Exercise-1

> Marked questions are recommended for Revision.

PART - I : SUBJECTIVE QUESTIONS

Section (A) : Modulus Function & Equation

A-1.	Write 1 (i)	the following expression in approj x ² – 7x + 10	priate int (ii)	ervals so that they are be x ³ – x	ereft of r (iii)	nodulus sign 2 ^x – 2
	(iv) (vii)	$ x^2 - 6x + 10 $ $2^{(x-1)} + x + 2 - 3^{ x+1 }$	(v)	$ x - 1 + x^2 - 3x + 2 $	(vi)	$\sqrt{x^2-6x+9}$
A-2.	Draw	the labled graph of following				
	(i)	y = 7 - 2x	(ii)	y = x - 1 - 3x - 2		
	(iii)	y = x - 1 + x - 4 + x - 7	(iv)	y = 4x + 5	(v)	y = 2x - 3
A-3.	Solve (i) (iii)≿	the following equations x + 2 x - 6 = 12 x - 2 - 2 - 2 = 2	(ii) (iv)	x + 3 - 5 = 2 4x + 3 + 3x - 4 = 12		
A-4.	Solve (i) (iii) (v)&	the following equations : $x^2 - 7 x - 8 = 0$ $ x^3 - 6x^2 + 11x - 6 = 6$ $ x^2 - x - 6 = x + 2.$	(ii) (iv)	$ x^2 - x + 1 = x^2 - x - 1 $ $ x^2 - 2x + x = 6$	l	
A-5.	Find th	ne number of real roots of the equ	uation			
	(i)	$ x ^2 - 3 x + 2 = 0$	(ii)	x - 1 - 5 = 2 (iii)	2x² +	$ x - 1 = x^2 + 4x + 1 $
A-6.	Find th (i)	the sum of solutions of the following $x^2 - 5 x - 4 = 0$	ng equat	ions :		
	(ii) (iv)	$(x-3)^2 + x-3 - 11 = 0$ x-3 - 4 = 1	(iii) (v)	$ \mathbf{x} ^3 - 15\mathbf{x}^2 - 8 \mathbf{x} - 11 =$ $2^{ \mathbf{x} } + 3^{ \mathbf{x} } + 4^{ \mathbf{x} } = 9$	0	
A-7.	Find n	umber of solutions of the followin	g equati	ons		
	(i) (iii)≽⊾	x - 1 + x - 2 + x - 3 = 9 $ x + x + 2 + x - 2 = p, p \in R$	(ii)	x – 1 + x – 2 + x – 3	+ x – 4	· = 4
A-8.	Find th	he minimum value of $f(x) = x - 1 $	+ x – 2	+ x – 3		
A-9	lf x ² –	x - 3 - 3 = 0, then $ x $ can be				

A-10. If $|x^3 - 6x^2 + 11x - 6|$ is a prime number then find the number of possible integral values of x.

Section (B) : Modulus Inequalities

B-1. Solve the following inequalities :

(i)	$ x-3 \ge 2$	(ii)	$ x-2 -3 \le 0$	(iii)	3x – 9 + 2 > 2
(iv)	$ 2x - 3 - x \le 3$	(v)	$ x - 1 + x + 2 \ge 3$	(vi) 🙇	$ x - 1 - 1 \le 1$

B-2.	Solve t	the following inequalities	5 :			
	(i)	$\left 1+\frac{3}{x}\right >2$	(ii)	$\left \frac{3x}{x^2-4}\right \le 1$	(iii)	$\frac{ x+3 +x}{x+2} > 1$
	(iv)a	$ x^2 + 3x + x^2 - 2 \ge 0$	(v)	x + 3 > 2x - 1		
B-3.	Solve	the following inequalities	;			
	(i)	$\left x^{\scriptscriptstyle 3}-1\right \geq 1-x$	(ii)	$\left x^2-4x+4\right \geq 1$	(iii)	$\frac{ x+2 -x}{x} < 2$
	(iv)	$\frac{ x-2 }{x-2} > 0$	(v)	x-2 > 2x-3	(vi)	x + 2 + x - 3 < 2x + 1
B-4.	Solve	the following equations				
	(i)	$ x^3 + x^2 + x + 1 = x^3 + x^3 $	1 + x ²	² + x		
	(ii)	$ x^2 - 4x + 3 + x^2 - 6x $	+8 = 2	2x – 5		

- (iii) $|x^2 + x + 2| |x^2 x + 1| = |2x + 1|$ (iv) $|x^2 2x 8| + |x^2 + x 2| = 3 |x + 2|$
- $|2x-3| + |x+5| \le |x-8|$ (v)

Find the solution set of the inequalities $|x^2 + x - 2| \le 0$ and $|x^2 - x + 2| \ge 0$ B-5.

Section (C) : Miscellaneous Modulus Equations & Inequations

- C-1. Write the following expression in appropriate intervals so that they are bereft of modulus sign (iii) $|5^{x^2-4x+5}-25|$ $|(\log_2 x)^2 - 3(\log_2 x) + 2|$ $|\log_{10} x| + |2^{x-1} - 1|$ (ii) (i)
- C-2. Solve the equations $\log_{100} | x + y | = 1/2$, $\log_{10} y - \log_{10} |x| = \log_{100} 4$ for x and y.
- C-3. Solve the inequality
 - $(\log_2 x)^2 |(\log_2 x) 2| \ge 0$ (i)
 - $2 | \log_3 x | + \log_3 x \ge 3$ (ii)
 - (iii). So Find the complete solution set of $2^x + 2^{|x|} \ge 2\sqrt{2}$
- Find the number of real solution(s) of the equation $|x-3|^{3x^2-10x+3} = 1$ C-4.

C-5. If x, y are integral solutions of $2x^2 - 3xy - 2y^2 = 7$, then find the value of |x + y|

C-6. If x, |x + 1|, |x - 1| are three terms of an A.P., then find the number of possible values of x

Section (D) : Irrational Inequations

D-1. Solve the following inequalities :

(i)
$$\frac{\sqrt{2x-1}}{x-2} < 1$$
 (ii) $x - \sqrt{1-|x|} < 0$ (iii) $\sqrt{x^2 - x - 6} < 2x - 3$
(iv) $\sqrt{x^2 - 6x + 8} \le \sqrt{x+1}$ (v) $x = \sqrt{x^2 - 7x + 10} + 9 \log_4\left(\frac{x}{8}\right) \ge 2x + \sqrt{14x - 20 - 2x^2} - 13$
(vi) $x - 3 < \sqrt{x^2 + 4x - 5}$ (vii) $\sqrt{x^2 - 5x - 24} > x + 2$ (viii) $\sqrt{4 - x^2} \ge \frac{1}{x}$
(ix) $\frac{\sqrt{x+7}}{x+1} > \sqrt{3-x}$

Solve the equation $\sqrt{a(2^x - 2) + 1} = 1 - 2^x$ for every value of the parameter a. D-2.

Section (E) : Transformation of curves

- **E-1.** Draw the graph of followings (i) y = -|x + 2| (ii) y = ||x - 1| - 2|(iii) y = |x + 2| + |x - 3| (iv) |y| + x = -1
- E-2. Draw the graphs of the following curves :

(i)
$$y = -\frac{1}{|2x+1|}$$
 (ii) $\frac{y}{|x|-1} = -1$ (iii) $|y-3| = |x-1|$
(iv) $y = \frac{|x^2-1|}{(x^2-1)} \Box nx$

y = f(-|x|)

- **E-3.** Draw the graph of $y = \log_{1/2} (1 x)$.
- **E-4.** Find the set of values of λ for which the equation $|x^2 4|x| 12| = \lambda$ has 6 distinct real roots.
- **E-5.** If y = f(x) has following graph

Then draw the graph of (i) y = |f(x)| (ii) y = f(|x|) (iii) a

(iv)
$$y = |f(|x|)|$$

E-6. If y = f(x) is shown in figure given below, then plots the graph for (A) y = f(|x + 2|) (B) |y - 2| = f(-3x).

- **E-7.** Find the number of roots of equation (i) $3^{|x|} - |2 - |x|| = 1$ (ii) $x + 1 = x \cdot 2^x$
- **E-8** Find values of k for which the equation $|x^2 1| + x = k$ has (i) 4 solution (ii) 3 solutions (iii) 1 solution (iv) 2 solutions

Exercise-2

Marked questions are recommended for Revision.
 * Marked Questions may have more than one correct option.

- **1.** A Number of integral values of 'x' satisfying the equation $3^{|x+1|} 2.3^x = 2.|3^x 1| + 1$ are (A) 1 (B) 2 (C) 3 (D) 4
- 2. $|x^2 + 6x + p| = x^2 + 6x + p \forall x \in R$ where p is a prime number then least possible value p is (A) 7 (B) 11 (C) 5 (D) 13
- **3.** If $(\log_{10}x)^2 4|\log_{10}x| + 3 = 0$, the product of roots of the equation is : (A) 3 (B) 10^4 (C) 10^8 (D) 1

Fund	amentals of Mathemat	tics-II		
4.	The equaiton x − 1 + (A) (−∞, 4]	a = 4 can have real solu (B) (4, ∞)	utions for x if a belongs to (C) (-4, ∞)	the interval (D) ($-\infty$, -4) U(4, ∞)
5.	The number of values (A) 1	of x satisfying the equation (B) 2	on 2x + 3 + 2x - 3 (C) 3	= 4x + 6, is (D) 4
6.	Number of prime numb	pers satisfying the inequa	ality $\log_3 \frac{ x^2 - 4x + 3}{x^2 + x - 5 } \ge 0$	is equal to
	(A) 1	(B) 2	(C) 3	(D) 4
7.æ	If x + 2 + y = 5 and x (A) 1	 - y = 1 then the value of (B) 2 	of (x + y) is (C) 3	(D) 4
8.	The number of value o (A) 1	f x satisfying the equation (B) 2	on $ x - 1 ^A = (x - 1)^7$, w (C) 0	where A = log₃ x² − 2 log₄9 (D) 3
9.2	The number of integral	value of x satisfying the	equation $\log_{\sqrt{3}} x - 2 = 0$	$ \log_3 x - 2 = 2$
	(A) 1	(B) 2	(C) 3	(D) 4
10.	The sum of all possible	e integral solutions of equ	uation	
	x² – 6 (A) 10	5x + 5 – 2x ² – 3x + 1 = (B) 12	$3 x^2 - 3x + 2 $ is (C) 13	(D) 15
11.2	The complete solution	set of the inequality (x -	- 1 - 3) (x + 2 - 5) < 0	is (a, b) \cup (c, d) then the value
	of a + b + c + d is (A) 14	(B) 15	(C) 16	(D) 17
12.	The product of all $\left \begin{array}{cc} 3 \mid x \mid -2 \\ \mid x \mid -1 \end{array}\right \ge 2 \text{ is}$ (A) -1	the integers which do	o not belong to the s (C) 4	solution set of the inequality (D) 0
13.	Let $f(x) = x - 2 $ and $g(x) = x - 2 $ and $g(x$	f(x) = 3 - x and al solutions of the equation ue of $h(x) = f(x) + g(x)$ le formed by $f(x) = x - 2 $ and $\gamma < \delta$ are the roots of	on $f(x) = g(x)$, $g(x) = 3 - x $ and x-axis of $g(x) = 4$, then the value	s and $\alpha < \gamma < \beta < \delta$ where $\alpha < \beta$ e of sum of digits of
	(A) 7	(B) 8	(C) 11	(D) 9
14*.	If $f(x) = x + 1 - 2 x - (A)$ maximum value of (C) there is one solution	- 1 then f(x) is 2. on of f(x) = 2.	(B) there are two soluti (D) there are two soluti	ons of $f(x) = 1$. ons of $f(x) = 3$.
15*.	The solution set of inec	quality $ x < \frac{a}{x}$, $a \in R$, is		
	$(A)(-\sqrt{-a},0)$ if a < 0	(B) $(0,\sqrt{a})$ if $a > 0$	(C)	(D) (0, a) if a > 0
16*.	If a and b are the solu	tions of equation : $\log_5 \left(1 \right)$	$\log_{64} x -\frac{1}{2} + 25^x = 2x$	k, then
	(A) a + b = 0	(B) a ² + b ² = 128	(C) ab = 64	(D) a – b = 8

17.	The number of solution	of the equation $\log_3 x - x $	1 . $\log_4 x - 1 $. $\log_5 x - 1 $	
	(A) 3	(B) 4	$= \log_5 x - 1 + \log_3 x - 1 $ (C) 5	(D) 6
18.	Find the number of all t	the integral solutions of t	he inequality $\frac{(x^2+2)(\sqrt{x})}{(x^4+2)(x^4+2)}$	$\frac{\sqrt{2}-16}{\sqrt{2}-9} \le 0$
	(A) 1	(B) 2	(C) 3	(D) 4
19.	Find the complete solu	tion set of the inequality	$\frac{1\!-\!\sqrt{21\!-\!4x-x^2}}{x+1}\geq 0$	
	(A) $\begin{bmatrix} 2\sqrt{6} - 2, & 3 \end{bmatrix}$		(B) $\begin{bmatrix} -2 & -2\sqrt{6}, & -1 \end{bmatrix}$	
	(C) $\left[-2-2\sqrt{6}, -1\right] \cup \left[2\right]$	$2\sqrt{6} - 2, 3$	(D) $\begin{bmatrix} -2 & -2\sqrt{6}, & -1 \end{bmatrix}$	$\left[2\sqrt{6}-2, 3\right]$
20.	The solution set of the	inequality $\frac{ x+2 - x }{\sqrt{4-x^3}}$	≥ 0 is	
	(A)[−1, ³ √4)	(B) [1, ³ √4)	(C) [−1, ³ √2)	(D) [0, ³ √4)
21.	The number of integers	s satisfying the inequality (B) 3	$\sqrt{\log_{1/2}^2 x + 4\log_2 \sqrt{x}} <$ (C) 4	√2 (4 – log ₁₆ x ⁴) are (D) 5
22. ๖	If $f_1(x) = x - 2 $ an $f_{2015}(x) = 2$ is	d $f_n(x) = f_{n-1}(x) - 2 $ for a	all $n \ge 2$, $n \in N$, then nu	mber of solution of the equation
23.	(A) 2015 If graph of y = f(x) in (-	(B) 2016 3,1), is as shown in the f	(C) 2017 ollowing figure	(D) 2018

and $g(x) = \Box n(f(x))$, then the graph of y = g(-|x|) is

28*. Consider the equation $|x^2 - 4|x| + 3| = p$

(A) for p = 2 the equation has four solutions

(B) for p = 2 the equation has eight solutions

(C) there exists only one real value of p for which the equation has odd number of solutions

(D) sum of roots of the equation is zero irrespective of value of p

Funde	amental	s of Mathemati	cs-II							
29*.	Consid	er the equation	nx + x = 2, then							
	(A) The	equation has tv	vo solutions		(B) Both solutio	ns are positive				
	(C) One root exceeds one and other in less than one (D) Both roots exceed one									
30*.	Consid	er the equation	x − 1 − x + 2 = p. Le	t p₁ be tl	he value of p for	which the equation has exactly				
	one sol	lution. Also p_2 is	the value of p for which t	the equa	tion has infinite	solution. Let α be the sum of all				
	the inte	egral values of p	for which this equation h	as soluti	on then					
	(A)	p ₁ = 0	(B) p ₂ = 3	(C) α =	6	(D) $p_1 + p_2 = 4$				
31.	Numbe	r of the solution	of the equation $2^x = x - x ^2$	1 + x +	1 is					
	(A) 0		(B) 1	(C) 2		(D) ∞				
32.	Numbe	er of the solution	of the equation $x^2 = x - x $	2 + x +	2 -1 is					
	(A) 0		(B) 3	(C) 2		(D) 4				
22	f(v) io n	alunamial of day	ree E with loading coeffi	ciont 1	f(4) 0 If the c	where we likely and we filled are				
JJ .		then the value of	f(5) is	cient = 1	(4) = 0.11 the 0	surve $y = I(x) $ and $y = I(x)$ are				
	(A) 405		(3) (3)	(C) 45		(D) <u>-45</u>				
	(//) 400			(0) 40						
34.	The are	ea bounded by th	The curve $y \ge x - 2 $ and y	r ≤ 4 – x	– 3 is					
	(13		(D) 7	(C) 15		(D) 0				
	(A) <u>2</u>		(D) 7	(0)2		(D) 8				
	EX	ercise-	·3 =====							
PA	RT - I	: JEE (AD	VANCED) / IIT-JE	E PR	OBLEMS (F	PREVIOUS YEARS)				
🔊 Marl	ked que	stions are reco	mmended for Revision		-					
* Mark	ced Qu	estions may I	nave more than one	correc	t option.					
4	Drow th	a graph of y	(1/2 for 1 < y < 1)		•					
1.	Draw tr	ie graph of y = p	x							
2.	The nu (A) 4	mber of real solu	utions of the equation x ² (B) 1	² – 3 x + (C) 3	2 = 0 is :	(D) 2				
•				(0)0		(-) -				
3.2	If p, q,	r are any real nu	mbers, then	(D) .	, , 1,					
	(A) max	x (p, q) < max (p	, q, r)	(B) min	$(p, q) = \frac{1}{2}(p + q)$	q − p − q)				
	(C) ma	x (p, q) < min(p,	q, r)	(D) Nor	ne of these					
4.	Let $f(x)$	= x - 1 . Then	(\mathbf{D}) $f(x, y, y) = f(y) + f(y)$		1) \$(-,)					
	(A) ((X ²	$y = (I(X))^{2}$	$(\Box) \ I(X + Y) = I(X) + I(Y)$	(C) ((X	= (x)	שטוו (ח) וואטוופ טו נחפאפ (ע)				
5.	lf x sati	sfies x - 1 + x	$ -2 + x - 3 \ge 6$, then	()						
	(A) 0 ≤	$x \le 4$	(B) $x \le -2$ or $x \ge 4$	(C) x ≤	0 or $x \ge 4$	(D) None of these				
6.	Solve	$ x^2 + 4x + 3 + 2x$	+ 5 = 0.							

7. If p, q, r are positive and are in A.P., then roots of the quadratic equation $px^2 + qx + r = 0$ are real for (A) $\left| \frac{r}{p} - 7 \right| \ge 4\sqrt{3}$ (B) $\left| \frac{r}{p} - 7 \right| < 4\sqrt{3}$ (C) all p and r (D) no p and r 8. The function $f(x) = |ax - b| + c |x| \forall x \in (-\infty, \infty)$, where a > 0, b > 0, c > 0, assumes its minimum value only at one point if (C) b ≠ c (D) a = b = c(A) a ≠ b (B) a ≠ c Find the set of all solutions of the equation $2^{|y|} - |2^{y-1} - 1| = 2^{y-1} + 1$ 9.2 The sum of all the real roots of the equation $|x - 2|^2 + |x - 2| - 2 = 0$ is _____. 10. If $\alpha \& \beta (\alpha < \beta)$ are the roots of the equation $x^2 + bx + c = 0$, where c < 0 < b, then 11. (D) $\alpha < 0 < |\alpha| < \beta$ (A) $0 < \alpha < \beta$ (B) $\alpha < 0 < \beta < |\alpha|$ (C) $\alpha < \beta < 0$ 12. If $f(x) = x^2 + 2bx + 2c^2$ and $g(x) = -x^2 - 2cx + b^2$ are such that min $f(x) > \max g(x)$, then the relation between b and c, is (C) |c| < √2 |b| (D) $|c| > \sqrt{2} |b|$ (A) no relation (B) 0 < c < b/2 PART - II : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS) 1. Product of real roots of the equation $t^2x^2 + |x| + 9 = 0$ (1) is always positive (2) is always negative (3) does not exist (4) none of these 2. The number of real solutions of the equation $x^2 - 3|x| + 2 = 0$ is (1) 3(4) 1 (2) 2(3) 4The sum of the roots of the equation, $x^2 + |2x - 3| - 4 = 0$, is : 3. $(1) - \sqrt{2}$ (2) $\sqrt{2}$ (3) -2 (4) 2The equation $\sqrt{3x^2 + x + 5} = x - 3$, where x is real, has : 4. (1) exactly four solutions (2) exactly one solutions (3) exactly two solutions (4) no solution The domain of the function $f(x) = \frac{1}{\sqrt{|x|-x|}}$ is : 5. (1) $(-\infty, \infty)$ (2) (0, ∞) (3) (-∞, 0) (4) $(-\infty, \infty) - \{0\}$ If x is a solution of the equation, $\sqrt{2x+1} - \sqrt{2x-1} = 1$, $\left(x \ge \frac{1}{2}\right)$, then $\sqrt{4x^2-1}$ is equal to 6. (3) $2\sqrt{2}$ (4) $\frac{1}{2}$ (2) $\frac{3}{4}$ (1) 2

7. Let α and β be the roots of equation $px^2 + qx + r = 0$, $p \neq 0$. If p, q, r are in the A.P. and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$, then

the value of $|\alpha - \beta|$ is :

(1)
$$\frac{\sqrt{34}}{9}$$
 (2) $\frac{2\sqrt{13}}{9}$ (3) $\frac{\sqrt{61}}{9}$ (4) $\frac{2\sqrt{17}}{9}$

8. Let $S = \{x \in R : x \ge 0 \text{ and } 2 | \sqrt{x} - 3 | + \sqrt{x} (\sqrt{x} - 6) + 6 = 0\}$. Then S :

(2) contains exactly four elements.

(3) is an empty set.

(1) contains exactly two elements.

(4) contains exactly one element

Section (C) :

C-2. x = 10/3, y = 20/3 & x = -10, y = 20

C-3. (i)
$$x \in \left(0, \frac{1}{4}\right] \cup \left[2, \infty\right)$$
 (ii) $\left(0, \frac{1}{27}\right] \cup \left[3, \infty\right)$ (iii) $\left(-\infty, \log_2(\sqrt{2} - 1)\right] \cup \left[\frac{1}{2}, \infty\right)$
C-4. 3 **C-5.** 4 **C-6.** 2

Section (D) :

D-1. (i) $\left[\frac{1}{2}, 2\right] \cup (5, \infty)$ (ii) $[-1, (\sqrt{5} - 1)/2)$ (iii) $x \in [3, \infty)$ (iv) $x \in \left[\frac{7 - \sqrt{21}}{2}, 2\right] \cup \left[4, \frac{7 + \sqrt{21}}{2}\right]$ (v) x = 2(vi) $(-\infty, -5] \cup [1, \infty)$ (vii) $(-\infty, -3]$ (viii) $[-2, 0] \cup [\sqrt{2 - \sqrt{3}}, \sqrt{2 + \sqrt{3}}]$ (ix) $(-1, 1) \cup (2, 3]$

D-2. $x = \log_2 a$ where, $a \in (0, 1]$

(1, 2)

(3, 0) X

(0,1)

(–1, 0) O

E-5. (i) $\xrightarrow{y}{}_{x}$ (iii) $\xrightarrow{y}{}_{x}$

Fundamentals	s of Mathematics-II	/
---------------------	---------------------	---

E-7. (i) 2 (ii) 2

E-8	(i)	$k \in \left(1, \frac{5}{4}\right)$	(ii)	$k = 1, \frac{5}{4}$	(iii)	k = - 1	(iv)	$k \in \left(\frac{5}{4}\infty\right) \cup (-1, 1)$
-----	-----	-------------------------------------	------	----------------------	-------	---------	------	---

	EXERCISE # 2												
1.	(B)	2.	(B)	3.	(D)	4.	(A)	5.	(A)	6.	(A*)	7.	(C)
8.	(B)	9.	(A)	10.	(D)	11.	(C)	12.	(A)	13.	(D)	14. (AB	C)
15.	(ABC)	16.	(AB)	17.	(D)	18.	(B)	19.	(D)	20.	(A)	21.	(B)
22.	(C)	23.	(D)	24.	(BD)	25.	(AB)	26.	(D)	27.	(ACD)		
28.	(ACD)	29.	(ABC)	30.	(ABC)	31.	(C)	32.	(C)	33.	(A)	34.	(C)

EXERCISE # 3

						P	ART-I						
2.	(A)	3.	(B)	4.	(D)	5.	(C)	6.	x = -'	1 – √3	or	-4	
7.	(A)	8.	(B)	9.	{−1 } ∪	(1, ∞)	10.	4	11.	(B)	12.	(D)	
						P	ART-I						
1.	(3)	2.	(3)	3.	(2)	4.	(4)	5.	(3)	6.	(2)	7.	(2)
8.	(1)												