Exercise-1

SUBJECTIVE QUESTIONS

Section (A) : Representation of sets, Types of sets, subset and power set

A-1. Which of the following collections is not a set?

- (i) The collection of natural numbers between 2 and 20
- (ii) The collectihon of numbers which satisfy the equation $x^2 5x + 6 = 0$
- (iii) The collection of prime numbers between 1 and 100.
- (iv) The collection of all intelligent women in Jalandhar.
- **A-2.** Write the set $A = \{x : x \text{ is a positive prime } < 10\}$ in the tabular form
- A-3. Which of the following is the empty / non-empty set (i) $\{x : x \text{ is a real number and } x^2 - 1 = 0\}$ (ii) $\{x : x \text{ is a real number and } x^2 + 1 = 0\}$ (iii) $\{x : x \text{ is a real number and } x^2 - 9 = 0\}$ (iv) $\{x : x \text{ is a real number and } x^2 = x + 2\}$
- A-4. Which of the folowing sets is an finite / infinite set ?
 (i) Set of divisors of 24
 (ii) Set of all real number which lie between 1 and 2
 (iii) Set of all humman beings living in India.
 (iv) Set of all three digit natural numbers
- **A-5.** If $A = \{x : -3 < x < 3, x \in Z\}$ then find the number of subsets of A.
- **A-6.** Find Power set of the set $A = \{\phi, \{\phi\}\}.$

Section (B) : Operations on sets, Law of Algebra of sets

- **B-1.** Sets A and B have 3 and 6 elements respectively. What can be the minimum number of elements in $A \cup B$?
- **B-2.** Given the sets A = {1, 2, 3}, B = {3, 4}, C = {4, 5, 6}, then find A \cup (B \cap C).
- **B-3.** Let $A = \{x : x \in R, -1 < x < 1\}$, $B = \{x : x \in R, x \le 0 \text{ or } x \ge 2\}$ and $A \cup B = R D$, then find set D
- **B-4.** Find the smallest set A such that $A \cup \{1, 2\} = \{1, 2, 3, 5, 9\}$
- **B-5.** If A = {2, 3, 4, 8, 10}, B = {3, 4, 5, 10, 12}, C = {4, 5, 6, 12, 14} then find $(A \cap B) \cup (A \cap C)$.
- **B-6.** Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 5}, B = {6, 7}, then show that A \cap B' is same as set A.
- **B-7.** If $A = \{x : x = 4n + 1, n \le 5, n \in N\}$ and B $\{3n : n \le 8, n \in N\}$, then find (A (A B)).
- **B-8.** If $aN = \{ax : x \in N\}$ and $bN \cap cN = dN$, where b, $c \in N$, $b \ge 2$, $c \ge 2$ are relatively prime, then find relation between d,b and c.

Section (C) : Cardinal number Problems

- **C-1.** Let n(U) = 700, n(A) = 200, n(B) = 300 and $n(A \cap B) = 100$, then find $n(A' \cap B')$
- **C-2.** In a group of 1000 people, there are 750 people, who can speak Hindi and 400 people, who can speak Bengali.

- (i) Find number of people who can speak Hindi only.
- (ii) Number of people who can speak Bengali only is
- (iii) Number of people who can speak both Hindi and Bengali is
- C-3. A class has 175 students. The following data shows the number of students obtaining one or more subjects : Mathematics 100, Physics 70, Chemistry 40, Mathematics and Physics 30, Mathematics and Chemistry 28, Physics and Chemistry 23, Mathematics & Physics & Chemistry 18. How many students have offered Mathematics alone ?
- C-4. 31 candidates appeared for an examination, 15 candidates passed in English, 15 candidates passed in Hindi, 20 candidates passed in Sanskrit. 3 candidates passed only in English. 4. candidates passed only in Hindi, 7 candidates passed only in Sanskrit. 2 candidates passed in all the three subjects How many candidates passed only in two subjects ?
- C-5.> In a survery, it was found that 21 persons liked product A, 26 liked product B and 29 liked product C. If 14 persons liked products A and B, 12 liked products C and A, 13 persons liked products B and C and 8 liked all the three products then
 - (i) Find the number of persons who liked the product C only
 - (ii) The number of persons who like the products A and B but not C

Section (D) : Graphs of polynomial

- **D-1.** Draw the graph of following function (i) $y = 4x^3 - 30x^2 + 72x - 55$ (ii) $y = x^3 + x^2 + x - 3$ (iii) $y = x^4 - 8x^3 + 22x^2 - 24x + 8.5$ (iv) $x = x^4 - 6x^2 - 8x + 13$ (v) $y = x^4 - 4x^3 + 8x^2 - 8x - 21$ (vi) $y = x^4 + 2x^2 + 4x + 1$
- **D-2.** Find the number of solution of the following equation $x^4 6x^2 8x 3 = 0$
- **D-3.** Find the range of ' λ ' for which equation $x^3 + x^2 x 1 \lambda = 0$ has 3 real solution.

Section (E) : Rational inequaties, Modulus & Graphical transformations

E-1. Solve the following rational in equalities

(i)	$\frac{(x-1)(x+2)}{(x-3)(x+3)} < 0$	(ii)	$\frac{(1-x)^3(x+2)^4}{(x+9)^2(x-8)} \ge 0$
(iii)	$\frac{(x^2-3x+1)^3}{(x-1)(x+2)} \le 0$	(iv)	$\frac{x(2^{x}-3^{x})}{(x^{2}+x+1)(x-1)} > 0$
(v)	$\frac{(x-1)(x-2)(x-3)}{(x+1)(x+2)(x+3)} \leq 1$	(vi)	$1 < \frac{3x^2 - 7x + 8}{x^2 + 1} \le 2$

E-2. Find the number of positive integral value of x satisfying the inequality $\frac{(3^x - 5^x)(x - 2)}{(x^2 + 5x + 2)} \ge 0$

(iii)

- **E-3.** If $1 < \frac{x-1}{x+2} < 7$ then find the range of (i) x (ii) x^2
- **E-4.** Define and plot (i) y = |x - 2| + 3 |x - 3| (ii) By y = ||x - 2| - 3| + |x|(iii) y = |x - 1| + |x - 4| - 2 |x + 1|
- E-5. Solve for x
 - (i) |x + 1| = 4x + 3
 - (ii) |x + 1| = |x + 3|
 - (iii) 7|x-2| |x-7| = 5

(iv) ||x - 1| - 2| = 6x + 8 $|2x^2 - 3x + 1| = |x^2 + x - 3|$ (v)

E-6. Solve for x

- $2^{|x+1|} + 2^{|x|} = 6$ and (i) $X \in I$
- (ii) $x^2 + x + 1 + |x - 3| \le |x^2 + 2x - 2|$
- (iii) $|2x - 4| - 2|x^2 + x - 3| + 2|x - 1||x + 1| = 0$
- E-7. Solve the following in equalities
 - |x + 7| > 5(i)
 - (iii) $(x + 2) < |x^2 + 3x + 5|$
 - $|x-6| \le x^2 5x + 9$ (v)

(vii) (|x - 1| - 3) (|x + 2| - 5) < 0

E-8. Find the number of solution of the following equation (i) |||x - 1| - 2| - 1| = 1

(ii)
$$|x + 3| < 10$$

(iv) $\left|\frac{2x - 1}{x - 1}\right| > 2$
(vi) $\frac{x^2 - |x| - 12}{x - 3} \ge 2x$
(viii) $|x - 1| + |x - 2| + |x - 3| \le 6$

(ii) $2|(x-1)(x-5)| = (x-3)^2$

(ii)

If graph of y = (x - 1)(x - 2) is E-9.

then draw the graph of the following

- y = |(x 1) (x 2)|(i)
- (iii) y = (|x| - 1) (|x| - 2)
- |y| = |(|x| 1) (|x| 2)|(v)

Let graph of y = f(x) is

E-10.

$$(-6,2) (0,2) (-1,1) (-1,1) (-2,0) (-3,-1) (-3,-1) (-2,0) (-3,-1) (-3$$

Now draw the graph of following (i) y = 2f(-x)(ii) y = f(|x + 1|)(iii) y = -f(|x| + 1)(iv) $|y + 1| = f(2x - 1) \forall x \in [-1,3]$

|y| = (x - 1) (x - 2)(ii) (iv) (iv) (iv) y = |(|x| - 1) (|x| - 2)| F-1.

Section (F) : Irrational inequality, logarithmic equation & logarithimic inequality

Solve the following inequlities (i) $\sqrt{x-1} < x-3$ (ii) $\sqrt{x-3} > \sqrt{7-x}$ (ii) $\sqrt{x^2 + 4x + 9} > x + 2$ (iv) $4 - x < \sqrt{2x - x^2}$ (v) $\sqrt[3]{(x-4)(x-6)} > 2$ (vi) $\sqrt{\frac{1}{x^2} - \frac{3}{x}} < \frac{1}{x} - \frac{1}{2}$ (vii) $\sqrt{\frac{1}{x^2} - \frac{3}{x}} < \frac{1}{x} - \frac{1}{2}$ (viii) $\frac{\sqrt{2x^2 + 7x - 4}}{x + 4} \le \frac{1}{2}$ (ix) $\frac{|x+2| - |x|}{\sqrt{8-x^3}} \ge 0$

F-2. Find the value of

(iii)
$$\log_{0.75} \log_2 \sqrt{\sqrt{\frac{1}{0.125}}}$$
 (iv) $5^{\log_{\sqrt{5}^2}} + 9^{\log_3 7} - 8^{\log_2 5}$
(v) $\left(\frac{1}{49}\right)^{1+\log_7 2} + 5^{-\log_{1/5} 7}$ (vi) $7^{\log_3 5} + 3^{\log_5 7} - 5^{\log_3 7} - 7^{\log_5 3}$

(ii) $\sqrt[3]{5^{\frac{1}{\log_7 5}} + \frac{1}{(1 + 2\pi)^2 + 0.4}}$

F-3. Let $\log_{10}2 = a$ and $\log_{10}3 = b$ determine the following in term of a and b (i) $\log_{4}100 + 2\log_{27}100$ (ii) $\log_{144}\sqrt{45}$

 $(\log_{10}2)^2$

F-4. Prove that (i) $\frac{1}{\log_{100}(abc)} + \frac{1}{\log_{100}(abc)} + \frac{1}{\log_{100}(abc)} = 1$ (ii) $(\log_2 10) (\log_2 80) - (\log_2 5) (\log_2 160) = 4$ (iv) $\frac{a^{\log_{2^{1/4}}2} - 3^{\log_{2^{7}}(a^{2}+1)^{3}} - 2a}{(7^{4\log_{49}a}) - a - 1} = a^{2} + a + 1$ (iii) $a^{\sqrt{\log_a b}} = b^{\sqrt{\log_b a}}$ F-5 Solve the following equations : $\log_2(x-1) + \log_2(x-3) = 3$ $\log_{x}(4x - 3) = 2$ (ii) (i) $4^{\log_2 x} - 2x - 3 = 0$ $\log_2 (\log_8 (x^2 - 1)) = 0$ (iv) (iii) F-6. Solve the following equations $x^{\frac{\log_{10} x+7}{4}} = 10^{(\log_{10} x+1)}$ $\frac{\log_2(9-2^x)}{3-x} = 1$ (ii) (i) $(\log_{10}(100x))^2 + (\log_{10}(10x))^2 = 14 + \log_{10}(1/x)$ (iii) $\log_{10}5 + \log_{10}(x + 10) - 1 = \log_{10}(21x - 20) - \log_{10}(2x - 1)$ (iv) $5^{2x} = 3^{2x} + 2.5^{x} + 2.3^{x}$ (v) F-7 Solve the following inequalities (i) $\log_5 (3x - 1) < 1$ (ii) $(\log_{.5}x)^2 + \log_{.5}x - 2 \le 0$ (iv) $\log_{1/2} \log_3(x^2 + 5) + 1 \le 0$ (iii) $\log_3(x + 1) + \log_3(x + 7) \ge 3$ F-8. Solve the following inequalities (ii) $\frac{x-1}{\log_2(9-3^x)-3} \le 1$ (i) $|\log_3 x| - \log_3 x - 3 < 0$ (iv) $\log \log_x (x^3 - x^2 - 2x) < 3$ (iii) $\ge \log_{x-1} (x-2) > 0$ F-9 Solve the following inequalities (ii) $\ge 8 \cdot \left(\frac{3^{x-2}}{3^x - 2^x}\right) > 1 + \left(\frac{2}{3}\right)^x$ (i) $15^x - 25.3^x - 9.5^x + 225 \ge 0$

Section (G) : Greatest integer function, fractional part & signum function

- **G-1.** Solve for x (where [•] denotes greatest integer function and {•} represent fractional part function) (i) [2x] = 1 (ii) $\{x\}^2 + [x] = 2$ (iii) $6\{x\}^2 - 5\{x\} + 1 = 0$ (iv) $6[x]^2 - 5[x] - 1 = 0$
- **G-2** Solve the following equations (where [•] denotes greatest integer function and {•} represent fractional part function) (i) $2[x] + 3\{x\} = 4x - 1$ (ii) $4[x] = x + \{x\}$ (iii) $[x] + 2\{-x\} = 3x$
- **G-3.** Solve the following equations (where [•] denotes greatest integer function and {•} represent fractional part function and sgn represents signum function) (i) $[x] + |x - 2| \le 0$ and $x \in [-1,3]$ (ii) [2x] - 2x = [x + 1](iii) $[x^2] + 2 [x] = 3x, 0 \le x \le 2$
- **G-4.** Solve the following inequalities (where [•] denotes greatest integer function and {•} represent fractional part function)

(i) [x + [x]] < 0 (ii) $[2x^2 - x] < 1$ (iii) $\{x\} < \frac{1}{2}$

G-5 Solve the following equations

(i) sgn ({[x]}) = 0 (ii) sgn(x² - 2x - 8) = -1 (iii) sgn
$$\left(\frac{x^2 - 5x + 4}{\{x\}}\right) = -1$$

G-6 Find the number of solution of equation (where sgn represent signum function) (i) sgn (x) = |x| (ii) sgn (x² - 1) = (x + 1)²

Section (H) : Trigonometric Equations

H-1. Solve the following equation

(i) $5\cos 2\theta + 2\cos^2\frac{\theta}{2} + 1 = 0$, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ (ii) $\sin 7\theta + \sin 4\theta + \sin \theta = 0$, $0 \le \theta \le \pi$ (iii) $\tan \theta + \sec \theta = \sqrt{3}$, $0 \le \theta \le 2\pi$

- **H-2.** Find the most general solution of the following (i) $\sin 6x = \sin 4x - \sin 2x$ (ii) $\sec 4x - \sec 2x = 2$ (iii) $\tan\left(\frac{\pi}{4} + x\right) + \tan\left(\frac{\pi}{4} - x\right) = 2$
- **H-3.** Solve the following inequations (i) $(\sin x - 2) (2\sin x - 1) < 0$ (ii) $\sin x + \sqrt{3} \cos x \ge 1$ (v) $\tan^2 x > 3$ (iii) $\cos (2\cos x - 1) (\cos x) \le 0$ (iv) $\cos^2 x + \sin x \le 2$

H-4 Find the number of solution of the following equation

(i)
$$|\sin x| = \left| \frac{x}{10} \right|$$
 (ii) $\Box n|x| = \sin \pi x$

H-5. Solve the inequation

$$2^{\frac{1}{\cos^2 x}} \sqrt{y^2 - y + \frac{1}{2}} \leq 1$$

Fundamentals of Mathematics **Exercise-2** Marked guestions are recommended for Revision. * Marked Questions may have more than one correct option. **OBJECTIVE QUESTIONS** 1. Which of the following are true ? (A) $[3, 7] \subset (2, 10)$ (B) $(0, \infty) \subset (4, \infty)$ (C) $(5, 7] \subseteq [5, 7)$ (D) $[2, 7] \subset (2.9, 8)$ The shaded region in the given figure is 2.2 (A) $A \cap (B \cup C)$ (B) $A \cup (B \cap C)$ (C) $A \cap (B - C)$ (D) A – (B \cup C) 3. Consider the following statements : $N \cup (B \cap Z) = (N \cup B) \cap Z$ for any subset B of R, where N is the set of positive integers, Z is 1. the set of integers, R is the set of real numbers. 2. Let A = {n \in N : 1 \leq n \leq 24, n is a multiple of 3}. There exists no subset B of N such that the number of elemets in A is equal to the number of elements in B. Which of the above statements is/are correct ? (C) Both 1 and 2 (A) 1 only (B) 2 only (D) Neither 1 nor 2 4.2 Which of the following venn-diagrams best represents the sets of females, mothers and doctors ? (R)(C) (D) 5.2 In a college of 300 students, every student reads 5 newspapers and every newspaper is read by 60 students. The number of newspaper is-(A) at least 30 (B) at most 20 (C) exactly 25 (D) exactly 30 6.2 In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B and 10% families buy newspaper C, 5% families buy A and B, 3 % buy B and C and 4% buy A and C. If 2% families buy all the three news papers, then number of families which buy newspaper A only is (C) 2900 (D) 1400 (A) 3100 (B) 3300 7. Let A₁, A₂ and A₃ be subsets of a set X. Which one of the following is correct ? $A_1 \cup A_2 \cup A_3$ is the smallest subset of X containing elements of each of A_1 , A_2 and A_3 (A) $A_1 \cup A_2 \cup A_3$ is the smallest subset of X containing either A_1 or $A_2 \cup A_3$ but not both (B) (C) The smallest subset of X containing $A_1 \cup A_2$ and A_3 equals the smallest subset of X containing both A_1 and $A_2 \cup A_3$ only if $A_2 = A_3$ (D) None of these 8. Let A, B, C be distinct subsets of a universal set U. For a subset X of U, let X' denote the complement of X in U. Consider the following sets : $((A \cap B) \cup C)' \cap B')' = B \cap C$ 1. $(A' \cap B') \cap (A \cup B \cup C') = (A \cup (B \cup C))'$ 2. Which of the above statements is/are correct? (D) Neither 1 nor 2 (A) 1 only (B) 2 only (C) Both 1 and 2

9. 🕿	Let U be set with numb Consider the following s I : If A, B are subsets of for some positive intege II : If A is a subset of belong to a subset B of P_1 , P_2 , P_3 Which of the statement (A) I only	$x_2^3 = y_1^3 + y_2^3$ ements, exactly 1075 elements ve integer m and distinct primes (D) Neither I nor II.					
10.	Consider the following s 1. If $A = \{(x, y) \in [R \times R + R + R + R + R + R + R + R + R + $	statements : $R : x^3 + y^3 = 1$] and $B = \{(x^3 + y^3 = 1)]$ and $B = \{(x^3 + y^3 = 1)]$ and $B = \{(x^3 + y^3 = 1)\}$ and $B = \{(x^3 + y^3 = 1)\}$	$(x, y) \in [R : x - y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$, the formula $(x, y) \in [R : x + y = 1]$.	then $A \cap B$ contains exactly one hen $A \cap B$ contains exactly two			
11.	In a class of 42 student in Physics, 19 in Cher Physics and Chemistry one subject is (A) 15	(B) 2 only ts, the number of studen nistry, 12 in Mathematic and 4 in all the three su (B) 30	ts studying different subj s and Physics 9 in Ma bjects. The number of st (C) 22	(D) Neither Fand 2 lects are 23 in Mathematics, 24 thematics and Chemistry, 7 in udents who have taken exactly (D) 27			
12.	In an examination of a c Chemistry, at least 80% must have failed in all t (A) 5% (C) 15%	certain class, at least 70% % failed in Mathematics he four subjects ?	 % of the students failed in Physics, at least 72% failed in and at least 85% failed in English. How many at least (B) 7% (D) Cannot be determined due to insufficient data 				
13.*১	A and B are two sets su (A) minimum value of n (C) maximum value of r	uch that n(A) = 3 and n(B (A \cup B) = 6 n(A \cup B) = 6	B) = 6, then (B) minimum value of $n(A \cup B) = 9$ (D) maximum value of $n(A \cup B) = 9$				
14.	The number of solution (A) 0	of equation x ³ – 21x –20 (B) 1	e = e ^x is/are (C) 2	(D) 3			
15.	If $a \neq 0$ then complete s (A) $(-\infty, - a) \cup (a , \infty)$ (C) $(-\infty, -a) \cup [a, \infty)$	et of solution of $\frac{x^2 - 2x}{x^2 - a}$	$rac{(+2)^{ a }}{a^2} > 0$ is (B) $(-\infty, -a) \cup (a, \infty)$ (D) $(- a , a)$				
16.	The complete set of sol	ution of equation $\left 1 - \frac{ x }{1+ x }\right $	$\frac{ \mathbf{x} }{ \mathbf{x} } = \frac{1}{2}$ is {a,b} then				
17.	 (A) a + b = 8 The smallest integral va (A) 0 	(B) a + b = 3 alue of a such that x + a - (B) 1	(C) a + b = 0 - 3 + x −2a = 2x − a − (C) 2	(D) a + b = − 3 3 is true ∀ x ∈ R is (D) 3			
18.	Number of positive inte (A) 0	gral solution of the equat (B) 1	ion $ x^2 - 3x - 3 > x^2 + 7$ (C) 2	x – 13 is/are (D) 3			
19.	If $(x^2 - 2 x) (2x - 2) -$ (A) $x \in (-\infty, -1] \cup (0, 1)$ (C) $x \in (-\infty, 3]$	$9\left(\frac{2 x -2}{x^2-2 x }\right) \le 0$ then] \cup (2,3]	(B) $x \in (-\infty, -1] \cup (2,3)$ (D) $x \in [-3-2) \cup [-1,0]$] ∪ {1}) ∪ (0,1] ∪ (2,3]			

20. Number of solution of pair of equations y = ||x| - 2| - 2| and $y = \frac{x+2}{2}$ equals to (A) 1 (B) 2 (C) 3 (D) 4

21*. For making graph of equations |y| = |f(|x|)| through y = f(x) which order of step is right among the following order of
Step I : y = f(|x|) (replace x by |x|)
Step II : y = |f(x)| (take modulus of R.H.S)
Step III : |y| = f(x) (replace y by |y|)

(A) I, II, III (B) II, I, III (C) III, II, I (D) III, I, II

22. The sum of all the integral values of a {where $a \in [-10, 10)$ } such that the graph of the function f(x) = ||x - 2| - a| - 3 has exactly three x-intercepts is

23. Let graph of y = f(x) is

(-1, -1)

The graph of y = |f(x) + g(x)| is same as (A) y = |f(x)| + |g(x)| (B) y = 2|x|

(C) y = |x| (D) y = 2

24. Complete set of solution of inequation $\frac{3}{\sqrt{2-x}} - \sqrt{2-x} < 2$ is (A) (- ∞ ,1) (B) (- ∞ ,1] (C) (1, ∞) (D) [1, ∞)

25. Complete set of solution of inequation $\sqrt{3x^2 + 5x + 7} - \sqrt{3x^2 + 5x + 2} > 1$ is $(-a, -b] \cup [-c,d)$ (where a, b, c $\in \mathbb{R}^+$) then a + b + c + d equation (A) 4 (B) 3 (C) 2 (D) 1

26. Complete set of solution of a inequation $\sqrt{x + 2\sqrt{x-1}} + \sqrt{x - 2\sqrt{x-1}} > \frac{3}{2}$ (A) (- ∞ , 1) (B) (- ∞ , 1] (C) [1, ∞) (D) (1, ∞)

27. If a, b, c are distinct positive number but no one among them is equal to one and $\log_{ba} \log_{ca} + \log_{ab} \log_{cb} + \log_{ac} \log_{bc} = 3$, then value of abc is (A) 2 (B) 3 (C) 0 (D) 1

28. Let α , β , are two real solution of equation $(\log_{10}x)^2 + \log_{10}x^2 = (\log_{10}2)^2 - 1$, then $\sqrt{\frac{1}{\alpha\beta}}$ equal to (A) 20 (B) 3 (C) 10 (D) 1

29.2	Let a, b, c, d are positiv is equal to	re integer such that log₅b	$= 3/2$ and $\log_{c}d = 5/4$. If	a - c = 9, then value of $(b - d)$
	(A) 20	(B) 93	(C) 10	(D) 1
30.	The values of a for which	ch the equation $2(\log_3 x)^2$	$- \log_3 x + a = 0$ posses	four real solution
	(A) –2 < a < 0	(B) 0 < a < 1/8	(C) 0 < a < 5	$(D) - \frac{1}{8} < a < 0$
31.	If $\log_{\frac{1}{2}} \frac{x^2 + 6x + 9}{2(x+1)} < -$	$log_2(x + 1)$ then complete	te set of values of x is	
	(A) (−1, 1 + 2 √2)	(B) $(1-2\sqrt{2},2)$	(C) (−1, ∞)	(D) $(1-2\sqrt{2}, 1+2\sqrt{2})$
32.	The least positive integ	er x, which satisfies the i	nequality $\log_{\log_2(\frac{x}{2})} (x^2 -$	10x + 22) > 0 is equal to
	(A) 3	(B) 4	(C) 7	(D) 8
33.	Complete set of solutio	n of equation $\frac{\log_{0.3}(x-2)}{ x }$	$\frac{2}{2} \ge 0$	
	(A) [1, 2) \cup (2, 3]	(B) [1, 3]	(C) (2, 3]	(D) {1}
34.	The solution set of the (A) $(-\infty, 1)$	inequality 9 ^x – 3 ^{x+1} + 15 (B) (1,∞)	< 2.9 ^x – 3 ^x is (C) (–∞,1]	(D) [2, ∞)
35.2	The complete set of val	lues of x satisfying the ed	quation $x^2 \cdot 2^{x+1} + 2^{ x-3 +2}$	$x^{2} = x^{2} \cdot 2^{ x-3 +4} + 2^{x-1}$ is
	(A) [3,∞)	$(B)\left[-\frac{1}{2},\frac{1}{2}\right]\cup(3,\infty)$	$(C)\left(-\infty-\frac{1}{2}\right)$	$(D) \left\{ -\frac{1}{2}, \frac{1}{2} \right\} \cup [3, \infty)$
36.	If $f(x) = \{x\} + \begin{cases} x + \lfloor \frac{x}{1+x} \end{cases}$	$\left\{ \frac{x}{x^2} \right\} + \left\{ x + \left[\frac{x}{1 + 2x^2} \right] + \left[\frac{x}{1 + 2x^2} \right] \right\} + \left\{ x + \left[\frac{x}{1 + 2x^2} \right] + \left[\frac{x}{1 + 2x$	$\mathbf{x} + \left[\frac{\mathbf{x}}{1+3\mathbf{x}^2}\right]$ + $\left\{\mathbf{x} \in \mathbf{x}^2\right\}$	$+\left[\frac{x}{1+99x^2}\right]$, then values of
	[f(√3)] is (where [•] de (A) 5050	notes greatest integer fu (B) 4950	nction and {•} represent t (C) 17	fractional part function) (D) 73
37.	The number of solution function and sgn respression $(A) 4$	of the equation sgn ({x}) esent signum function) (B) 3	$ = 1 - x $ is/are (where {•	} represent fractional part (ח) 1
	()) -	(2) 0		
38.	The complete set of so	lution of Inequality $\frac{x^2 - \xi}{xsg}$	$\frac{5x+6 \operatorname{sgn}(x)}{\operatorname{in}(x-1)+1} \ge 0 \text{ is (whe}$	re sgn respresent signum
	function) (A) $(-\infty, -1] \cup [0,2] \cup [3,\infty]$ (C) $(-\infty,2] \cup [3,\infty)$	3,∞)	(B) $(-\infty, 0] \cup [2,\infty)$ (D) $(-\infty, -1] \cup [0,\infty)$	
39.2	$\frac{1}{\sin 3\alpha} \left[\sin^3 \alpha + \sin^3 \left(\frac{2}{3} \right) \right]$	$\left(\frac{\pi}{3}+\alpha\right)+\sin^3\left(\frac{4\pi}{3}+\alpha\right)$ is	s equal to	
	(A) $\frac{4}{3}$	(B) $\frac{3}{4}$	(C) $\frac{-3}{4}$	(D) $\frac{-4}{3}$
40.*æ	If (m + 2) sinθ + (2m –	1) $\cos\theta = 2m + 1$ then		
	(A) $\tan\theta = \frac{3}{4}$	(B) $\tan\theta = \frac{2m}{m^2 + 1}$	(C) $\tan\theta = \frac{2m}{m^2 - 1}$	(D) $\tan\theta = \frac{4}{3}$

41. *	Let $0 \le \theta \le \frac{\pi}{2}$ and $x = X \cos\theta + Y \sin\theta$, $y = X \sin\theta - Y \cos\theta$ such that $x^2 + 4xy + y^2 = aX^2 + bY^2$,									
	where a, b are constant	its then								
	(A) a = -1, b = 3	(B) $\theta = \pi/4$	(C) a = 3, b = -1	(D) $\theta = \frac{\pi}{3}$						
42.	Let (1 + tan 1º) (1 + tar (A) 21	n2º)(1 + tan45º) = (B) 22	= 2 ^k then k equals to (C) 23	(D) 24						
43.	The number of solution (A) 2	n of 2 cosx = sinx where (B) 3	x ∈ [0,4π] is/are (C) 4	(D) 1						
44. *	If the equation sin (πx^2) of positive root	$(-\sin(\pi x^2 + 2\pi x)) = 0$ is s	olved for positive roots,	then in the increasing sequence						
	(A) first term is $\frac{-1+\sqrt{7}}{2}$	-	(B) first term is $\frac{-1+\sqrt{3}}{2}$	3						
	(C) third term is 1		(D) third term is $\frac{-1+\sqrt{11}}{2}$							
45.æ	In (0, 6π), the number o (A) 15	of solutions of the equation (B) 17	on tanθ + tan 2θ + tan 3θ (C) 20	e = tan θ.tan2θ.tan3θ is /are (D) 12						
46.	If 2tan ² x – 5 secx – 1 =	0 has 7 different roots ir	$n\left[0, \frac{n\pi}{2}\right], n \in \mathbb{N}$, then the greatest value of n is							
	(A) 15	(B) 13	(C) 14	(D) 16						
47.æ	The number of integra solution.	al values of a for which	the equation cos 2x +	a sin x = 2a - 7 possesses a						
	(A) 0	(B) 1	(C) 3	(D) 5						
48.2	If the arithmetic mean (0, 315) is equal to $k\pi$,	of the roots of the equation then the value of k is	on 4cos³x – 4cos²x – cos	$s(\pi + x) - 1 = 0$ in the interval						
	(A) 10	(B) 20	(C) 50	(D) 80						
49.	Number of solution of s (A) 0	sinx cosx – 3 cosx + 4 sir (B) 1	nx – 13 > 0 in [0,2π] is ec (C) 2	jual to (D) 4						
50.2	The solution of $\sqrt{5-2s}$ (A) [π (12n – 7)/6, π (12 (C) [π (2n – 7)/6, π (2n	sin x ≥ 6 sin x – 1 is 2n + 7)/6] (n ∈ Z) + 1)/6] (n ∈ Z)	(B) [π (12n – 7)/6, π (12n + 1)/6] (n \in Z) (D) [π (12n – 7)/3, π (12n + 1)/3] (n \in Z)							

Exercise-3

* Marked Questions may have more than one correct option. Marked questions are recommended for Revision.

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

1.* If
$$\frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5}$$
, then
(IIT-JEE - 2009, Paper-1, (4, -1), 80]
(A) $\tan^5 x = \frac{2}{3}$
(B) $\frac{\sin^5 x}{8} + \frac{\cos^5 x}{27} = \frac{1}{125}$
(C) $\tan^5 x = \frac{1}{3}$
(D) $\frac{\sin^5 x}{8} + \frac{\cos^5 x}{27} = \frac{2}{125}$
2*. If the solution(s) of $\sum_{m=1}^{5} \csc \left(\theta + \frac{(m-1)}{4}\right) \csc \left(\theta + \frac{m\pi}{4}\right) = 4\sqrt{2}$ is(are)
(IIT-JEE - 2009, Paper-2, (4, -1), 80]
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{12}$
(D) $\frac{5\pi}{12}$
3. The maximum value of the expression $\frac{1}{\sin^2 \theta + 3\sin \theta \cos \theta + 5\cos^2 \theta}$ is
(IIT-JEE-2010, Paper-1, (3, 0)/84]
4. The positive integer value of n > 3 satisfying the equation $\frac{1}{\sin\left(\frac{\pi}{n}\right)} = \frac{1}{\sin\left(\frac{2\pi}{n}\right)} + \frac{1}{\sin\left(\frac{3\pi}{n}\right)}$ is
(IIT-JEE-2010, Paper-1, (3, 0)/84]
5. The number of values of θ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{n\pi}{5}$ for n = 0, $\pm 1, \pm 2$ and $\tan \theta = \cot 5\theta$ as well as $\sin 2\theta = \cos 4\theta$ is
(IIT-JEE-2010, Paper-1, (3, 0)/84]
5. Let (x_0, y_0) be the solution of the following equations
 $(2x)^{-1/2} = (3y)^{-1/3}$
Then x_0 is
(IIT-JEE 2011, Paper-1, (3, -1), 80]
(A) $\frac{1}{6}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) 6
7. Let $P = \{\theta : \sin \theta - \cos \theta = \sqrt{2} \cos \theta\}$ and $Q = \{\theta : \sin \theta + \cos \theta = \sqrt{2} \sin \theta\}$ be two sets. Then
(A) $P \subset Q$ and $Q - P \neq \emptyset$
(B) $Q \subset P$
(C) $P \notin Q$
(D) $P = Q$
(IIT-JEE 2011, Paper-1, (3, -1), 80]
8.* Let $0, \phi \in [0, 2\pi]$ be such that $2\cos\theta(1 - \sin\phi) = \left(\tan \frac{\theta}{2} + \cot \frac{\theta}{2}\right) \sin^{2}\theta \cos\phi - 1$, $\tan(2\pi - \theta) > 0$ and $-1 < \sin\theta < -\frac{\sqrt{3}}{2}$. Then ϕ cannot satisfy
(IIT-JEE 2012, Paper-1, (4, 0), 70]
(A) $0 < \phi < \frac{\pi}{2}$
(B) $\frac{\pi}{2} < \phi < \frac{4\pi}{3}$
(C) $\frac{4\pi}{3} < \phi < \frac{3\pi}{2}$
(D) $\frac{3\pi}{2} < \phi < 2\pi$

9. The value of
$$6 + \log_2 \left(\frac{1}{3\sqrt{2}}\sqrt{4 - \frac{1}{3\sqrt{2}}\sqrt{4 - \frac{1}{3\sqrt{2}}}}}}}}}}}})
16. If is a constant is a be interval (10 and the set is a set is a$$

PART - II : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1.	If A, B and C are three	sets such that $A \cap B = A$	$A \cap C$ and $A \cup B = A \cup C$, then [AIEEE-2009, (4, – 1), 144]
	(1) A = C	(2) B = C	(3) $A \cap B = \phi$	(4) A = B
2.24	Let A and B denote the A : $\cos \alpha$ + $\cos \alpha$ B : $\sin \alpha$ + $\sin \alpha$	e statements $\beta \beta + \cos \gamma = 0$ $\beta + \sin \gamma = 0$		[AIEEE 2009 (4, –1), 144]
	If $\cos (\beta - \gamma) + \cos (\gamma - \gamma)$			
	(1) A is false and B is t(3) both A and B are fa	rue Ise	(2) both A and B are tru (4) A is true and B is fa	ue Ise
3.2	Let $\cos(\alpha + \beta) = \frac{4}{5}$ and	let $\sin(\alpha - \beta) = \frac{5}{13}$, whe	ere $0 \le \alpha, \ \beta \le \frac{\pi}{4}$. Then to	an 2α =
	(1) $\frac{56}{33}$	(2) $\frac{19}{12}$	(3) $\frac{20}{7}$	[AIEEE 2010 (4, −1), 144] (4) 25/16
4.	If A = $\sin^2 x + \cos^4 x$, th	en for all real x :		[AIEEE 2011 (4, -1), 120]
	(1) $\frac{3}{4} \le A \le 1$	(2) $\frac{13}{16} \le A \le 1$	(3) $1 \le A \le 2$	(4) $\frac{3}{4} \le A \le \frac{13}{16}$
5.	Let $X = \{1, 2, 3, 4, Y \subseteq X, Z \subseteq X \text{ and } Y \cap Z \}$	5}. The number of diffe Z is empty, is :	erent ordered pairs (Y,	Z) that can formed such that [AIEEE-2012, $(4, -1)$, 120]
	(1) 5 ²	(2) 3°	(3) 2°	(4) 5 ³
6.24	In a ∆PQR, if 3 sin P +	$4 \cos Q = 6 \text{ and } 4 \sin Q$	+ $3 \cos P = 1$, then the a	angle R is equal to : [AIEEE-2012, (4, –1)/120]
	(1) $\frac{5\pi}{6}$	(2) $\frac{\pi}{6}$	(3) $\frac{\pi}{4}$	$(4) \frac{3\pi}{4}$
7.	Let A and B two sets $A \times B$ having 3 or more	containing 2 elements a elements is	and 4 elements respectiv	vely. The number of subsets of [AIEEE - 2013, (4, -1), 120]
	(1) 256	(2) 220	(3) 219	(4) 211
8.	The expression $\frac{\tan A}{1-\cot}$	$\frac{A}{A} + \frac{\cot A}{1 - \tan A}$ can be wri	tten as :	[AIEEE - 2013, (4, –1),120]
	(1) sinA cosA + 1	(2) secA cosecA + 1	(3) tanA + cotA	(4) secA + cosecA
9.	If $X = \{4^n - 3n - 1 : n \in is equal to (1) X$	N} and Y = $\{9(n - 1) : n$ (2) Y	∈ N}, where N is the set (3) N	of natural numbers, then X ∪ Y [JEE(Main)2014,(4, – 1), 120] (4) Y – X

Fundamentals of Mathematics Let $f_k(x) = \frac{1}{k} (\sin^k x + \cos^k x)$ where $x \in R$ and $k \ge 1$. Then $f_4(x) - f_6(x)$ equals 10. [JEE(Main)2014,(4, -1), 120] (2) $\frac{1}{12}$ (3) $\frac{1}{6}$ (1) $\frac{1}{4}$ (4) $\frac{1}{2}$ 11. Let A and B be two sets containing four and two elements respectively. Then the number of subsets of the set $A \times B$, each having at least three elements is: [JEE(Main)2015,(4, -1), 120] (2) 256 (4) 510 (1) 219 (3) 275 12. If the angles of elevation of the top of a tower from three collinear points A, B and C, on a line leading to the foot of the tower, are 30° , 45° and 60° respectively, then the ratio, AB : BC , is [JEE(Main)2015,(4, -1), 120] (2) $\sqrt{3}:\sqrt{2}$ (3) 1 : $\sqrt{3}$ (1) $\sqrt{3}$:1 (4) 2 : 3 If $0 \le x < 2\pi$, then the number of real values of x, which satisfy the equation 13.2 $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$, is [JEE Main 2016, (4, -1),120] (3) 9 (1)5(4) 3 (2) 7 If $5(\tan^2 x - \cos^2 x) = 2\cos 2x + 9$, then the value of $\cos 4x$ is : 14. [JEE Main 2017, (4, -1),120] (4) $-\frac{7}{9}$ (1) $\frac{-3}{5}$ (2) $\frac{1}{3}$ (3) $\frac{2}{9}$ 15. Let a vertical tower AB have its end A on the level ground. Let C be the mid-point of AB and P be a point on the ground such that AP = 2AB. If \angle BPC = β , then tan β is equal to [JEE Main 2017, (4, -1),120] $(1) \frac{6}{7}$ (3) $\frac{2}{9}$ (2) $\frac{1}{4}$ (4) $\frac{4}{9}$ Let S = {x \in R : x \ge 0 and 2| \sqrt{x} - 3| + \sqrt{x} (\sqrt{x} - 6) + 6 = 0}. Then S : [JEE Main 2017, (4, -1), 120] 16. (1) contains exactly two elements. (2) contains exactly four elements. (3) is an empty set. (4) contains exactly one element If sum of all the solutions of the equation 8 cosx. $\left(\cos\left(\frac{\pi}{6} + x\right) \cdot \cos\left(\frac{\pi}{6} - x\right) - \frac{1}{2}\right) = 1$ in $[0, \pi]$ is $k\pi$, then k 17. is equal to : [JEE(Main)2018,(4, -1), 120] (3) $\frac{2}{3}$ (2) $\frac{20}{9}$ (4) $\frac{13}{2}$ (1) $\frac{8}{9}$ PQR is a triangular park with PQ = PR = 200 m. A T.V. tower stands at the mid-point of QR. If the 18. angles of elevation of the top of the tower at P, Q and R are respectively 45°, 30° and 30°, then the [JEE(Main)2018,(4, -1), 120] height of the tower (in m) is : (2) 50√2 (1) 100 √3 (3) 100 (4) 50 Let S = {x \in R : x \ge 0 and 2| \sqrt{x} - 3| + \sqrt{x} (\sqrt{x} - 6) + 6 = 0}. Then S : [JEE(Main)2018,(4, -1), 120] 19. (2) contains exactly four elements. (1) contains exactly two elements. (3) is an empty set. (4) contains exactly one element

In a class 140 students numbered 1 to 140, all even numbered students opted Mathematics course, those whose number is divisible by 3 opted Physics course and those whose number is divisible 5 opted Chemistry course. Then the number of student who did not opt for any of the three courses is :
 [JEE(Main) 2019, Online (10-01-19),P-1 (4, -1), 120]
 (1) 38
 (2) 42
 (3) 102
 (4) 1

21. The sum of all values of $\theta \in \left(0, \frac{\pi}{2}\right)$ satisfying $\sin^2 2\theta + \cos^4 2\theta = \frac{3}{4}$ is :

[JEE(Main) 2019, Online (10-01-19), P-1 (4, -1), 120]

- (1) π (2) $\frac{\pi}{2}$ (3) $\frac{3\pi}{8}$ (4) $\frac{5\pi}{4}$
- 22. The value of $\cos \frac{\pi}{2^2} \cdot \cos \frac{\pi}{2^3} \cdot \dots \cdot \cos \frac{\pi}{2^{10}} \cdot \sin \frac{\pi}{2^{10}}$ is : [JEE(Main) 2019, Online (10-01-19), P-2 (4, -1), 120] (1) $\frac{1}{1024}$ (2) $\frac{1}{2}$ (3) $\frac{1}{512}$ (4) $\frac{1}{256}$ 23. If $\sin^4 \theta + 4\cos^4 \beta + 2 = 4\sqrt{2} \sin \alpha \cos \beta$; $\alpha, \beta \in [0, \pi]$, then $\cos(\alpha + \beta) - \cos(\alpha - \beta)$ is equal to [JEE(Main) 2019, Online (12-01-19), P-2 (4, -1), 120]
 - (1) $-\sqrt{2}$ (2) 0 (3) $\sqrt{2}$ (4) -1

(iii)

E-10. (i)

Section (F) :

F-1.	(i)	(5, ∞)	(ii)	(5,7]	(iii)	R	(iv)	x ∈ ¢	(V)	(–∞,2)	∪ (8 , ∞)	
	(vi)	(-∞,-2)	(vii)	$X \in \left(0, \frac{1}{3}\right]$	(viii) x	∈ (-∞,-4	$\left(1, \frac{1}{2}\right)$	8 7	(ix) x ∈	[-1,2)		
F-2.	(i)	1		(ii) 2			(iii)	1				
	(iv)	-72		(v) 7 + $\frac{1}{19}$	1 96		(vi)	0				
F-3.	(i) $\frac{1}{a} + \frac{1}{3}$	4 3b		(ii) $\frac{1}{2}\left(\frac{2b+1-}{2b+4a}\right)$	$\left(\frac{a}{a}\right)$							
F-5	(i)	3	(ii)	5	(iii)	± 3		(iv)	3			
F-6.	(i)	0	(ii)	10, 10 ⁻⁴	(iii)	10, 10-	-9/2	(iv)	10, 3/2		(v)	1
F-7	(i) $\left(\frac{1}{3}, 2\right)$	2)	(ii) $\left[\frac{1}{2}, \frac{1}{2}\right]$	4]	(iii) [2,∝	ю)		(iv) (–∞	, –2] ∪	[2, ∞)		
F-8.	(i) $\left(\frac{1}{3^{3/2}}\right)$	$\overline{2},\infty$		(ii) [log ₃ 9/10,	2) (iii) (5,	∞)		(iv) (2,∘	0)			
F-9	(i) R		(ii) (0, le	og ₃ 3)								
Sectio	on (G)			2								
G-1.	(i) x ∈	$\left(\frac{1}{2},1\right)$	(ii) 2	(iii) $x \in \bigcup_{n \in I} \left\{ n + \right\}$	$-\frac{1}{3}, n+\frac{1}{2}$	>	(iv) x ∈	[1,2)				
G-2	(i) x ∈¢		(ii) {0}	(iii) {0,2/5, -1/	5}							
G-3.	(i) no so	olution	(ii) –1, -	$-\frac{1}{2}$	(iii) 0,1		_					
G-4.	(i) x ∈ (–∞,0)		(ii) $x \in \left(\frac{-1}{2}, 1\right)$		(iii) x ∈	$\bigcup_{n\in I} \left[n, n \right]$	$+\frac{1}{2}$				
G-5	(i) x ∈ F	२	(ii)x ∈ (·	–2, 4) (iii) (1	, 2) ∪ (2,	3) ∪ (3,	4)	G-6	(i) 2	(ii) 2		

Section (H) :

H-1. (i)
$$\frac{\pi}{3}, \frac{-\pi}{3}$$
 (ii) $0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9}$ (iii) $\frac{\pi}{6}$

H-2.	(i) $x = \frac{n\pi}{4}$ or $x = m\pi \pm \frac{\pi}{6}$ where	m,n∈l
	(ii) x = (2n+1) $\frac{\pi}{10}$ where $n \in I$	
	(iii) x = m π , m \in I	
H-3.	(i) $x \in \bigcup_{n \in I} \left(\frac{\pi}{6} + 2n\pi, \frac{5\pi}{6} + 2n\pi\right)$	(ii) $x \in \bigcup_{n \in I} \left[\frac{-\pi}{2} + 2n\pi, \frac{-\pi}{3} + 2n\pi \right] \cup \left[\frac{\pi}{3} + 2n\pi, \frac{\pi}{2} + 2n\pi \right]$
	(iii) $x \in \bigcup_{n \in I} [-\frac{\pi}{6} + 2n\pi, 2n\pi + \frac{\pi}{2}]$	(iv) $x \in R$ (v) $x \in \bigcup_{n \in I} \left(-\frac{\pi}{2} + 2n\pi, -\frac{\pi}{3} + 2n\pi \right) \cup \left(\frac{\pi}{3} + 2n\pi, \frac{\pi}{2} + 2n\pi \right)$
H-4	(i) 11 (ii) 6	H-5. $y = \frac{1}{2}$ and $x = n\pi$, where $n \in I$

	EXERCISE # 2													
1.	(A)	2.	(D)	3.	(A)	4.	(D)	5.	(C)	6.	(B)	7.	(A)	
8.	(B)	9.	(C)	10.	(C)	11.	(C)	12.	(B)	13.*	(AD)	14.	(C)	
15.	(A)	16.	(C)	17.	(B)	18.	(A)	19.	(D)	20.	(C)	21*.	(B)	
22.	(C)	23.	(A)	24.	(A)	25.	(A)	26.	(C)	27.	(D)	28.	(C)	
29.	(B)	30.	(B)	31.	(A)	32.	(D)	33.	(C)	34.	(B)	35.	(D)	
36.	(D)	37.	(D)	38.	(A)	39.	(C)	40.*	(CD)	41. *	(BC)	42.	(C)	
43.	(C)	44. *	(BC)	45.	(B)	46.	(A)	47.	(D)	48.	(C)	49.	(A)	
50.	(B)													

FΧ	F	R	CI	S	F	#	3
_/\		•	\sim	_		П	U

PART-I

1.*	(AB)	2*.	(CD)	3.	2	4.	(n = 7)	5.	3	6.	(C)	7.	(D)
8.*	(ACD)	9.	(4)	10.*	(ABC)	11.	(D)	12.	8	13.	(C)	14.	(C)
15.	(C)	16.	(BC)/ B	ONUS		17.	(8)						
	PART-II												
1.	(2)	2.	(2)	3.	(1)	4.	(1)	5.	(2)	6.	(2)	7.	(3)
8.	(2)	9.	(2)	10.	(2)	11.	(1)	12.	(1)	13.	(2)	14.	(4)
15.	(3)	16.	(1)	17.	(4)	18.	(3)	19.	(1)	20.	(1)	21.	(2)
22.	(3)	23.	(1)										