Exercise-1

> Marked questions are recommended for Revision.

SUBJECTIVE QUESTIONS

Section (A) : Sine rule, Cosine rule, Napier's Analogy, Projection rule

A-1. In a $\triangle ABC$, prove that :

- $a \sin (B C) + b \sin (C A) + c \sin (A B) = 0$ (i)
- $\frac{a^2 \sin(B-C)}{\sin A} + \frac{b^2 \sin(C-A)}{\sin B} + \frac{c^2 \sin(A-B)}{\sin C} = 0$ (ii)
- $2(bc \cos A + ca \cos B + ab \cos C) = a^2 + b^2 + c^2$ (iii)

$$(iv)$$
 $(a - b)^2 \cos^2 \frac{b}{2} + (a + b)^2 \sin^2 \frac{b}{2} = c^2$

(v)
$$b^2 \sin 2C + c^2 \sin 2B = 2bc \sin A$$

(vi)
$$\frac{\sin B}{\sin C} = \frac{c - a \cos B}{b - a \cos C}$$

- Find the real value of x such that $x^2 + 2x$, 2x + 3 and $x^2 + 3x + 8$ are lengths of the sides of a triangle. A-2.
- The angles of a $\triangle ABC$ are in A.P. (order being A, B, C) and it is being given that b : c = $\sqrt{3}$: $\sqrt{2}$, then A-3. find $\angle A$.

A-4. If
$$\cos A + \cos B = 4 \sin^2 \left(\frac{C}{2}\right)$$
, prove that sides a, c, b of the triangle ABC are in A.P.

If in a $\triangle ABC$, $\frac{\sin A}{\sin C} = \frac{\sin(A - B)}{\sin(B - C)}$, then prove that a^2 , b^2 , c^2 are in A.P. A-5.

In a triangle ABC, prove that for any angle θ , b cos (A – θ) + a cos (B + θ) = c cos θ . A-6.

A-7. With usual notations, if in a \triangle ABC, $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$, then prove that $\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25}$.

- Let a, b and c be the sides of a $\triangle ABC$. If a^2 , b^2 and c^2 are the roots of the equation A-8. $x^3 - Px^2 + Qx - R = 0$, where P, Q & R are constants, then find the value of $\frac{\cos A}{2} + \frac{\cos B}{2} + \frac{\cos C}{2}$ in terms of P, Q and R.
- A-9. If in a triangle ABC, the altitude AM be the bisector of $\angle BAD$, where D is the mid point of side BC, then prove that $(b^2 - c^2) = a^2/2$.
- If in a triangle ABC, $\angle C = 60^\circ$, then prove that $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$ A-10.
- A-11. A In a triangle ABC, $\angle C = 60^{\circ}$ and $\angle A = 75^{\circ}$. If D is a point on AC such that the area of the $\triangle ABD$ is $\sqrt{3}$ times the area of the \triangle BCD, find the \angle ABD.
- A-12. In a scalene triangle ABC, D is a point on the side AB such that $CD^2 = AD$. DB, if sinA. sinB = $sin^2 \frac{C}{2}$ then prove that CD is internal bisector of $\angle C$.
- A-13. In triangle ABC, D is on AC such that AD = BC, BD = DC, $\angle DBC = 2x$, and $\angle BAD = 3x$, all angles are in degrees, then find the value of x.

Section (B) Trigonometric ratios of Half Angles, Area of triangle and circumradius

- **B-1.** In a \triangle ABC, prove that
 - (i) $2\left[a\sin^{2}\frac{C}{2} + c\sin^{2}\frac{A}{2}\right] = c + a b.$ (ii) $\frac{\cos^{2}\frac{A}{2}}{a} + \frac{\cos^{2}\frac{B}{2}}{b} + \frac{\cos^{2}\frac{C}{2}}{c} = \frac{s^{2}}{abc}$
 - (iii) $4\left(bc.\cos^2\frac{A}{2} + ca.\cos^2\frac{B}{2} + ab.\cos^2\frac{C}{2}\right) = (a + b + c)^2$
 - (iv) (b-c) $\cot \frac{A}{2} + (c-a) \cot \frac{B}{2} + (a-b) \cot \frac{C}{2} = 0$
 - (v) $4\Delta (\cot A + \cot B + \cot C) = a^2 + b^2 + c^2$
 - (vi) $\left(\frac{2abc}{a+b+c}\right) \cdot \cos\frac{A}{2} \cdot \cos\frac{B}{2} \cdot \cos\frac{C}{2} = \Delta$
- **B-2.** If the sides a, b, c of a triangle are in A.P., then find the value of $\tan \frac{A}{2} + \tan \frac{C}{2}$ in terms of $\cot(B/2)$.
- **B-3.** If in a \triangle ABC, a = 6, b = 3 and cos(A B) = 4/5, then find its area.
- **B-4.** If in a triangle ABC, $\angle A = 30^{\circ}$ and the area of triangle is $\frac{\sqrt{3} a^2}{4}$, then prove that either B = 4C or C = 4B.

Section (C) Inradius and Exradius

- **C-1.** In any $\triangle ABC$, prove that
 - (i) $\operatorname{Rr}(\sin A + \sin B + \sin C) = \Delta$ (ii) $\operatorname{a} \cos B \cos C + \operatorname{b} \cos C \cos A + \operatorname{c} \cos A \cos B = \frac{\Delta}{R}$
 - (iii) $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} = \frac{1}{2Rr}$. (iv) $\cos \cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} = 2 + \frac{r}{2R}$

(v) $a \cot A + b \cot B + c \cot C = 2(R + r)$

C-2. In any \triangle ABC, prove that (i) r. r₁ .r₂ .r₃ = Δ^2

- (ii) **a** $r_1 + r_2 r_3 + r = 4R \cos C.$ (iii) $\frac{1}{r^2} + \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} = \frac{a^2 + b^2 + c^2}{\Delta^2}$ (iv) $\left(\frac{1}{r} + \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}\right)^2 = \frac{4}{r} \left(\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}\right)$ (v) **a** $\frac{bc - r_2 r_3}{r_1} = \frac{ca - r_3 r_1}{r_2} = \frac{ab - r_1 r_2}{r_3} = r$
- **C-3.** Show that the radii of the three escribed circles of a triangle are roots of the equation $x^3 x^2(4R + r) + x s^2 r s^2 = 0$.
- **C-4.** The radii r₁, r₂, r₃ of escribed circles of a triangle ABC are in harmonic progression. If its area is 24 sq. cm and its perimeter is 24 cm, find the lengths of its sides.
- **C-5.** If the area of a triangle is 100 sq.cm, $r_1 = 10$ cm and $r_2 = 50$ cm, then find the value of (b a).

Section (D) Miscellaneous

D-1. If α , β , γ are the respective altitudes of a triangle ABC, prove that

(i)	1 _	1	1	$\cot A + \cot B + \cot C$	(ii)	1 1 1 _	2ab	$\cos^2 C$
	$\frac{1}{\alpha^2}$ + $\frac{1}{\beta^2}$ + $\frac{1}{\gamma^2}$	γ^2	Δ	(11)	$\frac{\alpha}{\alpha} + \frac{\beta}{\beta} - \frac{\gamma}{\gamma} =$	$(a + b + c) \Delta$	2 2	

- **D-2.** If in an acute angled ∆ABC, line joining the circumcentre and orthocentre is parallel to side AC, then find the value of tan A.tan C.
- **D-3.** A regular hexagon & a regular dodecagon are inscribed in the same circle. If the side of the dodecagon is $(\sqrt{3} 1)$, if the side of the hexagon is $\sqrt[4]{k}$, then find value of k.
- **D-4.** If D is the mid point of CA in triangle ABC and Δ is the area of triangle, then show that $\tan(\angle ADB) = \frac{4\Delta}{a^2 c^2}$.

Exercise-2

 $\boldsymbol{\varkappa}$ Marked questions are recommended for Revision.

PART-I (OBJECTIVE QUESTIONS)

Section (A) : Sine rule, Cosine rule, Napier's Analogy, Projection rule

A-1.	In a ∆ABC, A : B : C = 3 (A) 2b	3 : 5 : 4. Then a + b + c · (B) 2c	√2 is equal to (C) 3b	(D) 3a			
A-2*.	In a triangle ABC, the	altitude from A is not les	s than BC and the altitu	de from B is not less than AC.			
	(A) right angled	(B) isosceles	(C) obtuse angled	(D) equilateral			
A-3.	If in a \triangle ABC, $\frac{\cos A}{a} = -$	$\frac{\cos B}{b} = \frac{\cos C}{c}$, then the	$\frac{dsB}{ds} = \frac{cosC}{c}$, then the triangle is :				
	(A) right angled	(B) isosceles	(C) equilateral	(D) obtuse angled			
A-4.	In a $\triangle ABC = \frac{bc \sin^2}{\cos A + \cos^2}$	$\frac{A}{B\cos C}$ is equal to					
	(A) b ² + c ²	(B) bc	(C) a ²	(D) a² + bc			
A-5æ	Given a triangle ∆ABC	such that sin ² A + sin ² C =	1001.sin ² B. Then the va	lue of $\frac{2(\tan A + \tan C).\tan^2 B}{\tan A + \tan B + \tan C}$ is			
	(A) $\frac{1}{2000}$	(B) <u>1</u> 1000	(C) $\frac{1}{500}$	(D) $\frac{1}{250}$			
A-6.	If in a triangle ABC, (a - (A) $k < 0$	+ b + c) (b + c – a) = k. b (B) k > 6	c, then : (C) 0 < k < 4	(D) k > 4			
Δ-7	In a triangle ABC, a: b:	c = 4.5.6 Then 34 + B	equals to :	、 ,			
~	(A) 4C	(B) 2π	(C) π – C	(D) π			

Solu	tion of Triangle									
A-8.æ	The distance between t	the middle point of BC ar	nd the foot of the perpend	dicular from A is :						
	(A) $\frac{-a^2 + b^2 + c^2}{2a}$	(B) $\frac{b^2 - c^2}{2 a}$	(C) $\frac{b^2 + c^2}{\sqrt{bc}}$	(D) $\frac{b^2 + c^2}{2 a}$						
A-9*.	If in a triangle ABC, cos (A) isosceles	s A cos B + sin A sin B si (B) right angled	n C = 1, then the triangle (C) equilateral	e is (D) None of these						
A-10.๖	Triangle ABC is right an	gle at A. The points P ar	nd Q are on hypotenuse	BC such that BP = PQ = QC.						
	If AP = 3 and AQ = 4, the second sec	hen length BC is equal to) (C) 4.5	(D) 7						
	(A) 373	(B) 5 4 5	(C) 443							
A-11.	In $\triangle ABC$, bc = 2b ² cosA + 2c ² cosA – 4bc cos ² A, then $\triangle ABC$ is (A) isosceles but not necessarily equilaterial (B) equilateral (C) right angled but not neccessarily isosceles (D) right angled isosceles									
Sectio	on (B) Trigonometric	ratios of Half Angles	, Area of triangle and	circumradius						
B-1.	If in a triangle ABC, righ (A) a = 2, c = 3	nt angle at B, s – a = 3 a (B) a = 3, c = 4	nd s – c = 2, then (C) a = 4, c = 3	(D) a = 6, c = 8						
B-2.	If in a triangle ABC, b c	$\cos^2\frac{A}{2} + a\cos^2\frac{B}{2} = \frac{3}{2}c$	then a. c. b are :							
:	(A) in A.P.	2 2 2 (B) in G.P.	(C) in H.P.	(D) None						
B-3.æ	If H is the orthocentre of a triangle ABC, then the radii of the circle circumscribing the triangles BHC,									
	(A) R, R, R	(B) √2R, √2R, √2R	(C) 2R, 2R, 2R	(D) $\frac{R}{2}$, $\frac{R}{2}$, $\frac{R}{2}$						
R-4	In a \wedge ABC if b + c = 3a	a then $\cot \frac{B}{H} \cdot \cot \frac{C}{H}$ has	the value equal to:							
D 4.	(A) 4	(B) 3	(C) 2	(D) 1						
	(,	(_) 0	(°) -							
B-5.	In a $\triangle ABC$, A = $\frac{2\pi}{3}$, b -	$-c = 3 \sqrt{3} cm and area$	$(\Delta ABC) = \frac{9\sqrt{3}}{2} \text{ cm}^2$. The	en 'a' is						
	(A) 6 √3 cm	(B) 9 cm	(C) 18 cm	(D) 7 cm						
B-6.*	The diagonals of a par	rallelogram are inclined	to each other at an ang	le of 45°, while its sides a and						
	b(a > b) are inclined to	each other at an angle o	f 30º, then the value of	a is						
	(A) 2cos36º	(B) $\sqrt{\frac{3+\sqrt{5}}{4}}$	(C) $\frac{3+\sqrt{5}}{4}$	(D) $\frac{\sqrt{5}+1}{2}$						
B-7.	If in a $\triangle ABC$, $\triangle = a^2 - (b A) (A) (A) (A) (A) (A) (A) (A) (A) (A) $	o – c)², then tan A is equ (B) 8/15	al to (C) 8/17	(D) 1/2						
B-8*.	If in a $\triangle ABC$, a = 5, b =	4 and cos (A – B) = $\frac{31}{32}$, then							
	(A) c = 6		(B) $\sin A = \left(\frac{5\sqrt{7}}{16}\right)$							
	(C) area of $\triangle ABC = \frac{15\sqrt{4}}{4}$	7	(D) c = 8							

- **B-9.** If R denotes circumradius, then in $\triangle ABC$, $\frac{b^2 c^2}{2a R}$ is equal to
 - (A) $\cos (B C)$ (B) $\sin (B C)$ (C) $\cos B \cos C$ (D) $\sin(B + C)$

B-10*. Which of the following holds good for any triangle ABC?

(A)
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2 + b^2 + c^2}{2abc}$$
(B)
$$\frac{\sin A}{a} + \frac{\sin B}{b} + \frac{\sin C}{c} = \frac{3}{2R}$$
(C)
$$\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$$
(D)
$$\frac{\sin 2A}{a^2} = \frac{\sin 2B}{b^2} = \frac{\sin 2C}{c^2}$$

B-11. A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of length 3, 4 and 5 units. Then area of the triangle is equal to:

(A)
$$\frac{9\sqrt{3}(1+\sqrt{3})}{\pi^2}$$
 (B) $\frac{9\sqrt{3}(\sqrt{3}-1)}{\pi^2}$ (C) $\frac{9\sqrt{3}(1+\sqrt{3})}{2\pi^2}$ (D) $\frac{9\sqrt{3}(\sqrt{3}-1)}{2\pi^2}$

B-12. In a ∆ABC, a = 1 and the perimeter is six times the arithmetic mean of the sines of the angles. Then measure of ∠ A is

- (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$
- B-13*. Three equal circles of radius unity touches one another. Radius of the circle touching all the three circles is :

(A)
$$\frac{2-\sqrt{3}}{\sqrt{3}}$$
 (B) $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}}$ (C) $\frac{2+\sqrt{3}}{\sqrt{3}}$ (D) $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{2}}$

B-14. Triangle ABC is isosceles with AB = AC and BC = 65 cm. P is a point on BC such that the perpendicular distances from P to AB and AC are 24 cm and 36 cm, respectively. The area of triangle ABC (in sq. cm is)
(A) 1254
(B) 1950
(C) 2535
(D) 5070

Section (C) Inradius and Exradius

C-1	In a A ABC, the value of	$a\cos A + b\cos B + c\cos \theta$	C is equal to:	
•		a+b+c		
	(A) $\frac{r}{R}$	(B) $\frac{R}{2r}$	(C) $\frac{R}{r}$	(D) $\frac{2r}{R}$

C-2. In a triangle ABC, if a : b : c = 3 : 7 : 8, then R : r is equal to (A) 2 : 7 (B) 7 : 2 (C) 3 : 7 (D) 7 : 3

C-3*. If $r_1 = 2r_2 = 3r_3$, then

(Δ)	a _	4	(B) ^a –	5	$(c)^{a}$ –	3	(ח)	а_	5
(~)	b _	5	(D) — – b	4	(C) — – c	5	(D)	с –	3

C-4*. In a \triangle ABC, following relations hold good. In which case(s) the triangle is a right angled triangle? (A) $r_2 + r_3 = r_1 - r$ (B) $a^2 + b^2 + c^2 = 8 R^2$ (C) $r_1 = s$ (D) $2 R = r_1 - r$

C-5. The perimeter of a triangle ABC right angled at C is 70, and the inradius is 6, then |a - b| equals (A) 1 (B) 2 (C) 8 (D) 9

- **C-6.** In a triangle ABC, if $\frac{a-b}{b-c} = \frac{s-a}{s-c}$, then r_1 , r_2 , r_3 are in: (A) A.P. (B) G.P. (C) H.P. (D) none of these
- **C-7.** If the incircle of the ∆ ABC touches its sides at L, M and N as shown in the figure and if x, y, z be the circumradii of the triangles MIN, NIL and LIM respectively, where I is the incentre, then the product xyz is equal to :

C-.12*. With usual notations, in a Δ ABC the value of Π (r₁ – r) can be simplified as:

(A)
$$abc \prod tan \frac{A}{2}$$
 (B) $4 r R^2$ (C) $\frac{(abc)^2}{R(a+b+c)^2}$ (D) $4 R r^2$

- **C-13. STATEMENT-1** : In a triangle ABC, the harmonic mean of the three exradii is three times the inradius. **STATEMENT-2** : In any triangle ABC, $r_1 + r_2 + r_3 = 4R$.
 - (A) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is correct explanation for STATEMENT-1
 - (B) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is not correct explanation for STATEMENT-1
 - (C) STATEMENT-1 is true, STATEMENT-2 is false
 - (D) STATEMENT-1 is false, STATEMENT-2 is true
 - (E) Both STATEMENTS are false

Section (D) Miscellaneous

D-1. ▲ If in a triangle ABC, the line joining the circumcentre and incentre is parallel to BC, then cos B + cos C is equal to : (A) 0 (B) 1 (C) 2 (D) 1/2

D-2. In a ∆ABC, if AB = 5 cm, BC = 13 cm and CA = 12 cm, then the distance of vertex 'A' from the side BC is (in cm)

- (A) $\frac{25}{13}$ (B) $\frac{60}{13}$ (C) $\frac{65}{12}$ (D) $\frac{144}{13}$
- **D-3.** If AD, BE and CF are the medians of a $\triangle ABC$, then $(AD^2 + BE^2 + CF^2) : (BC^2 + CA^2 + AB^2)$ is equal to (A) 4 : 3 (B) 3 : 2 (C) 3 : 4 (D) 2 : 3

D-4*. In a triangle ABC, with usual notations the length of the bisector of internal angle A is :

(A) $\frac{2bc \cos{\frac{A}{2}}}{b+c}$	(B) $\frac{2bc \sin \frac{A}{2}}{b+c}$	(C) $\frac{\text{abc} \cos \sec \frac{\pi}{2}}{2\text{R} (b+c)}$	(D) $\frac{2\Delta}{b+c} \cdot \csc \frac{A}{2}$
		()	

D-5. Let f, g, h be the lengths of the perpendiculars from the circumcentre of the \triangle ABC on the sides BC, CA and AB respectively. If $\frac{a}{f} + \frac{b}{g} + \frac{c}{h} = \lambda \frac{a b c}{f g h}$, then the value of ' λ ' is: (A) 1/4 (B) 1/2 (C) 1 (D) 2

D-6. In an acute angled triangle ABC, AP is the altitude. Circle drawn with AP as its diameter cuts the sides AB and AC at D and E respectively, then length DE is equal to

(A)
$$\frac{\Delta}{2R}$$
 (B) $\frac{\Delta}{3R}$ (C) $\frac{\Delta}{4R}$ (D) $\frac{\Delta}{R}$

D-7. AA_1 , BB_1 and CC_1 are the medians of triangle ABC whose centroid is G. If points A, C_1 , G and B_1 are concyclic, then (A) $2b^2 = a^2 + c^2$ (B) $2c^2 = a^2 + b^2$ (C) $2a^2 = b^2 + c^2$ (D) $3a^2 = b^2 + c^2$

- **D-8.** If ' \square ' is the length of median from the vertex A to the side BC of a \triangle ABC, then (A) $4\square^2 = b^2 + 4ac \cos B(B) 4\square^2 = a^2 + 4bc \cos A(C) 4\square^2 = c^2 + 4ab \cos C(D) 4\square^2 = b^2 + 2c^2 - 2a^2$
- **D-9*.** The product of the distances of the incentre from the angular points of a \triangle ABC is:

(A)
$$4 R^2 r$$
 (B) $4 Rr^2$ (C) $\frac{(a b c) R}{s}$ (D) $\frac{(a b c) r}{s}$

D-10. In a triangle ABC, $B = 60^{\circ}$ and $C = 45^{\circ}$. Let D divides BC internally in the ratio 1 : 3,

then value of
$$\frac{\sin \angle BAD}{\sin \angle CAD}$$
 is
(A) $\sqrt{\frac{2}{3}}$ (B) $\frac{1}{\sqrt{3}}$ (C) $\frac{1}{\sqrt{6}}$ (D) $\frac{1}{3}$

D-11*. In a triangle ABC, points D and E are taken on side BC such that BD = DE = EC. If angle ADE = angle AED = θ , then:

(A)
$$\tan \theta = 3 \tan B$$
 (B) $3 \tan \theta = \tan C$ (C) $\frac{6 \tan \theta}{\tan^2 \theta - 9} = \tan A$ (D) angle B = angle C

D-12. STATEMENT-1 : If R be the circumradius of a $\triangle ABC$, then circumradius of its excentral $\triangle I_1I_2I_3$ is 2R.

STATEMENT-2: If circumradius of a triangle be R, then circumradius of its pedal triangle is $\frac{\kappa}{2}$

- (A) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is correct explanation for STATEMENT-1
- (B) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is not correct explanation for STATEMENT-1
- (C) STATEMENT-1 is true, STATEMENT-2 is false
- (D) STATEMENT-1 is false, STATEMENT-2 is true
- (E) Both STATEMENTS are false

PART-II (COMPREHENSION)

Comprehension # 1 (Q. No. 1 to 4)

The triangle DEF which is formed by joining the feet of the altitudes of triangle ABC is called the Pedal Triangle.

Answer The Following Questions :

- **1.** Angle of triangle DEF are (A) π – 2A, π – 2B and π – 2C (C) π – A, π – B and π – C
- 2*. Sides of triangle DEF are
 (A) b cosA, a cosB, c cosC
 (C) R sin 2A, R sin 2B, R sin 2C

(B) a cosA, b cosB, c cosC

(B) π + 2A, π + 2B and π + 2C

(D) $2\pi - A$, $2\pi - B$ and $2\pi - C$

- (D) a cotA, b cotB, c cotC
- 3. Circumraii of the triangle PBC, PCA and PAB are respectively
 (A) R, R, R
 (B) 2R, 2R, 2R
 (C) R/2, R/2, R/2
 (D) 3R, 3R, 3R
 4*. Which of the following is/are correct
 - (A) $\frac{\text{Perimeter}}{\text{Perimeter}} \text{ of } \Delta \text{DEF} = \frac{r}{R}$ (B) Area of $\Delta \text{DEF} = 2 \Delta \cos A \cos B \cos C$ (C) Area of $\Delta \text{AEF} = \Delta \cos^2 A$ (D) Circum-radius of $\Delta \text{DEF} = \frac{R}{2}$

Comprehension # 2 (Q. 5 to 8)

The triangle formed by joining the three excentres I_1 , I_2 and I_3 of Δ ABC is called the excentral or excentric triangle and in this case internal angle bisector of triangle ABC are the altitudes of triangles $I_1I_2I_3$

5.24	Incentre I of \triangle ABC is the (A) Circumcentre	ne of the excentral (B) Orthocentre	$\Delta I_1 I_2 I_3.$ (C) Centroid		(D) None of these
6.24	Angles of the $\Delta I_1 I_2 I_3$ and (A) $\frac{\pi}{2} - \frac{A}{2}$, $\frac{\pi}{2} - \frac{B}{2}$ and (C) $\frac{\pi}{2} - A$, $\frac{\pi}{2} - B$ and	$\frac{\pi}{2} - \frac{C}{2}$ $\frac{\pi}{2} - C$	(B) $\frac{\pi}{2} + \frac{A}{2}$, $\frac{\pi}{2}$ (D) None of the	$\frac{1}{2} + \frac{B}{2}$ and we se	$\frac{\pi}{2} + \frac{C}{2}$

Solu	tion of Triangle			
7.2	Sides of the $\Delta I_1 I_2 I_3$ are			
	(A) $\operatorname{Rcos} \frac{A}{2}$, $\operatorname{Rcos} \frac{B}{2}$ ar	nd Rcos $\frac{C}{2}$	(B) 4R $\cos\frac{A}{2}$, 4R $\cos\frac{A}{2}$	$\frac{B}{2}$ and 4R cos $\frac{C}{2}$
	(C) $2R\cos\frac{A}{2}$, $2R\cos\frac{B}{2}$	and $2R\cos{\frac{C}{2}}$	(D) None of these	
8.2	Value of $II_1^2 + I_2I_3^2 = II_2^2$ (A) $4R^2$	$I_{1}^{2} + I_{3}I_{1}^{2} = II_{3}^{2} + I_{1}I_{2}^{2} =$ (B) 16R ²	(C) 32R ²	(D) 64R ²

PART-III (MATCH THE COLUMN)

Column–II

1. Match the column

Column– I

2.

(A)	In a $\triangle ABC$, $2B = A + C$ and $b^2 = ac$.	(p)	8							
	Then the value of $\frac{a^2(a+b+c)}{3abc}$ is equal to									
(B)	In any right angled triangle ABC, the value of $\frac{a^2 + b^2 + c^2}{R^2}$	(q)	1							
	is always equal to (where R is the circumradius of ΔABC)									
(C)	In a $\triangle ABC$ if a = 2, bc = 9, then the value of $2R\Delta$ is equal to	(r)	5							
(D)	In a $\triangle ABC$, a = 5, b = 3 and c = 7, then the value of 3 cos C + 7 cos B is equal to	(s)	9							
Match the column										
Colum	n – I	Colum	n – II							
(A)	In a $\triangle ABC$, a = 4, b = 3 and the medians AA_1 and BB_1 are mutually perpendicular, then square of area of the $\triangle ABC$ is equal to	(p)	27							
(B)æ	In any $\triangle ABC$, minimum value of $\frac{r_1 r_2 r_3}{r^3}$ is equal to	(q)	7							
(C)	In a $\triangle ABC$, a = 5, b = 4 and tan $\frac{C}{2} = \sqrt{\frac{7}{9}}$, then side 'c' is equal to	(r)	6							
(D) کھ	In a $\triangle ABC$, $2a^2 + 4b^2 + c^2 = 4ab + 2ac$, then value of (8 cos B) is equal to	(s)	11							

Exercise-3

> Marked Questions may have for Revision Questions.

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

* Marked Questions may have more than one correct option.

- 1. Given an isosceles triangle, whose one angle is 120° and radius of its incircle is $\sqrt{3}$ unit. Then the area of the triangle in sq. units is [IIT-JEE-2006, Main.,(3, -1)/184] (A) 7 + 12 $\sqrt{3}$ (B) 12 - 7 $\sqrt{3}$ (C) 12 + 7 $\sqrt{3}$ (D) 4π
- **2.*** Internal bisector of $\angle A$ of triangle ABC meets side BC at D. A line drawn through D perpendicular to AD intersects the side AC at E and the side AB at F. If a, b, c represent sides of $\triangle ABC$, then

[IIT-JEE-2006, Main.,(5, -1)/184](A) AE is HM of b and c (B) AD = $\frac{2bc}{b+c} \cos \frac{A}{2}$ (C) EF = $\frac{4bc}{b+c} \sin \frac{A}{2}$ (D) the triangle AEF is isosceles

3. Let ABC and ABC' be two non-congruent triangles with sides AB = 4, $AC = AC' = 2\sqrt{2}$ and angle $B = 30^{\circ}$. Find the absolute value of the difference between the areas of these triangles.

[IIT-JEE 2009, Paper-2, (4, -1), 80]

4*. In a triangle ABC with fixed base BC, the vertex A moves such that $\cos B + \cos C = 4 \sin^2 \frac{A}{2}$. If a, b and c denote the lengths of the sides of the triangle opposite to the angles A, B and C respectively, then [IIT-JEE 2009, Paper-1, (4, -1)/ 80] (A) b + c = 4a (B) b + c = 2a (C) locus of points A is an ellipse (D) locus of point A is a pair of straight lines

If the angle A, B and C of a triangle are in arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression and if a sin 2C + c/a sin 2A is
 [IIT-JEE 2010, Paper-1, (3, -1), 84]

(A) $\frac{1}{2}$ (B) $\frac{\sqrt{3}}{2}$ (C) 1 (D) $\sqrt{3}$

6. Let ABC be a triangle such that $\angle ACB = \frac{\pi}{6}$ and let a, b and c denote the lengths of the sides opposite to A, B and C respectively. The value(s) of x for which $a = x^2 + x + 1$, $b = x^2 - 1$ and c = 2x + 1 is (are) (A) $-(2 + \sqrt{3})$ (B) $1 + \sqrt{3}$ (C) $2 + \sqrt{3}$ (D) $4\sqrt{3}$

[IIT-JEE 2010, Paper-1, (3, 0), 84]

7. Consider a triangle ABC and let a, b and c denote the lengths of the sides opposite to vertices A, B and C respectively. Suppose a = 6, b = 10 and the area of the triangle is $15\sqrt{3}$. If $\angle ACB$ is obtuse and if r denotes the radius of the incircle of the triangle, then r² is equal to **[IIT-JEE 2010, Paper-2, (3, 0), 79]**

Let PQR be a triangle of area Δ with a = 2, b = $\frac{7}{2}$ and c = $\frac{5}{2}$, where a, b and c are the lengths of the 8. sides of the triangle opposite to the angles at P, Q and R respectively. Then $\frac{2 \sin P - \sin 2P}{2 \sin P + \sin 2P}$ equals [IIT-JEE 2012, Paper-2, (3, -1), 66] (C) $\left(\frac{3}{4\Delta}\right)^2$ (D) $\left(\frac{45}{4\Delta}\right)^2$ (B) $\frac{45}{4\Lambda}$ (A) $\frac{3}{4\Lambda}$ In a triangle PQR, P is the largest angle and $\cos P = \frac{1}{3}$. Further the incircle of the triangle touches the 9.*> sides PQ, QR and RP at N, L and M respectively, such that the lengths of PN, QL and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are) [JEE (Advanced) 2013, Paper-2, (3, -1)/60] (A) 16 (B) 18 (C) 24 (D) 22 10. In a triangle the sum of two sides is x and the product of the same two sides is y. If $x^2 - c^2 = y$, where c is the third side of the triangle, then the ratio of the in-radius to the circum-radius of the triangle is [JEE (Advanced) 2014, Paper-2, (3, -1)/60] (A) $\frac{3y}{2x(x+c)}$ (B) $\frac{3y}{2c(x+c)}$ (C) $\frac{3y}{4x(x+c)}$ (D) $\frac{3y}{4c(x+c)}$ In a triangle XYZ, let x, y, z be the lengths of sides opposite to the angles X, Y, Z, respectively, and 11*. 2s = x + y + z. If $\frac{s - x}{4} = \frac{s - y}{3} = \frac{s - z}{2}$ and area of incircle of the triangle XYZ is $\frac{8\pi}{3}$, then (A) area of the triangle XYZ is $6\sqrt{6}$ [JEE (Advanced) 2016, Paper-1, (4, -2)/62] (B) the radius of circumcircle of the triangle XYZ is $\frac{35}{\epsilon} \sqrt{6}$ (C) $\sin \frac{X}{2} \sin \frac{Y}{2} \sin \frac{Z}{2} = \frac{4}{25}$ (D) $\sin^2\left(\frac{X+Y}{2}\right) = \frac{3}{5}$ In a triangle PQR, let \angle PQR = 30° and the sides PQ and QR have lengths 10 $\sqrt{3}$ and 10, respectively. 12*. Then, which of the following statement(s) is (are) TRUE? (A) ∠QPR = 45° [JEE(Advanced) 2018, Paper-1,(4, -2)/60] (B) The area of the triangle PQR is $25\sqrt{3}$ and $\angle QRP = 120^{\circ}$ (C) The radius of the incircle of the triangle PQR is $10\sqrt{3}$ – 15 (D) The area of the circumcircle of the triangle PQR is 100π

PART - II : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1.	The sum of the radii of inscribed and circumscribed circles for an n sided regular polygon of side 'a', is : [AIEEE – 2003 (3, 0), 225]									
	(1) a $\cot\left(\frac{\pi}{n}\right)$	(2) $\frac{a}{2} \cot\left(\frac{\pi}{2n}\right)$	(3) a cot $\left(\frac{\pi}{2n}\right)$	(4) $\frac{a}{4} \cot\left(\frac{\pi}{2n}\right)$						
2.	If in a triangle ABC, a c	$\cos^2\left(\frac{C}{2}\right) + c\cos^2\left(\frac{A}{2}\right) =$	$=\frac{3b}{2}$, then the sides a, b and c :							
	(1) are in A.P.	(2) are in G.P.	(3) are in H.P.	[AIEEE – 2003 (3, 0), 225] (4) satisfy a + b = c.						
3.2	In a triangle ABC, med	ians AD and BE are drav	vn. If AD = 4, \angle DAB = $\frac{\pi}{6}$	and $\angle ABE = \frac{\pi}{3}$, then the area						
	of the $\triangle ABC$ is :		-	[AIEEE – 2003 (3, 0), 225]						
	(1) $\frac{8}{3}$	(2) $\frac{16}{3}$	(3) $\frac{32}{3\sqrt{3}}$	(4) $\frac{64}{3}$.						
4.	The sides of a triangle	are sin α , cos α and $\sqrt{1+\alpha}$	$\sin \alpha \cos \alpha$ for some 0 <	$\alpha < \frac{\pi}{2}$. Then the greatest angle						
	of the triangle is : (1) 60º	(2) 90°	(3) 120º	[AIEEE – 2004 (3, 0), 225] (4) 150°						
5.	In a triangle ABC, let 2	$\angle C = \pi/2$, if r is the inrad	lius and R is the circum	radius of the triangle ABC, then						
	2(r+R) equals : (1) c + a	(2) a + b + c	(3) a + b	[AIEEE - 2005 (3, 0), 225] (4) b + c						
6.	If in a ∆ABC, the altitue are in : (1) HP (3) AP	des from the vertices A,I	 3,C on opposite sides are in H.P., then sinA, sinB, sinC [AIEEE - 2005 (3, 0), 225] (2) Arithemetico-Geometric Progression (4) GP 							
7.	For a regular polygon, statement among the for	let r and R be the radii blowing is	of the inscribed and the	e circumscribed circles. A false [AIEEE - 2010 (4, -1), 144]						
	(1) There is a regular p	polygon with $\frac{r}{R} = \frac{1}{\sqrt{2}}$.	(2) There is a regular polygon with $\frac{r}{R} = \frac{2}{3}$.							
	(3) There is a regular p	polygon with $\frac{r}{R} = \frac{\sqrt{3}}{2}$.	(4) There is a regular p	polygon with $\frac{r}{R} = \frac{1}{2}$.						
8.2	ABCD is a trapezium so then AB is equal to :	uch that AB and CD are	parallel and BC \perp CD. If	∠ADB = θ , BC = p and CD = q, [AIEEE - 2013, (4, –1),120]						
	(1) $\frac{(p^2 + q^2)\sin\theta}{p\cos\theta + q\sin\theta}$	(2) $\frac{p^2 + q^2 \cos \theta}{p \cos \theta + q \sin \theta}$	$(3) \ \frac{p^2 + q^2}{p^2 \cos \theta + q^2 \sin \theta}$	(4) $\frac{(p^2 + q^2)\sin\theta}{(p\cos\theta + q\sin\theta)^2}$						
9.	With the usual notation	, in $\triangle ABC$, if $\angle A + \angle B =$	120°, a = $\sqrt{3}$ + 1 and b =	= $\sqrt{3}$ –1, then the ratio $\angle A$: $\angle B$,						
	is :	[JEE(N	Main) 2019, Online (10-0)1-19),P-2 (4, – 1), 120]						
	(1) 9 : 7	(2) 7 : 1	(3) 3 : 1	(4) 5 : 3						
10.	In a triangle, the sum o y. If $x^2 - c^2 = y$, wher triangle is	f lengths of two sides is a e c is the length of the [JEE(N	x and the product of the third side of the triangl /ain) 2019, Online (11-(lengths of the same two sides is e, then the circumradius of the 01-19),P-1 (4, – 1), 120]						
	(1) $\frac{c}{\sqrt{3}}$	(2) $\frac{3}{2}y$	(3) $\frac{c}{3}$	(4) $\frac{y}{\sqrt{3}}$						

Solu	Solution of Triangle												
	Answers												
	EXERCISE - 1												
Secti	Section (A) :												
					_								
A-2.	x > 5	A-3.	75°	A-8.	$\frac{P}{2\sqrt{R}}$	A-11.	30°	A-13.	10°				
Section (B)													
B-2.	$\frac{2}{3}\cot{\frac{4}{3}}$	<u>3</u> 2	B-3.	9 sq. u	nit								
Section (C) :													
C-4.	6, 8, 10	0 cm	C-5.	8									
Section (D) :													
D-2.	3		D-3.	√2									
						EXERC	SISE - 2						
Secti	on (A)	:											
A-1.	(C)	A-2*.	(AB)	A-3.	(C)	A-4.	(C)	A-5.	(D)	A-6.	(C)	A-7.	(D)
A-8.	(B)	A-9.	(AB)	A-10.	(A)	A-11.	(A)						
Secti	on (B)	:											
B-1.	(B)	B-2.	(A)	B-3.	(A)	B-4.	(C)	B-5.	(B)	B-6.	(AD)	B-7.	(B)
B-8*.	(ABC)	B-9.	(B)	B-10*.	(AB)	B-11.	(A)	B-12.	(C)	B-13*.	(AC)	B-14.	(C)
Secti	on (C)	:											
C-1.	(A)	C-2.	(B)	C-3*.	(BD)	C-4*.	(ABCD)) C-5.	(A)	C-6.	(A)	C-7.	(C)
C-8.	(B)	C-9.	(D)	C-10.	(D)	C-11*.	(AD)	C12*.	(ACD)	C-13.	(C)		

<u>Solu</u> Secti	Solution of Triangle Section (D)												
0000	011 (2)												
D-1.	(B)	D-2.	(B)	D-3.	(C)	D-4*.	(ACD)	D-5.	(A)	D-6.	(D)		
D-7.	(C)	D-8.	(B)	D-9*.	(BD)	D-10.	(C)	D-11*.	(ACD)	D-12.	(A)		
	PART-II												
1.	(A)	2*.	(BC)	3.	(A)	4*.	(ABCD) 5.	(B)	6.	(A)	7.	(B)
8.	(B)												
	PART-III												
1.	$(A) \to$	(q),	$(B) \to$	(p),	$(C) \rightarrow$	(s),	$(D) \rightarrow$	(r)					
2.	$(A) \to$	(s),	$(B) \to$	(p),	$(C) \rightarrow$	(r),	$(D) \rightarrow$	(q)					
						EXER	CISE - :	3					
						PAF	RT - I						
1.	(C)	2.*	(ABCE	D)	3.	4	4*.	(BC)	5.	(D)	6.	(B)	7. 3
8.	(C)	9.*	(BD)	10.	(B)	11.	(ACD)		12.	(BCD)			
						PAR	RT - II						
1.	(2)	2.	(1)	3.	(3)	4.	(3)	5.	(3)	6.	(3)	7.	(2)
8.	(1)	9.	(2)	10.	(1)								

Advance Level Problems (ALP)

A Marked questions are recommended for Revision.

- 1. In $\triangle ABC$, P is an interior point such that $\angle PAB = 10^{\circ} \angle PBA = 20^{\circ}$, $\angle PCA = 30^{\circ}$, $\angle PAC = 40^{\circ}$ then prove that $\triangle ABC$ is isosceles
- **2.** In a triangle ABC, if a tan A + b tan B = (a + b) tan $\left(\frac{A+B}{2}\right)$, prove that triangle is isosceles.
- **3.** In any triangle ABC, if $2\Delta a b^2c = c^3$, (where Δ is is the area of triangle), then prove that $\angle A$ is obtuse
- 4. If in a triangle ABC, $\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}$ prove that the triangle ABC is either isosceles or right angled.
- **5.** In a \triangle ABC, \angle C = 60° and \angle A = 75°. If D is a point on AC such that the area of the \triangle BAD is $\sqrt{3}$ times the area of the \triangle BCD, find the \angle ABD.
- 6. In a $\triangle ABC$, if a, b and c are in A.P., prove that $\cos A.cot \frac{A}{2}$, $\cos B.cot \frac{B}{2}$, and $\cos C.cot \frac{C}{2}$ are in A.P.
- 7. In a triangle ABC, prove that the area of the incircle is to the area of triangle itself is, $\pi : \cot\left(\frac{A}{2}\right) \cdot \cot\left(\frac{B}{2}\right) \cdot \cot\left(\frac{C}{2}\right).$

8. In
$$\triangle ABC$$
, prove that $a^2 (s - a) + b^2 (s - b) + c^2 (s - c) = 4R\Delta \left(1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\right)$

9. In any $\triangle ABC$, prove that

(i)
$$(r_3 + r_1) (r_3 + r_2) \sin C = 2 r_3 \sqrt{r_2 r_3 + r_3 r_1 + r_1 r_2}$$

(ii)
$$\frac{\tan \frac{A}{2}}{(a - b)(a - c)} + \frac{\tan \frac{B}{2}}{(b - a)(b - c)} + \frac{\tan \frac{C}{2}}{(c - a)(c - b)} = \frac{1}{\Delta}$$

(iii)
$$(r+r_1) \tan \frac{B-C}{2} + (r+r_2) \tan \frac{C-A}{2} + (r+r_3) \tan \frac{A-B}{2} = 0$$

(iv) $r^2 + r_1^2 + r_2^2 + r_3^2 = 16R^2 - a^2 - b^2 - c^2$.

10. In an acute angled triangle ABC, $r + r_1 = r_2 + r_3$ and $\angle B > \frac{\pi}{3}$, then prove that b + 3c < 3a < 3b + 3c

- **11.** If the inradius in a right angled triangle with integer sides is r. Prove that
 - (i) If r = 4, the greatest perimeter (in units) is 90
 - (ii) If r = 5, the greatest area (in sq. units) is 330

12. If
$$\left(1 - \frac{r_1}{r_2}\right) \left(1 - \frac{r_1}{r_3}\right) = 2$$
, then prove that the triangle is right angled

13. DEF is the triangle formed by joning the points of contact of the incircle with the sides of the triangle ABC; prove that

(i) its sides are
$$2r \cos \frac{A}{2}$$
, $2r \cos \frac{B}{2}$ and $2r \cos \frac{C}{2}$
(ii) its angles are $\frac{\pi}{2} - \frac{A}{2}$, $\frac{\pi}{2} - \frac{B}{2}$ and $\frac{\pi}{2} - \frac{C}{2}$

and

- (iii) its area is $\frac{2\Delta^3}{(abc)s}$, i.e. $\frac{1}{2} \frac{r}{R} \Delta$.
- **14.** Three circles, whose radii are a, b and c, touch one another externally and the tangents at their points of contact meet in a point, prove that the distance of this point from either of their points of contact is

$$\left(\frac{abc}{a+b+c}\right)^{\frac{1}{2}}.$$

- **15.** OA and OB are the equal sides of an isoscles triangle lying in the first quadrant making angles θ and ϕ respectively with x-axis. Show that the gradient of the bisector of acute angle AOB is cosec β cot β where $\beta = \phi + \theta$. (Where O is origin)
- **16.** The hypotenuse BC = a of a right-angled triangle ABC is divided into n equal segments where n is odd. The segment containing the midpoint of BC subtends angle α at A. Also h is the altitude of the triangle

through A. Prove that $\tan \alpha = \frac{4nh}{a(n^2-1)}$

Answer Key (ALP)

5. $\angle ABD = 30^{\circ}$