \begin{bmatrix} 2 & \mu \\ \mu^2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} \gamma & 7 \\ 49 & \delta \end{bmatrix}$ here $(A - B)$ is upper triangular matrix then number of possible values of μ are	(r)	1
	(D)≽	If $\begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix}$ = k abc $(a+b+c)^3$ then the value of k is	(s)	$-\frac{9}{8}$
2.	Colum	Colui	nn – II	
	(A)	If A and B are square matrices of order 3×3 , where $ A = 2$ and $ B = 1$, then $ (A^{-1}) \cdot adj (B^{-1}) \cdot adj (2A^{-1}) =$	(p)	7
	(B)	If A is a square matrix such that $A^2 = A$ and $(I + A)^3 = I + kA$, then k is equal to	(q)	8
	(C)	Matrix $\begin{bmatrix} a & b & (a\alpha - b) \\ b & c & (b\alpha - c) \\ 2 & 1 & 0 \end{bmatrix}$ is non invertible (b ² \neq ac) if -2 α is	(r)	0
	(D)	If A = $[a_{ij}]_{3\times 3}$ is a scalar matrix with $a_{11} = a_{22} = a_{33} = 2$ and A(adjA) = kI, then k is	(s)	- 1

Exercise-2

 $\mathbf{\hat{s}}$ Marked questions are recommended for Revision.

PART - I : ONLY ONE OPTION CORRECT TYPE

1.	Two matrices A and B I A and B are possible su	have in total 6 different e uch that product AB is de	rent elements (none repeated) . How many different matrices is defined.							
	(A) 5(6!)	(B) 3(6!)	(C) 12(6!)	(D) 8 (6!)						
2.	If AB = O for the matrice	es								
	$A = \begin{bmatrix} \cos^2 \theta & \cos \theta s \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$	$\begin{bmatrix} \sin \theta \\ \theta \end{bmatrix}$ and $B = \begin{bmatrix} \cos^2 \phi \\ \cos \phi \sin \theta \end{bmatrix}$	$ \begin{array}{c} \cos\phi\sin\phi\\ \phi & \sin^2\phi \end{array} \right] \text{ then } \theta - \phi$) is						
	(A) an odd multiple of	$\frac{\pi}{2}$	(B) an odd multiple of π							
	(C) an even multiple of	$\frac{\pi}{2}$	(D) 0							
3.১	If $X = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$, then va	lue of X^n is, (where n is r	natural number)							
	$(A) \begin{bmatrix} 3n & -4n \\ n & -n \end{bmatrix}$	$(B)\begin{bmatrix}2+n & 5-n\\n & -n\end{bmatrix}$	$(C) \begin{bmatrix} 3^n & (-4)^n \\ 1^n & (-1)^n \end{bmatrix}$	(D) $\begin{bmatrix} 2n+1 & -4n \\ n & -(2n-1) \end{bmatrix}$						
4.	If A and B are two matri	ices such that AB = B an	d BA = A, then $A^2 + B^2 =$							
	(A) 2AB	(B) 2BA	(C) A + B	(D) AB						
5.2	Find number of all poss	ible ordered sets of two	(n × n) matrices A and B	for which $AB - BA = I$						
	(A) infinite	(B) n ²	(C) n!	(D) zero						
6.	If B, C are square matri for any positive integer	ices of order n and if A = N.	= B + C, BC = CB, C^2 = O, then which of following is true							
	(A) $A^{N+1} = B^N (B + (N + (C) A^{N+1}) = B (B + (N + 1))$	1) C)) C)	(B) $A^{N} = B^{N} (B + (N + 1) C)$ (D) $A^{N+1} = B^{N} (B + (N + 2) C)$							
7.	How many 3×3 skew number can be used an	v symmetric matrices ca	n be formed using num can be used at most 3 ti	bers –2, –1, 1, 2, 3, 4, 0 (any mes)						
	(A) 8	(B) 27	(C) 64	(D) 54						
8.	If A is a skew - symmet	ric matrix and n is an eve	en positive integer, then <i>i</i>	A ⁿ is						
	(A) a symmetric matrix(C) a diagonal matrix		(B) a skew-symmetric matrix (D) none of these							
9.24	Number of 3 x 3 non sv	mmetric matrix A such th	hat $A^{T} = A^2 - I$ and $ A \neq$	0. equals to						
	(A) 0	(B) 2	(C) 4	(D) Infinite						
10.>>	Matrix A is such that A ²	$= 2\mathbf{A} - \mathbf{I}$, where I is the	identity matrix. Then for	n ≥ 2. A ⁿ =						
	(A) n A − (n − 1)I	(B) n A – I	(C) 2^{n-1} A - (n - 1)I	(D) 2^{n-1} A – I						

11. **a** If
$$P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^{T}$ and $x = P^{T}Q^{peop}P$, then x is equal to
(A) $\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 4 + 2005\sqrt{3} & 6015 \\ 2005 & 4 - 2005\sqrt{3} \end{bmatrix}$
(C) $\frac{1}{4} \begin{bmatrix} 2 + \sqrt{3} & 1 \\ -1 & 2 - \sqrt{3} \end{bmatrix}$ (D) $\frac{1}{4} \begin{bmatrix} 2005 & 2 - \sqrt{3} \\ 2 + \sqrt{3} & 2005 \end{bmatrix}$
12. **a** Let $A = \begin{bmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\theta\sin\phi & \sin\theta\cos\phi & 0 \end{bmatrix}$, then
(B) A is independent of θ (C) A is independent of θ
(C) A is a dependent of θ (D) none of these
13. $A = \begin{bmatrix} 1+a^2 + a^4 & 1+ab + a^2b^2 & 1+ac + a^2c^2 \\ 1+ab + a^2c^2 & 1+bc + b^2c^2 & 1+c^2 + c^4 \\ 1+ab + a^2c^2 & 1+bc + b^2c^2 & 1+c^2 + c^4 \end{bmatrix}$ is equal to
(A) $(a - b)^{t}(b - c)^{t}(c - a)^{t}$ (D) $(a + b + c)^{3}$
14. **a** If $D = \begin{bmatrix} a^2 + 1 & ab & ac \\ ba b^2 + 1 & bb & ac \\ ca & cb & c^2 + 1 \end{bmatrix}$ then $D = \begin{bmatrix} a^2 - x & a^4 - x & a^5 - x \\ a^7 - x & a^3 - x & a^6 - x \end{bmatrix}$ is
(A) $1 + a^2 + b^2 + c^2$ (B) $a^2 + b^2 + c^2$ (C) $(a + b + c)^2$ (D) none
15. Value of the $\Delta = \begin{bmatrix} a^3 - x & a^4 - x & a^5 - x \\ a^7 - x & a^3 - x & a^6 - x \end{bmatrix}$ is
(A) 0 (B) $(a^3 - 1)(a^6 - 1)(a^6 - 1)(a^6 - 1)(c^6 - 1)(c^6$

18. Let
$$A = \begin{bmatrix} -2 & 7 & \sqrt{3} \\ 0 & 0 & -2 \\ 0 & 2 & 0 \end{bmatrix}$$
 and $A^4 = \lambda I$, then λ is
(A) - 16 (B) 16 (C) 8 (D) -8

19.2 If A is 3 x 3 square matrix whose characteristic polynomial equations is $\lambda^3 - 3\lambda^2 + 4 = 0$ then trace of adjA is (D) – 3 (A) 0

(B) 3 (C) 4

20. If a, b, c are non zeros, then the system of equations $(\alpha + a) x + \alpha y + \alpha z = 0$ $\alpha x + (\alpha + b)y + \alpha z = 0$ $\alpha x + \alpha y + (\alpha + c)z = 0$ has a non-trivial solution if (A) $\alpha^{-1} = -(a^{-1} + b^{-1} + c^{-1})$ (B) $\alpha^{-1} = a + b + c$ (C) α + a + b + c = 1 (D) none of these

PART - II : SINGLE AND DOUBLE VALUE INTEGER TYPE

1. Let X be the solution set of the equation 0 1 _1

 $A^x = I$, where $A = \begin{vmatrix} 4 & -3 & 4 \end{vmatrix}$ and I is the unit matrix and $X \subset N$ then the minimum value of 3 –3 4 $\sum (\cos^x \theta + \sin^x \theta)$, $\theta \in \mathsf{R}$ is :

- 2. If A is a diagonal matrix of order 3 x 3 is commutative with every square matrix of order 3 x 3 under multiplication and tr(A) = 12, then the value of |A| is :
- A, is a (3×3) diagonal matrix having integral entries such that det(A) = 120, number of such matrices is 3. 10n. Then n is :

b+c c+a a+b $\begin{vmatrix} c+a & a+b & b+c \end{vmatrix} \ge 0$, where a, b, $c \in \mathbb{R}^*$, then $\frac{a+b}{c}$ is 4. lf a+b b+c c+a

 $|\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3|$ If $a_1, a_2, a_3, 5, 4, a_6, a_7, a_8, a_9$ are in H.P. and $\mathbf{D} = \begin{vmatrix} 5 & 4 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix}$, then the value of **21D** is 5.

а a+b+2cb + c + 2a b $|= k(\alpha a + \beta b + \gamma c)^3$, then $(2\alpha + \beta - \gamma)^k$ is $(\alpha, \beta, \gamma, k \in z^+)$ с 6. lf а c + a + 2b

- 7.a If A is a square matrix of order 3 and A' denotes transpose of matrix A, A' A = I and det A = 1, then det (A - I) must be equal to
- Suppose A is a matrix such that $A^2 = A$ and $(I + A)^6 = I + kA$, then k is 8.

-bc $b^2 + bc$ $c^2 + bc$ If $\begin{vmatrix} a^2 + ac & -ac & c^2 + ac \\ a^2 + ab & b^2 + ab & -ab \end{vmatrix} = 64$, then (ab + bc + ac) is : 9.

10. Let
$$f(x) = \begin{vmatrix} 1+\sin^2 x & \cos^2 x & 4\sin 2x \\ \sin^2 x & 1+\cos^2 x & 4\sin 2x \\ \sin^2 x & \cos^2 x & 1+4\sin 2x \end{vmatrix}$$
 then the maximum value of $f(x)$ is

11.24. If $U_n = \begin{vmatrix} n & 1 & 5 \\ n^2 & 2N+1 & 2N+1 \\ n^3 & 3N^2 & 3N+1 \end{vmatrix}$ and $\sum_{n=1}^N U_n = \lambda \sum_{n=1}^N n^2$, then λ is

- **12.** The absolute value of a for which system of equations, $a^3x + (a + 1)^3y + (a + 2)^3z = 0$, ax + (a + 1) y + (a + 2) z = 0, x + y + z = 0, has a non-zero solution is:
- **13.** Consider the system of linear equations in x, y, z: (sin 3θ) x - y + z = 0 (cos 2θ) x + 4y + 3z = 0 2x + 7y + 7z = 0 Number of values of $\theta \in (0, \pi)$ for which this system has non – trivial solution, is
- **14.** The value of '2k' for which the set of equations 3x + ky 2z = 0, x + ky + 3z = 0, 2x + 3y 4z = 0 has a non trivial solution over the set of rational is:

15.
$$A_1 = [a_1]$$

$$A_{2} = \begin{bmatrix} a_{2} & a_{3} \\ a_{4} & a_{5} \end{bmatrix}$$
$$A_{3} = \begin{bmatrix} a_{6} & a_{7} & a_{8} \\ a_{9} & a_{10} & a_{11} \\ a_{12} & a_{13} & a_{14} \end{bmatrix}$$
.....A_n = [.....]

Where $a_r = [\log_2 r]$ ([.] denotes greatest integer). Then trace of A_{10}

16. If
$$\left\{ \frac{1}{2} \left(A - A' + I \right) \right\}^{-1} = \frac{2}{\lambda} \begin{bmatrix} \lambda - 13 & -\frac{\lambda}{3} & \frac{\lambda}{3} \\ -17 & 10 & -1 \\ 7 & -11 & 5 \end{bmatrix}$$
 for $A = \begin{bmatrix} -2 & 3 & 4 \\ 5 & -4 & -3 \\ 7 & 2 & 9 \end{bmatrix}$, then λ is :

17. Given $A = \begin{bmatrix} 2 & 0 & -\alpha \\ 5 & \alpha & 0 \\ 0 & \alpha & 3 \end{bmatrix}$ For $\alpha \in \mathbb{R} - \{a, b\}$, A^{-1} exists and $A^{-1} = A^2 - 5bA + cI$, when $\alpha = 1$. The value of a + 5b + c is :

18. Let a, b, c positive numbers. Find the number of solution of system of equations in x, y and z $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1; \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1; \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ has finitely many solutions

PART - III : ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

1. Which one of the following is wrong ?

- (A) The elements on the main diagonal of a symmetric matrix are all zero
- (B) The elements on the main diagonal of a skew symmetric matrix are all zero
- (C) For any square matrix A, A A' is symmetric
- (D) For any square matrix A, $(A + A')^2 = A^2 + (A')^2 + 2AA'$

(C) $|A^{T}. A| = |A^{T}|^{2}$

Which of the following is true for matrix A = $\begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix}$ 2. (A) A + 4I is a symmetric matrix (B) $A^2 - 4A + 5I_2 = 0$ (C) A – B is a diagonal matrix for any value of α if B = $\begin{bmatrix} \alpha & -1 \\ 2 & 5 \end{bmatrix}$ (D) A - 4I is a skew symmetric matrix 3. Suppose a₁, a₂, a₃ are in A.P. and b₁, b₂, b₃ are in H.P. and let $| a_1 - b_1 \quad a_1 - b_2 \quad a_1 - b_3$ $\Delta = |\mathbf{a}_2 - \mathbf{b}_1 \ \mathbf{a}_2 - \mathbf{b}_2 \ \mathbf{a}_2 - \mathbf{b}_3|$, then $|a_3 - b_1 \ a_3 - b_2 \ a_3 - b_3|$ (A) Δ is independent of a_1, a_2, a_3 , (B) $a_1 - \Delta$, $a_2 - 2\Delta$, $a_3 - 3\Delta$ are in A.P. (C) $b_1 + \Delta$, $b_2 + \Delta^2$, $b_3 + \Delta$ are in H.P. (D) Δ is independent of b₁, b₂, b₃ Let $\theta = \frac{\pi}{5}$, $X = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, O is null maxtrix and I is an identity matrix of order 2 × 2, and if 4. $I + X + X^2 + + X^n = O$, then n can be (A) 9 (B) 19 (C) 4 (D) 29 $|f \Delta = \begin{vmatrix} x & 2y - z & -z \\ y & 2x - z & -z \end{vmatrix}$ 5. , then y 2y - z 2x - 2y - z(A) x - y is a factor of Δ (B) $(x - y)^2$ is a factor of Δ (C) $(x - y)^3$ is a factor of Δ (D) Δ is independent of z −x a Let a, b > 0 and $\Delta = \begin{vmatrix} b \\ -x \end{vmatrix}$, then 6. a b –x (A) a + b – x is a factor of Δ (B) $x^2 + (a + b)x + a^2 + b^2 - ab$ is a factor of Δ (C) $\Delta = 0$ has three real roots if a = b(D) a + b + x is a factor of Δ b С $b\alpha + c$ 7. The determinent $\Delta =$ С d $c\alpha + d$ is equal to zero if $b\alpha + c \quad c\alpha + d \quad a\alpha^3 - c\alpha$ (A) b, c, d are in A.P. (B) b, c, d are in G.P. (C) b, c, d are in H.P. (D) α is a root of $ax^3 - bx^2 - 3cx - d = 0$ $a^{2}(1+x)$ ab ac The determinant $\Delta =$ $b^{2}(1+x)$ bc is divisible by 8.2 ab ac $c^{2}(1+x)$ bc (A) x + 3 (B) $(1 + x)^2$ (C) X² (D) x² + 1 If A is a non-singular matrix and A^T denotes the transpose of A, then: 9. (B) $|A. A^T| = |A|^2$ (A) $|A| \neq |A^T|$

(D) $|A| + |A^T| \neq 0$

18.

(A) +2

(B) 4

 $2 \sin x \sin^2 x$ 0 $2\sin x \sin^2 x$, then 10. Let f(x) =1 1 0 2 sin x (A) f(x) is independent of x (B) $f'(\pi/2) = 0$ $\int f(x)dx = 0$ (C) (D) tangent to the curve y = f(x) at x = 0 is y = 0 $\mathbf{x} \mathbf{x}^2$ 1 Let $\Delta = \begin{vmatrix} x^2 & 1 & x \end{vmatrix}$, then 11. $\mathbf{X} \mathbf{X}^2$ 1 (A) $1 - x^3$ is a factor of Δ (B) $(1 - x^3)^2$ is factor of Δ (C) $\Delta(x) = 0$ has 4 real roots (D) $\Delta'(1) = 0$ 1/x logx xⁿ 12.2 Let $f(x) = \begin{vmatrix} 1 & -1/n & (-1)^n \end{vmatrix}$, then (where $f^n(x)$ denotes n^{th} derivative of f(x)) a² 1 а (A) fⁿ (1) is indepedent of a (B) fⁿ (1) is indepedent of n (C) fⁿ (1) depends on a and n (D) $y = a(x - f^n(1))$ represents a straight line through the origin If D is a determinant of order three and Δ is a determinant formed by the cofactors of determinant D; 13. then (A) $\Delta = D^2$ (B) D = 0 implies $\Delta = 0$ (C) if D = 27, then Δ is perfect cube (D) if D = 27, then Δ is perfect square 14.🔈 Let A, B, C, D be real matrices such that $A^{T} = BCD$; $B^{T} = CDA$; $C^{T} = DAB$ and $D^{T} = ABC$ for the matrix M = ABCD, then find M^{2016} ? (A) M (B) M² (C) M³ (D) M⁴ 15. Let **A** and **B** be two 2×2 matrix with real entries. If AB = O and tr(A) = tr(B) = 0 then (A) **A** and **B** are comutative w.r.t. operation of multiplication. (B) **A** and **B** are not commutative w.r.t. operation of multiplication. (C) A and B are both null matrices. (D) **BA** = 0 If $A^{-1} = \begin{vmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{vmatrix}$, then 16. (A) | A | = 2(B) A is non-singular 1/2 -1/2 0 0 -1 1/2 (C) Adj. A = (D) A is skew symmetric matrix -1/2 If A and B are square matrices of order 3, then the true statement is/are (where I is unit matrix). 17. (A) det $(-A) = -\det A$ (B) If AB is singular then atleast one of A or B is singular (C) det (A + I) = 1 + det A(D) det (2A) = 2^3 det A

Let **M** be a 3 × 3 non-singular matrix with det(**M**) = 4. If \mathbf{M}^{-1} adj(adj **M**) = $\mathbf{k}^2 \mathbf{I}$, then the value of '**k**' may be

(C) –2

(D) -4

- **19.** If AX = B where A is 3×3 and X and B are 3×1 matrices then which of the following is correct?
 - (A) If |A| = 0 then AX = B has infinite solutions (B) If AX = B has infinite solutions then |A| = 0
 - (C) If (adj(A)) B = 0 and $|A| \neq 0$ then AX = B has unique solution
 - (D) If $(adj(A)) B \neq 0 \& |A| = 0$ then AX = B has no solution

PART - IV : COMPREHENSION

Comprehension # 1

Let \mathscr{R} be the set of all 3x3 symmetric matrices whose entries are 1,1,1,0,0,0,-1, -1, -1. B is one of the matrix in set \mathscr{R} and

	x		0		[1]	
X =	у	U =	0	V =	0	
	z		0		0	

- **1.** Number of such matrices B in set \mathcal{R} is λ , then λ lies in the interval
(A) (30, 40)(B) (38, 40)(C) (34, 38)(D) (25, 35)
- 2.> Number of matrices B such that equation BX = U has infinite solutions
 (A) is at least 6
 (B) is not more than 10
 (C) lie between 8 to 16
 (D) is zero.

3. The equation BX = V

(A) is inconsistent for atleast 3 matrices B.

- (B) is inconsistent for all matrices B.
- (C) is inconsistent for at most 12 matrices B.
- (D) has infinite number of solutions for at least 3 matrices B.

Comprehension # 2

Some special square matrices are defined as follows :

Nilpotent matrix : A square matrix A is said to be nilpotent (of order 2) if, $A^2 = O$. A square matrix is said to be nilpotent of order p, if p is the least positive integer such that $A^p = O$.

Idempotent matrix : A square matrix A is said to be idempotent if, $A^2 = A$.

e.g. $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$ is an idempotent matrix.

Involutory matrix : A square matrix A is said to be involutory if $A^2 = I$, I being the identity matrix.

e.g. A = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is an involutory matrix.

Orthogonal matrix : A square matrix A is said to be an orthogonal matrix if A' A = I = AA'.

If A and B are two square matrices such that AB = A & BA = B, then A & B are
(A) Idempotent matrices
(B) Involutory matrices
(C) Orthogonal matrices
(D) Nilpotent matrices

5. If the matrix $\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix}$ is orthogonal, then (A) $\alpha = \pm \frac{1}{\sqrt{2}}$ (B) $\beta = \pm \frac{1}{\sqrt{6}}$ (C) $\gamma = \pm \frac{1}{\sqrt{3}}$ (D) all of these 6. The matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$ is (A) idempotent matrix (B) involutory matrix (C) nilpotent matrix (D) none of these

Matrices and Determinant Exercise-3 > Marked questions are recommended for Revision. * Marked Questions may have more than one correct option. PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS) Comprehension #1 (Q. No. 1 to Q. No. 3) Let *A* be the set of all 3 × 3 symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0. The number of matrices in \mathcal{A} is [IIT-JEE 2009, Paper-1, (4, -1), 80] 1.2 (A) 12 (C) 9 (D) 3 (B) 6 1 The number of matrices A in $\tilde{\mathcal{A}}$ for which the system of linear equations A y = 0 has a unique 2.2 0 z solution, is [IIT-JEE 2009, Paper-1, (4, -1), 80] (A) less than 4 (B) at least 4 but less than 7 (C) at least 7 but less than 10 (D) at least 10 The number of matrices A in \mathcal{A} for which the system of linear equations A | y |= | 0 | is inconsistent, 3.2 0 z is (A) 0 (B) more than 2 (C) 2 (D) 1 [IIT-JEE 2009, Paper-1, (4, -1), 80] Comprehension # 2 (Q. No. 4 to 6) Let p be an odd prime number and T_p be the following set of 2 × 2 matrices : $T_p = \left\{ A = \begin{bmatrix} a & b \\ c & a \end{bmatrix} : a, b, c \in \{0, 1, 2, \dots, p-1\} \right\}$ The number of A in T_p such that A is either symmetric or skew-symmetric or both, and det (A) divisible 4. [IIT-JEE 2010, Paper-1, (3, -1), 84] by p is (A) $(p-1)^2$ (B) 2 (p − 1) (C) $(p-1)^2 + 1$ (D) 2p - 1 The number of A in T_p such that the trace of A is not divisible by p but det (A) is divisible by p is 5. [Note : The trace of matrix is the sum of its diagonal entries.] [IIT-JEE 2010, Paper-1, (3, -1), 84] (A) $(p-1)(p^2-p+1)$ (B) $p^3-(p-1)^2$ (D) $(p-1)(p^2-2)$ (C) $(p-1)^2$ The number of A in T_p such that det (A) is not divisible by p is [IIT-JEE 2010, Paper-1, (3, -1), 84] 6. (B) p³ - 5p (C) p³ – 3p (D) $p^3 - p^2$ (A) 2p² The number of all possible values of θ , where $0 < \theta < \pi$, for which the system of equations 7.2 $(y + z) \cos 3\theta = (xyz) \sin 3\theta$ $x \sin 3\theta = \frac{2\cos 3\theta}{y} + \frac{2\sin 3\theta}{z}$ $(xyz) \sin 3\theta = (y + 2z) \cos 3\theta + y \sin 3\theta$ [IIT-JEE 2010, Paper-1, (3, 0), 84] have a solution (x_0, y_0, z_0) with $y_0 z_0 \neq 0$, is

8. Let k be a positive real number and let

[IIT-JEE 2010, Paper-2, (3, 0), 79]

 $A = \begin{bmatrix} 2k - 1 & 2\sqrt{k} & 2\sqrt{k} \\ 2\sqrt{k} & 1 & -2k \\ -2\sqrt{k} & 2k & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 2k - 1 & \sqrt{k} \\ 1 - 2k & 0 & 2\sqrt{k} \\ -\sqrt{k} & -2\sqrt{k} & 0 \end{bmatrix}. \text{ If det (adj A) + det (adj B) = 10^6, then }$

[k] is equal to

(**Note** : adj M denotes the adjoint of a square matrix M and [k] denotes the largest integer less than or equal to k].

9. Let M and N be two $2n \times 2n$ non-singular skew-symmetric matrices such that MN = NM. If P^{T} denotes the transpose of P, then $M^2 N^2 (M^{T} N)^{-1} (MN^{-1})^{T}$ is equal to (A) M^2 (B) $- N^2$ (C) $- M^2$ (D) MN

Comprehension # 3 (10 to 12)

14.

Let a, b and c be three real numbers satisfying

- $\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} 1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$
- **10.** If the point P(a, b, c), with reference to (E), lies on the plane 2x + y + z = 1, then the value of 7a + b + c is (A) 0 (B) 12 (C) 7 (D) 6
- 11. Let ω be a solution of $x^3 1 = 0$ with Im (ω) > 0. if a = 2 with b and c satisfying (E), then the value of $\frac{3}{\omega^a} + \frac{1}{\omega^b} + \frac{3}{\omega^c}$ is equal to (A) - 2 (B) 2 (C) 3 (D) - 3

12. Let b = 6, with a and c satisfying (E). If α and β are the roots of the quadratic equation $ax^2 + bx + c = 0$, then $\sum_{n=0}^{\infty} \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)^n$ is (A) 6 (B) 7 (C) $\frac{6}{7}$ (D) ∞

13. Let $\omega \neq 1$ be a cube root of unity and S be the set of all non-singular matrices of the form, $\begin{bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end{bmatrix}$

where each of a, b and c is either ω or ω^2 . Then the number of distinct matrices in the set S is **[IIT-JEE 2011, Paper-2, (3, -1), 80]** (A) 2 (B) 6 (C) 4 (D) 8 Let M be a 3 x 3 matrix satisfying $M \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, M \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, and M \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$ Then the sum of the diagonal entries of M is

. Then the sum of the diagonal entries of M is	0 12	=	, and M 1	: 1 -1	-1 =	, M	2	=	1 0	М
[IIT-JEE 2011, Paper-2, (4, 0), 80]		-		L -			L _	-		

15. Let $P = [a_{ij}]$ be a 3 x 3 matrix and let $Q = [b_{ij}]$, where $b_{ij} = 2^{i+j}a_{ij}$ for $1 \le i, j \le 3$. If the determinant of P is 2, then the determinant of the matrix Q is (A) 2^{10} (B) 2^{11} (C) 2^{12} (D) 2^{13}

.....(E)

[IIT-JEE 2011, Paper-1, (3, -1), 80]

Matrices and Determinant / If P is a 3 x 3 matrix such that $P^{T} = 2P + I$, where P^{T} is the transpose of P and I is the 3 x 3 identity 16.🔈 0 $\begin{vmatrix} y \end{vmatrix} \neq \begin{vmatrix} 0 \end{vmatrix}$ such that matrix, then there exists a column matrix X =z 0 [IIT-JEE 2012, Paper-2, (3, -1), 66] (A) $PX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ (B) PX = X (C) PX = 2X(D) PX = -XIf the adjoint of a 3 x 3 matrix P is $\begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{bmatrix}$, then the possible value(s) of the determinant of P is 17*. (are) [IIT-JEE 2012, Paper-2, (4, 0), 66] (B) –1 (C) 1 (A) –2 (D) 2 18.* For 3x3 matrices M and N, which of the following statement(s) is (are) **NOT** correct ? [JEE (Advanced) 2013, Paper-1, (4, -1)/60] (A) N^T M N is symmetric or skew symmetric, according as M is symmetric or skew symmetric (B) M N – N M is skew symmetric for all symmetric matrices M and N (C) M N is symetric for all symmetric matrices M and N (D) (adj M) (adj N) = adj(MN) for all invertible matrices M and N 19*. Let M be a 2 x 2 symmetric matrix with integer entries. Then M is invertible if [JEE (Advanced) 2014, Paper-1, (3, 0)/60] (A) the first column of M is the transpose of the second row of M (B) the second row of M is the transpose of first column of M (C) M is a diagonal matrix with nonzero entries in the main diagonal (D) the product of entries in the main diagonal of M is not the square of an integer Let M and N be two 3 x 3 matrices such that MN = NM. Further, if M \neq N² and M² = N⁴, then 20*.১ (A) determinant of $(M^2 + MN^2)$ is 0 [JEE (Advanced) 2014, Paper-1, (3, 0)/60] (B) there is a 3 x 3 non-zero matrix U such that $(M^2 + MN^2)U$ is the zero matrix (C) determinant of $(M^2 + MN^2) \ge 1$ (D) for a 3×3 matrix U, if $(M^2 + MN^2)U$ equals the zero matrix then U is the zero matrix Let X and Y be two arbitrary, 3 × 3, non-zero, skew-symmetric matrices and Z be an arbitrary 3 × 3, 21*. non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric? [JEE (Advanced) 2015, Paper-1 (4, –2)/88] (B) $X^{44} + Y^{44}$ (C) $X^4 Z^3 - Z^3 X^4$ (D) $X^{23} + Y^{23}$ (A) $Y^{3}Z^{4} - Z^{4}Y^{3}$ $|(1+\alpha)^2 (1+2\alpha)^2 (1+3\alpha)^2$ Which of the following values of α satisfy the equation $\begin{vmatrix} (2+\alpha)^2 & (2+2\alpha)^2 \\ (3+\alpha)^2 & (3+2\alpha)^2 \end{vmatrix} = -648\alpha$? 22*. (C) - 9 (D) 4 [JEE (Advanced) 2015, Paper-1 (4, -2)/88] (A) – 4 **23*.** Let $P = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$, where $\alpha \in R$. Suppose $Q = [q_{ij}]$ is a matrix such that PQ = k I, where $k \in R, k \neq 0$ and I is the identity matrix of order 3. If $q_{23} = -\frac{k}{8}$ and det (Q) = $\frac{k^2}{2}$, then [JEE (Advanced) 2016, Paper-1 (4, -2)/62] (B) $4\alpha - k + 8 = 0$ (C) det (P adj (Q)) = 2⁹ (D) det (Q adj (P)) = 2¹³ (A) $\alpha = 0, k = 8$

24. The total number of distinct $x \in R$ for which $\begin{vmatrix} 2x & 4x^2 & 1+8x^3 \\ 3x & 9x^2 & 1+27x^3 \end{vmatrix}$ = 10 is

25. Let $P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix}$ and I be the identity matrix of order 3. If $Q = [q_{ij}]$ is a matrix such that $P^{50} - Q = I$,

х

 x^2 1+ x^3

then $\frac{q_{31} + q_{32}}{q_{21}}$ equals [JEE (Advanced) 2016, Paper-2 (3, -1)/62] (A) 52 (B) 103 (C) 201 (D) 205

26*. Let $a, \lambda, \mu \in R$. Consider the system of linear equations

$$ax + 2y = \lambda$$
$$3x - 2y = \mu$$

[JEE (Advanced) 2016, Paper-2 (4, –2)/62]

[JEE (Advanced) 2016, Paper-1 (3, 0)/62]

Which of the following statement(s) is(are) correct? (A) if a = -3, then the system has infinitely many solutions for all values of λ and μ

(B) If a \neq -3, then the system has a a unique solution for all values of λ and μ

(C) If $\lambda + \mu = 0$, the the system has infinitely many solutions for a = -3

(D) If $\lambda + \mu \neq 0$, then the system has no solution for a = -3

27*. Which of the following is(are) NOT the square of a 3×3 matrix with real entries?

[JEE(Advanced) 2017, Paper-1,(4, -2)/61]

	1	0	0		[1	0	0] [-1	0	0]	-	[1	0	0
(A)	0	1	0	(B)	0	-1	0	(C)	0	-1	0	(D)	0	1	0
	0	0	-1		0	0	-1		0	0	-1		0	0	1

28. For a real number α , if the system

1	α	α^2	x		[1]	
α	1	α	у	=	-1	
α^2	α	1	z		1	

[JEE(Advanced) 2017, Paper-1,(3, 0)/61]

such that b_1 , b_2 , $b_2 \in R$ and the system of equation

of linear equations, has infinitely many solutions, then $1 + \alpha + \alpha^2 =$

 29.
 How many 3 × 3 matrices M with entries from {0, 1, 2} are there, for which the sum of the diagonal entries of M^T M is 5 ?
 [JEE(Advanced) 2017, Paper-2,(3, -1)/61]

 (A) 198
 (B) 162
 (C) 126
 (D) 135

b₁

30*. Let S be the set of all column matrices $\begin{bmatrix} b_2 \\ b_3 \end{bmatrix}$

(in real variables)

$$-x + 2y + 5z = b_1$$

 $2x - 4y + 3z = b_2$
 $x - 2y + 2z = b_3$

has at least one solution. Then, which of the following system(s) (in real variables) has (have) at least one solution for each $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \in S$? [JEE(Advanced) 2018, Paper-2,(4, -2)/60]

 $\begin{bmatrix} b_3 \end{bmatrix}$ (A) x + 2y + 3z = b₁, 4y + 5z = b₂ and x + 2y + 6z = b₃ (B) x + y + 3z = b₁, 5x + 2y + 6z = b₂ and $-2x - y - 3z = b_3$ (C) $-x + 2y - 5z = b_1$, $2x - 4y + 10z = b_2$ and $x - 2y + 5z = b_3$ (D) x + 2y + 5z = b₁, $2x + 3z = b_2$ and $x + 4y - 5z = b_3$

31.ര. Let P be a matrix of order 3×3 such that all the entries in P are from the set $\{-1, 0, 1\}$. Then, the maximum possible value of the determinant of P is . [JEE(Advanced) 2018, Paper-2,(3, 0)/60]

PART - II : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

- 1. Let A be a 2×2 matrix. Statement-1 : adj(adj(A)) = A.
 - Statement-2 : |adj A| = |A|

[AIEEE 2009 (4, -1), 144]

c-1

b+1

a+1

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
 - (2) Statement-1 is true, Statement-2 is false.
- (3) Statement-1 is false, Statement-2 is true.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. a a+1 a-1
- 2. b-1 c+1 = 0. Then the a-1 c c-1 c+1 $(-1)^{n+2}a (-1)^{n+1}b (-1)^{n}c$ [AIEEE 2009 (4, -1), 144] value of 'n' is -(1) zero (2) any even integer (3) any odd integer (4) any integer The number of 3 x 3 non-singular matrices, with four entries as 1 and all other entries as 0, is 3.2 (3) at least 7 (4) less than 4 (1)5(2) 6 [AIEEE 2010 (8, -2), 144] 4. Let A be a 2 \times 2 matrix with non-zero entries and let A² = I, where I is 2 \times 2 identity matrix. Tr(A) = sum of diagonal elements of A and |A| = determinant of matrix A. [AIEEE 2010 (4, -1), 144]**Statement -1** : Tr(A) = 0**Statement -2** : |A| = 1(1) Statement -1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1. (2) Statement-1 is true, Statement-2 is false. (3) Statement -1 is false, Statement -2 is true. (4) Statement -1 is true, Statement -2 is true; Statement-2 is a correct explanation for Statement-1. 5. Consider the system of linear equations : [AIEEE 2010 (4, -1), 144] $x_1 + 2x_2 + x_3 = 3$ $2x_1 + 3x_2 + x_3 = 3$ $3x_1 + 5x_2 + 2x_3 = 1$ The system has (3) no solution (1) exactly 3 solutions (2) a unique solution (4) infinite number of solutions 6. Let A and B be two symmetric matrices of order 3. [AIEEE 2011, I, (4, -1), 120] **Statement-1** : A(BA) and (AB)A are symmetric matrices. Statement-2: AB is symmetric matrix if matrix multiplication of A with B is commutative. (1) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is true, Statement-2 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. (3) Statement-1 is true, Statement-2 is false. (4) Statement-1 is false, Statement-2 is true. 7. The number of values of k for which the linear equations [AIEEE 2011, I, (4, -1), 120] 4x + ky + 2z = 0kx + 4y + z = 02x + 2y + z = 0posses a non-zero solution is : (4) zero (3) 1 (1) 3(2) 2

Matrices and Determinant If $\omega \neq 1$ is the complex cube root of unity and matrix $H = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$, then H^{70} is equal to -8. [AIEEE 2011, I, (4, -1), 120] (1) 0(2) - H(3) H² (4) H 9. If the trivial solution is the only solution of the system of equations [AIEEE 2011, II, (4, -1), 120] x - ky + z = 0kx + 3y - kz = 03x + y - z = 0then the set of all values of k is : (3) $R - \{-3\}$ $(1) R - \{2, -3\}$ (2) $R - \{2\}$ (4) {2, -3} 10. Statement - 1 : Determinant of a skew-symmetric matrix of order 3 is zero. [AIEEE 2011, II, (4, -1), 120] **Statement - 2**: For any matrix A, det $(A)^T = det(A)$ and det (-A) = -det(A). Where det (B) denotes the determinant of matrix B. Then : (1) Both statements are true (2) Both statements are false (3) Statement-1 is false and statement-2 is true. (4) Statement-1 is true and statement-2 is false (1 0 0) Let A = $\begin{vmatrix} 2 & 1 & 0 \end{vmatrix}$. If u₁ and u₂ are column matrices such that Au₁ = 11. 0 and $Au_2 =$, then $u_1 + u_2$ is 3 2 1 [AIEEE-2012, (4, -1)/120] equal to : 1 (2) (1) 1 12.2 Let P and Q be 3 x 3 matrices $P \neq Q$. If $P^3 = Q^3$ and $P^2Q = Q^2P$, then determinant of $(P^2 + Q^2)$ is equal to: [AIEEE-2012, (4, -1)/120] (1) - 2(2) 1 (3) 0(4) - 1The number of values of k, for which the system of equations : 13. [AIEEE - 2013, (4, - 1) 120] (k + 1)x + 8y = 4kkx + (k + 3)y = 3k - 1has no solution, is (2) 1 (3) 2(4) 3(1) infinite If P = 133 is the adjoint of a 3 x 3 matrix A and |A| = 4, then α is equal to : 14. [AIEEE - 2013, (4, - 1) 120] (1) 4(2) 11 (3) 5 (4) 03 $1 + f(1) \quad 1 + f(2)$ $|1+f(1) + f(2) + f(3)| = K (1-\alpha)^2 (1-\beta)^2 (\alpha-\beta)^2$, then K is equal If α , $\beta \neq 0$ and $f(n) = \alpha^n + \beta^n$ and 15.ര. 1+f(2) 1+f(3) 1+f(4)to [JEE(Main) 2014, (4, -1), 120] (1) 1(2) - 1(3) αβ 16. If A is an 3 x 3 non-singular matrix such that AA' = A'A and $B = A^{-1}A'$, then BB' equals : [JEE(Main) 2014, (4, -1), 120] (1) B⁻¹ (2) (B⁻¹)' (3) I + B

(4) I

1227 If A = $\begin{vmatrix} 2 & 1 & -2 \end{vmatrix}$ is a matrix satisfying the equation AA^T = 9I, where I is 3 × 3 identity matrix, then the 17. a 2 b [JEE(Main) 2015, (4, - 1), 120] (4) (-2, - 1) ordered pair (a, b) is equal to : (3)(2,1)(1)(2, -1)(2)(-2, 1)The set of all value of λ for which the system of linear equations : 18. $2x_1 - 2x_2 + x_3 = \lambda x_1$ $2x_1 - 3x_2 + 2x_3 = \lambda x_3$ $-\mathbf{x}_1 + 2\mathbf{x}_2 = \lambda \mathbf{x}_3$ [JEE(Main) 2015, (4, -1), 120] has a non-trivial solution, (1) is an empty set (2) is a singleton (3) contains two elements (4) contains more than two elements [JEE(Main) 2016, (4, -1), 120] 19. The system of linear equations $x + \lambda y - z = 0$ $\lambda x - y - z = 0$ $x + y - \lambda z = 0$ has a non-trivial solution for : (1) Exactly one value of λ . (2) Exactly two values of λ . (4) Infinitely many values of λ . (3) Exactly three values of λ . If $A = \begin{vmatrix} 5a & -b \\ 3 & 2 \end{vmatrix}$ and A adj A = A A^T, then 5a + b is equal to [JEE(Main) 2016, (4, -1), 120] 20. (1)5(2) 4(3) 13(4) - 1It S is the set of distinct values of 'b' for which the following system of linear equations 21.2 x + y + z = 1[JEE(Main) 2017, (4, -1), 120] x + ay + z = 1ax + by + z = 0has no solution, then S is : (2) an infinite set (1) an empty set (3) a finite set containing two or more elements (4) a singleton If $A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$, then adj (3A² + 12A) is equal to [JEE(Main) 2017, (4, -1), 120] (1) $\begin{bmatrix} 72 & -84 \\ -63 & 51 \end{bmatrix}$ (2) $\begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$ (3) $\begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}$ (4) $\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$ 22. If the system of linear equations 23. [JEE(Main) 2018, (4, -1), 120] x + ky + 3z = 03x + ky - 2z = 02x + 4y - 3z = 0has a non-zero solution (x, y, z), then $\frac{xz}{y^2}$ is equal to : (1) - 30(2) 30 (3) - 10(4) 10If $\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{vmatrix}$ = (A + Bx) (x–A)² then the ordered pair (A, B) is equal to : 24. [JEE(Main) 2018, (4, -1), 120] (3) (-4, -5) (1) (-4, 5)(2)(4,5)(4)(-4,3)

25. The system of linear equations [JEE(Main) 2019, Online (09-01-19), P-1 (4, - 1), 120] x + y + z = 22x + 3y + 2z = 5 $2x + 3y + (a^2 + 1)z = a + 1$ (1) is inconsistent when a = 4(2) has infinitely many solutions for a = 4(4) has a unique solution for $|a| = \sqrt{3}$ (3) is inconsistent when $|a| = \sqrt{3}$ **26.** If $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, then the matrix A^{-50} when $\theta = \frac{\pi}{12}$, is equal to : [JEE(Main) 2019, Online (09-01-19), P-1 (4, -1), 120] $\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$ (1) $\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ (2) $(3)\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$ $(4)\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ $Let \ d \in R, \ and \ A = \begin{bmatrix} -2 & 4+d & (sin\theta-2) \\ 1 & (sin\theta)+2 & d \\ 5 & (2sin\theta)-d & (-sin\theta)+2+2d \end{bmatrix}$ $\theta \in [0, 2\pi]$. If the minimum value of det(A) is 8, 27. [JEE(Main) 2019, Online (10-01-19), P-1 (4, - 1), 120] then a value of d is : (2) $2(\sqrt{2}+2)$ (3) $2(\sqrt{2}+1)$ (1) -5 (4) –7 Let $A = \begin{pmatrix} 0 & 2q & r \\ p & q & -r \\ p & -q & r \end{pmatrix}$. If $AA^{T} = I_{3}$, then |p| is [JEE(Main) 2019, Online (11-01-19), P-1 (4, -1), 120] 28. (3) $\frac{1}{\sqrt{6}}$ (4) $\frac{1}{\sqrt{2}}$ (1) $\frac{1}{\sqrt{5}}$ (2) $\frac{1}{\sqrt{3}}$

Answers EXERCISE #1 PART-I Section (A) : **A-1.** $\begin{bmatrix} 1 & 0 \\ 3 & 2 \\ 5 & 4 \end{bmatrix}$ **A-2.** (x, y, z, w) = (1, 2, 4, 5) **A-3.** $\begin{bmatrix} 2 & -1/2 \\ 4 & -1 \end{bmatrix}$ **A-4.** $AB = \begin{bmatrix} 18 & -11 & 10 \\ -16 & 47 & 10 \\ 62 & -23 & 42 \end{bmatrix}$, $BA = \begin{bmatrix} 49 & 24 \\ -7 & 58 \end{bmatrix}$ **A-7.** $y \in R$ **A-9.** Zero Section (B) : **B-1.** 0, $\frac{3\pi}{4}$, π **B-2.** (i) 0 (ii) 0 (iv) $5(3\sqrt{2}-5\sqrt{3})$ (i) x = -2 b/a (ii) 4 **B-8.** A = 0, B = 0B-5. Section (C) : **C-1.** $\begin{bmatrix} -191 & -110 \\ 77 & 44 \end{bmatrix}$ **C-2.** (ii) $|A|^{(n-1)^3}$ **C-3.** $\begin{bmatrix} 9 & -3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ **C-5.** a = 1, c = -1Section (D) : $a = -4, b = 1, A^{-1} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$ **D-2.** 0 D-1. (i) x = 3, y = 4, z = 6 (ii) $x = -\frac{5k}{3} + \frac{8}{3}, y = -\frac{2k}{3} - \frac{1}{3}, z = k$, where $k \in \mathbb{R}$ D-4. **D-5.** x = -7, y = -4 **D-6.** for c = 0, x = -3, y = 3; for $c = -10, x = -\frac{1}{2}, y = \frac{4}{3}$ **D-7.** (i) x = 2, y = 2, z = 2 (ii) x = 1, y = 3, z = 5**D-8.** (a) $\lambda \neq 3$ (b) $\lambda = 3, \mu = 10$ (c) $\lambda = 3, \mu \neq 10$ **D-9.** x = 3, y = -2, z = -1 **D-10.** $x = 1, y = 2, z = 3, A^{-1} = \frac{1}{17} \begin{bmatrix} 1 & 5 & 1 \\ 8 & 6 & -9 \\ 10 & 1 & 7 \end{bmatrix}$ D-11. S1, S3, S4 **PART-II** Section (A) : (D) **A-3.** (A) **A-4.** (C) **A-5.** (B) **A-6.** A-1. (A) A-2. (C) **A-7.** (A) A-8. (A) A-9. (A) Section (B) : (B) B-2. (A) B-3. **B-4.** (D) (D) (D) B-1. (A) B-5. B-6. B-7. (B) **B-10.** (B) B-8. B-9. (B) (C) Section (C) : (C) **C-3.** (A) **C-4.** (A) **C-5.** (C) C-2. **C-6.** (A) **C-1**. (A) Section (D) :

D-3. (D) **D-4.** (B) (B) **D-1.** (A) **D-2** (A) D-5. **D-6.** (A)

Matr	rices and	d Deter	minant ,										
						PA	RT-III						
1.	$(A) \rightarrow$	(s),	$(B) \rightarrow 0$	(p),	$(C) \rightarrow$	(p),	$(D) \rightarrow$	$(D) \to (p)$					
2.	$(A) \rightarrow$	(q),	$(B) \rightarrow 0$	(p),	$(C) \rightarrow$	(s),	$(D) \rightarrow$	(q)					
					E	XER	CISE #	2					
						PA	ART-I						
1.	(D)	2.	(A)	3.	(D)	4.	(C)	5.	(D)	6.	(A)	7.	(C)
8.	(A)	9.	(A)	10.	(A)	11.	(A)	12.	(B)	13.	(A)	14.	(A)
15.	(A)	6.	(C)	17.	(B)	18.	(B)	19.	(A)	20.	(A)		
						ΡΑ	RT - II						
1.	2	2.	64	3.	36	4.	2	5.	50	6.	4	7.	0
8.	63	9.	4	10.	6	11.	2	12.	1	13.	2	14.	33
15.	80	16.	39	17.	17	18.	8						
						PA	RT - III						
1.	(AD)	2.	(BC)	3.	(ABCE	D) 4.	(ABD)	5.	(AB)	6.	(ABC)	7.	(BD)
8.	(AC)	9.	(BCD)	10.	(BCD)	(BCD) 11.		12.	(ABD)	13.	(ABCI	D)	
14.	(BD)	15.	(AD)	16.	(BC)	17.	(ABD)	18.	(AC)	19.	(BCD)		
						PAF	RT - IV						
1*.	(AC)	2*.	(AC)	3*.	(AC)	4.	(A)	5.	(D)	6.	(C)		
					E	XER	CISE #	3					
		•				, PA	ART-I	_		•		_	0
1.24	(A)	2.	(B)	3.	(B)	4.	(D)	5.	(C)	6.	(D)	7.	3
8.	4	9.	(C)	10.	(D)	11.	(A)	12.	(B)	13.	(A)	14.	9
15.	(D)	16.	(D)	17*.	(AD)	18.*	(CD)	19*.	(CD)	20*.	(AB)	21*.	(CD)
22*.	(BC)	23*.	(BC)	24.	2	25.	(B)	26*.	(BCD)	27*.	(AC)	28.	1
29.	(A)	30*.	(AD)	31.	4	PΔ	RT - II						
1.	(1)	2.	(3)	3.	(3)	4.	(2)	5.	(3)	6.	(2)	7.	(2)
8.	(4)	<u>-</u> . 9.	(1)	10	(4)	- - - 11	(4)	12	(3)	13	(2)	 14	(2)
15.	(1)	16	(4)	17.	(4)	18	(3)	19.	(3)	20.	(1)	21	(4)
22	(2)	23	(4)	24	(1)	25	(3)	26	(2)	27	(1)	28	(4)
	(-)		(')		(')			_0.	(-)		(')	20.	(')

Advance Level Problems (ALP)

$$\begin{array}{ll} \textbf{1.} & \text{ If } a^{2} + b^{2} + c^{2} = 1, \text{ then prove that } \begin{vmatrix} a^{2} + b^{2} + c^{2} | \cos \phi & ab(1 - \cos \phi) & ac(1 - \cos \phi) \\ b^{2} + (c^{2} + a^{2}) \cos \phi & bc(1 - \cos \phi) \\ ca(1 - \cos \phi) & cb(1 - \cos \phi) & c^{2} + (a^{2} + b^{2}) \cos \phi \end{vmatrix} \\ \hline \textbf{1.} & \textbf{1.} & \textbf{1.} & \textbf{1.} & \textbf{1.} \\ \hline \textbf{1.} & \textbf{1.} & \textbf{1.} & \textbf{1.} & \textbf{1.} & \textbf{1.} \\ \hline \textbf{1.} & ay^{2} & (b - x)^{2} & (c - x)^{2} \\ (a - x)^{2} & (b - x)^{2} & (c - x)^{2} \\ (a - z)^{2} & (b - z)^{2} & (c - z)^{2} \end{vmatrix} = . \begin{vmatrix} (1 + ay)^{2} & (1 + by)^{2} & (1 + cx)^{2} \\ (1 + az)^{2} & (1 + bz)^{2} & (1 + cz)^{2} \end{vmatrix} \\ \hline \textbf{3.} & \text{If } a_{a}, a_{a}, a_{a} \text{ are distinct real roots of the equation } px^{3} + px^{2} + qx + r = 0 \text{ such that } \begin{vmatrix} 1 + a_{a} & 1 & 1 \\ 1 & 1 + a_{2} & 1 \\ 1 & 1 & 1 + a_{3} \end{vmatrix} = 0, \\ \hline \text{ then Prove that } A = \begin{vmatrix} \beta y & \beta y^{1} + \beta^{1} y & \beta^{1} y^{2} \\ \gamma \alpha & \gamma \alpha + \gamma^{1} \alpha & \gamma^{1} \alpha \\ \alpha \beta & \alpha^{1} \beta & \alpha^{1} \beta \end{vmatrix} = (\alpha\beta^{1} - \alpha^{1}\beta) (\beta\gamma^{1} - \beta^{1}\gamma) (\gamma\alpha^{1} - \gamma^{1}\alpha) \\ \hline \textbf{4.} & \text{Prove that } A = \begin{vmatrix} \beta y & \beta y^{1} + \alpha^{1} y & \alpha^{1} \gamma^{2} \end{vmatrix} = (\alpha\beta^{1} - \alpha^{1}\beta) (\beta\gamma^{1} - \beta^{1}\gamma) (\gamma\alpha^{1} - \gamma^{1}\alpha) \\ \hline \textbf{4.} & \text{Prove that } A = \begin{vmatrix} \beta y & \beta y^{1} + \alpha y^{2} & \alpha^{1} \beta \end{vmatrix} = (\alpha\beta^{1} - \alpha^{1}\beta) (\beta\gamma^{1} - \beta^{1}\gamma) (\gamma\alpha^{1} - \gamma^{1}\alpha) \\ \hline \textbf{5.} & \text{If } ax_{a}^{2} + by_{a}^{2} + cz_{a}^{2} = d \\ ax_{a}^{2} + by_{a}^{2} + cz_{a}^{2} = d \\ ax_{a}x_{a} + by_{a}y_{b} + cz_{a}z_{a} = f \\ ax_{a}^{2} + by_{a}^{2} + cz_{a}^{2} = d \\ ax_{a}x_{a} + by_{a}y_{b} + cz_{a}z_{a} = f \\ ax_{a}^{2} + by_{a}^{2} + (y_{a} - y_{a})^{2} \\ = (d - f)^{2} \frac{d + 2f}{abc}, \text{ where } a, b, c \neq 0. \\ \begin{pmatrix} x_{a} - x_{a} \end{pmatrix}^{2} + (y_{a} - y_{a})^{2} = b^{2}, \\ (x_{a} - x_{a})^{2} + (y_{a} - y_{a})^{2} = b^{2}, \\ (x_{a} - x_{a})^{2} + (y_{a} - y_{a})^{2} = b^{2}, \\ (x_{a} - x_{a})^{2} + (y_{a} - y_{a})^{2} = b^{2}, \\ (x_{a} - x_{a})^{2} + (y_{a} - y_{a})^{2} = b^{2}, \\ (x_{a} - x_{a})^{2} + (y_{a} - y_{a})^{2} = b^{2}, \\ (x_{a} - x_{a})^{2} + (y_{a} - y_{a})^{2} = b^{2}, \\ (x_{a} - x_{a})^{2} + (y_{a} - y_{a})^{2} = c^{2} \\ \textbf{1.} \\ \textbf{1.} \\ \textbf{1.} \\ \textbf{1.} \\ \textbf{1.} \\ \textbf{2.} \\ \textbf{2.} \\ \textbf{1.} \\ \textbf{2.} \\ \textbf{2.} \\ \textbf{2.} \\$$

Matrices and Determinant If α , β be the real roots of $ax^2 + bx + c = 0$ and $s_n = \alpha^n + \beta^n$, then prove that $as_n + bs_{n-1} + cs_{n-2} = 0$ for all 9. 3 $1+s_1 + s_2$ $n \ge 2, n \in N$. Hence or otherwise prove that $\begin{vmatrix} 1+s_1 & 1+s_2 \\ 1+s_3 \end{vmatrix} \ge 0$ for all real a, b, c. $|1+s_2 \quad 1+s_3 \quad 1+s_4|$ Let a > 0, d > 0. Find the value of determinant $\begin{vmatrix} \frac{1}{a} & \frac{1}{a(a+d)} & \frac{1}{(a+d)(a+2d)} \\ \frac{1}{(a+d)} & \frac{1}{(a+d)(a+2d)} & \frac{1}{(a+2d)(a+3d)} \\ \frac{1}{(a+2d)} & \frac{1}{(a+2d)(a+3d)} & \frac{1}{(a+3d)(a+4d)} \end{vmatrix}$ 10. Let $\vec{a}_r = x_r \hat{i} + y_r \hat{j} + z_r \hat{k}$, r = 1, 2, 3 be three mutually perpendicular unit vectors, then find the value of 11. If $\begin{vmatrix} x^{k} & x^{k+2} & x^{k+3} \\ y^{k} & y^{k+2} & y^{k+3} \\ z^{k} & z^{k+2} & z^{k+3} \end{vmatrix} = (x - y) (y - z) (z - x) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)$, then find the value of k. 12. a + p l + x u + f 13. If the determinant | b + q m + y v + g | splits into exactly K determinants of order 3, each c + r n + z w + helement of which contains only one term, then find the value of K = If a, b, c are all different and $\begin{vmatrix} a & a^3 & a^4 - 1 \\ b & b^3 & b^4 - 1 \\ c & c^3 & c^4 - 1 \end{vmatrix} = 0$ then find the value of abc (ab + bc + ca) - (a + b + c). 14.

15. If a, b, c are complex numbers and $z = \begin{vmatrix} 0 & -b & -c \\ \overline{b} & 0 & -a \\ \overline{c} & \overline{a} & 0 \end{vmatrix}$ then show that z is purely imaginary.

16. If $f(x) = \log_{10} x$ and $g(x) = e^{i\pi x}$ and $h(x) = \begin{vmatrix} f(x)g(x) & [f(x)]^{g(x)} & 1 \\ f(x^2)g(x^2) & [f(x^2)]^{g(x^2)} & 0 \\ f(x^3)g(x^3) & [f(x^3)]^{g(x^3)} & 1 \end{vmatrix}$, then find the value of h(10).

17. If a, b, c, are real numbers, and D = $\begin{vmatrix} a & 1+2i & 3-5i \\ 1-2i & b & -7-3i \\ 3+5i & -7+3i & c \end{vmatrix}$ then show that D is purely real.

18. If $A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ then find $\lim_{n \to \infty} \frac{1}{n} A^n$.

19. Let $\mathbf{P} = \begin{bmatrix} \cos\frac{\pi}{9} & \sin\frac{\pi}{9} \\ -\sin\frac{\pi}{9} & \cos\frac{\pi}{9} \end{bmatrix}$ and α , β , γ be non-zero real numbers such that $\alpha p^6 + \beta p^3 + \gamma I$

is the zero matrix. Then find value of $(\alpha^2 + \beta^2 + \gamma^2)^{(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)}$

- **20.** Consider an odd order square symmetric matrix $A = [a_{ij}]_{nxn}$. It's element in any row are 1, 2,, n in some order, then prove that a_{11} , a_{22} ,, a_{nn} are numbers 1, 2, 3,, n in some order.
- **21.** Let $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$; $\mathbf{B} = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ and $\mathbf{C} = 3\mathbf{A} + 7\mathbf{B}$
 - Prove that
 - (i) $(\mathbf{A} + \mathbf{B})^{2013} = \mathbf{A}^{2013} + \mathbf{B}^{2013}$
 - (ii) Prove that $\mathbf{A}^n = 3^{n-1} \mathbf{A}$; $\mathbf{B}^n = 3^{n-1} \mathbf{B}$; $\mathbf{C}^n = 3^{2n-1} \mathbf{A} + 7.21^{n-1} \mathbf{B}$.
- Let 'A' is (4×4) matrix such that sum of elements in each row is 1. Find out sum of all the elements in A¹⁰.

23. Let $A = \begin{bmatrix} x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda \end{bmatrix}$, then prove that A^{-1} exists if $3x + \lambda \neq 0, \lambda \neq 0$

24. Prove that if A and B are
$$n \times n$$
 matrices, then det $(I_n - AB) = det (I_n - BA)$.

- **25.** Let A be an n x n matrix such that $A^n = \alpha A$ where α is a real number different from 1 and 1. Prove that the matrix A + I_n is invertible.
- **26.** Let p and q be real numbers such that $x^2 + px + q \neq 0$ for every real number x. Prove that if n is an odd positive integer, then $X^2 + pX + qI_n \neq 0_n$ for all real matrices X of order n × n.
- 27. Let A, B, C be three 3 × 3 matrices with real entries. If BA + BC + AC = I and det(A + B) = 0 then find the value of det(A + B + C BAC).
- **28.** If $|z_1| = |z_2| = 1$, then prove that $\begin{bmatrix} z_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix}^{-1} \begin{bmatrix} \overline{z}_1 & z_2 \\ -\overline{z}_2 & z_1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$
- **29.** If A and B are two square matrices such that $B = -A^{-1} BA$, then show that $(A + B)^2 = A^2 + B^2$

			а	1	0		а	1	1]	Γ	f		a²		X	
30.	lf	A =	1	b	d	, B=	0	d	с	, U =	g	, V =	0	, X =	у	
			1	b	с		f	g	h		h		0		z	

and AX = U has infinitely many solution. Prove that BX = V has no unique solution, also prove that if afd $\neq 0$, then BX = V has no solution.

- **31.** If the system of equations x = cy + bz, y = az + cx and z = bx + ay has a non-zero solution and at least one of a, b, c is a proper fraction, prove that $a^3 + b^3 + c^3 < 3$ and abc > -1.
- **32.** If D = diag $\{d_1, d_2, \dots, d_n\}$, then prove that $f(D) = diag \{f(d_1), f(d_2), \dots, f(d_n)\}$, where f(x) is a polynomial with scalar coefficient.

33. Given the matrix $\mathbf{A} = \begin{bmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5 \end{bmatrix}$ and \mathbf{X} be the solution set of the equation $A^x = \mathbf{A}$, where $\mathbf{x}^3 + 1$

 $x \in \mathbf{N} - \{1\}$. Evaluate $\prod \frac{x^3 + 1}{x^3 - 1}$; where the continued product extends $\forall x \in \mathbf{X}$.

Comprehension (Q. NO. 34 to 36)

Any non-zero vector, X, is said to be characteristic vector of a matrix A, if there exist a number λ such that $AX = \lambda X$. And then λ is said to be a characteristic root of the matrix A corresponding to the characteristic vector X and vice versa. Also $AX = \lambda X \implies (A - \lambda I)X = 0$ Since $X \neq 0 \implies |A - \lambda I| = 0$

Thus every characteristic root λ of a matrix A is a root of its characteristic equation.

- **34.** Prove that the two matrices A and P⁻¹ AP have the same characteristic roots and hence show that square matrices AB & BA have same characteristic roots if at least one of them is invertible.
- **35.** If q is a characteristic root of a non singular matrix A, then prove that $\frac{|A|}{q}$ is a characteristic root of a

adj A.

- **36.** Show that if $\alpha_1, \alpha_2, \dots, \alpha_n$ are n characteristic roots of a square matrix A of order n, then the roots of the matrix A² be $\alpha_1^2, \alpha_2^2, \dots, \alpha_n^2$.
- **37.** IF threre are three square matrices A, B, C of same order satisfying the equation $A^3 = A^{-1}$ and let $B = -A^{3^n}$ and $C = A^{3^{(n+4)}}$ then prove that det(B + C) = 0, $n \in N$
- **38.** If A is a non-singular matrix satisfying AB BA = A, then prove that det.(B + I) = det.(B I)
- **39.** If rank is a number associated with a matrix which is the highest order of non-singular sub matrix then prove that
 - (i) Rank of the matrix $A = \begin{bmatrix} 1 & 3 & -2 \\ 4 & -1 & 0 \\ 2 & -7 & 4 \end{bmatrix}$ is 2 (ii) If the matrix $A = \begin{bmatrix} y+a & b & c \\ a & y+b & c \\ a & b & y+c \end{bmatrix}$ has rank 3, then $y \neq -(a+b+c)$ and $y \neq 0$
 - (iii) If A & B are two square matrices of order 3 such that rank of matrix AB is two, then atleast one of A & B is singular.

Answer Key (ALP)

7.	3	10.	a(a	+d) ² (a+2	$\frac{4 d^4}{2 d)^3 (a+3 d)^2 (a}$	+4d)	11.	±1	12.	-1	13.	8	
14.	0	16.	0	18.	0 a 0 0	19.	1	22.	4	27.	0		
33.	$\frac{3}{2}$												