Exercise-1

> Marked questions are recommended for Revision.

PART - I : SUBJECTIVE QUESTIONS

Section (A) : Preparation of carbonyl compounds

A-1. Write the products of following reactions

(a)
$$2CH_{3}COOH \xrightarrow{Ca(OH)_{2}}{\Delta}$$
 (b) $PhCN + CH_{3}MgBr \xrightarrow{Ether}$
(c) $CH_{3} - C = C - CH_{3} \xrightarrow{O_{3}/Zn}$ (d) $O_{2} \xrightarrow{CrO_{2}Cl_{2}/CS_{2}}$

Section (B) : Nucleophilic addition reactions

B-1. Write the product of the following reaction

B-2. (a) Cis-1,2-Cyclopentanediol reacts with acetone in the presence of dry HCl to yield compound K, C₈H₁₄O₂, which is resistant to boiling alkali, but which is readily converted into the starting material by aqueous acids. What is structure of K ?

(b) Trans-1,2-Cyclopentanediol does not form an analogous compound. Explain why ?

B-3. Arrange the following compounds in decreasing orders of nucleophilic addition with semicarbazide $NH_2NHCONH_2$ i.e., $NH_2 - Z$:

(III)

H₂O

B-4. ► How the following conversions takes place?(a) Acetophenone → Acetophenone cyanohydrin

B-5. Give the structure of the carbonyl compound and amine used to form the following imines.

Section (C) : Condensation reactions

- C-1. Predict the product of following aldol condensation reaction :
 - (a) CH₃–CH₂–CHO $\xrightarrow{OH^{-}/\Delta}$ (b) Ph–CO–CH₃ $\xrightarrow{OH^{-}/\Delta}$
- C-2. Indicate the starting aldehyde or ketone from which each of the following compounds are formed by an aldol condensation reaction.
 (a) 2-Ethyl-3-hydroxy hexanal
 (b) 4-Hydroxy-4-methyl-2-pentanone
- C-3. Predict the products of following cross condensation reactions.

→

C-4. Predict the product from claisen condensation of the following pair of esters.

$$\begin{array}{cccc} \mathsf{Ph-CH}_2-\mathsf{C}-\mathsf{OCH}_3 + \mathsf{Ph-C}-\mathsf{OCH}_3 & \underline{\mathsf{EtO}^{\Theta}}\\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

C-5. Predict the product for each of the following reactions.

C-6. Predict the product for each of the following reactions.

Section (D) : Cannizzaro's reactions

D-1.>>> Identify the products in the following disproportionation reaction and also mention rate determining step.

$$2 H-C=O + OH \longrightarrow Acidsalt + Alcohol (Q)$$

- **D-2.** $\begin{array}{c} CH_3 C H + H C H \xrightarrow{OH^-} \\ \parallel \\ O \\ \end{array} \xrightarrow{O} \\ (1 \text{ eq.}) \quad \text{excess} \end{array} Product$
- D-3. Write the product of the following reaction, CHO CDO

D-4. PhCOCHBr₂
$$\xrightarrow{OH^{-}(2eq.)} A \xrightarrow{OH^{-}} B \xrightarrow{H^{+}} C$$

The compound 'C' is :

D-5. Glyoxal (CHOCHO) on being heated with concentrated NaOH forms.

Section (E) : Redox reactions

E-1. Write the product of following reaction :

Section (F) : α -Halogenation, haloform, α -deuteration reactions

F-1.> Write the product of following reaction,

(a)
$$CH_3-CH_2-OH \xrightarrow{l_2/KOH}$$
 (b) $Ph-CH_2-CO-CH_3 \xrightarrow{l_2/KOH}$
(c) $CH_3-CH-Ph \xrightarrow{l_2/KOH}$
OH

Section (G) : Carboxylic acid (Preparation Methods)

G-1. In the following reactions products X & Y are

G-2. A benzenoid compound $D(C_8H_{10}O)$ upon treatment with alkaline solution of iodine gives a yellow precipitate. The filtrate on acidification gives a white solid E ($C_7H_6O_2$). Write the structures of D.E and explain the formation of E.

Section (H) : Carboxylic acid (Chemical Properties)

H-1. The product P of the following reaction is

 $\mathsf{CH}_{3}\text{-}\mathsf{COOH} \xrightarrow{\mathsf{LiAIH}_{4}} \xrightarrow{\mathsf{SOCI}_{2}} \xrightarrow{\mathsf{KCN}} \xrightarrow{\mathsf{H}_{3}\mathsf{O}^{\oplus}} \mathsf{P}$

H-2. A $CH_3COOH \xrightarrow{(i) PCI_3 + CI_2(excess)} (X) \xrightarrow{SOCI_2} (Y) \xrightarrow{H_2 / Pd / BaSO_4} (Z) \xrightarrow{OH} W + S$

Write the structure of X, Y, Z, W and S.

H-3. The product (X) for the following conversion reaction is :

 $\underbrace{\bigcirc}_{\text{COOH}} \xrightarrow{\text{LiAIH}_4} \underbrace{\xrightarrow{\text{SOCI}_2}}_{(i) \text{ KCN}} \underbrace{\xrightarrow{\text{Ca(OH)}_2}}_{(ii) \text{ H}_3\text{O}^+} \xrightarrow{\text{Ca(OH)}_2}_{\Delta} (X)$

Section (I) : Acid Derivatives (Acid Halide, Ester, Anhydride & Amide)

I-1. Give the product of each of the following reactions : phthalic acid + NH₃ \longrightarrow D $\xrightarrow{300^{\circ}C}$ E ,

I-2. Predict the products of the following reactions.

phthalic anhydride

PART - II : ONLY ONE OPTION CORRECT TYPE

Section (A) : Preparation of carbonyl compounds

B-3. Write the product of following reaction :

B-4. $CH_3 - C - H \xrightarrow{D_2O^{18}} CH_3 - C - H \xrightarrow{D_2O^{18}} CH_3 - C - H \xrightarrow{H_3O} CH_3 - C - H$

Given the following reaction intermediate is :

Section (C) : Condensation reactions

- **C-1.** (X) is the product of cross aldol condensation between benzaldehyde (C₆H₅CHO) and acetone. What is its structure ?
 - (A) C_6H_5 -CH=CH-C-CH₃ (C) C_6H_5 -CO-CH₂-C=(CH₃)₂

(B) C_6H_5 –CH=C–(CH₃)₂ (D) None of these

C-2. What is the principal product of the follwoing reaction ?

Section (D) : Cannizzaro's reactions

D-1. In the reaction, $(CH_3)_3CCHO + HCHO \xrightarrow{\text{NaOH}} A + B.$

the products (A) and (B) are respectively :

- (A) $(CH_3)_3CCH_2OH$ and $HCOO^-$ Na⁺. (C) $(CH_3)_3CCH_2OH$ and CH_3OH .
- (B) $(CH_3)_3CCOONa$ and CH_3OH .
- (D) $(CH_3)_3COONa$ and $HCOO^-Na^+$.

Carbo	nyl Compounds (Aldehydes & Ketones) & Co	arboxylic Acids / — — — — — — — — — — — — — — — — — —					
G-4.	In which of the following reaction the final product is neither an acid nor an acid salt.						
	(A) Ph–CHO	(B) CH ₃ –CH ₂ –OH $\xrightarrow{\text{KMnO}_4/\overline{O}\text{H}}$					
	(C) Ph–CHO $$ Fehling solution \rightarrow	(D) Ph–CH ₂ –OH $\xrightarrow{K_2Cr_2O_7/H^+}$					
Section (H) : Carboxylic acid (Chemical Properties)							
H-1.	•1. Formic acid can be distinguish from acetic acid because formic acid :						
	(A) release H ₂ with sodium (C) reduces ammonical AgNO ₃	(B) gives ester with alcohol (D) turns red litmus to blue					
H-2.a	Sodium bicarbonate reacts with salicylic acid to	form:					
	OH	ONa ONa					
	(A) C ₆ H ₅ ONa (B)	(C) (D) (D) (D)					
H-3.	Which of the following will not undergo Hell-Voll (A) HCOOH (B) CH ₃ COOH	hard Zelinsky (HVZ) reaction ? (C) CH ₃ CH ₂ COOH (D) CH ₃ CHBrCOOH.					
H-4.	$CH_{3}-CH_{2}-CH_{2}-COOH \xrightarrow{\text{Red P} + Br_{2}} CH_{3} - CH_{2} - CH - COOH \xrightarrow{ }_{Br}$						
	This reaction is called (A) Cannizzaro reaction	(B) Aldol condensation reaction					
	(C) Hell Volhard Zelinsky reaction	(D) Reimer tiemann reaction					
H-5.	What product is formed when acetic acid heater(A) Acetyl chloride(B) Acetate ester	d with P₂O₅ . (C) Acetic anhydride (D) Acetaldehyde					
H-6.	Which of the following will not yield a cyclic compound on heating :						
	(A) CH ₂ COOH $CH_2 - COOH$						
	$COOH$ $CH_2 - COOH$	COOH					
H-7.	The reaction : RCOOAg + Br ₂ $\xrightarrow{CCl_4, \text{ Reflux}}$ R–Br +AgBr + CO ₂ is called						
	(A) Wurtz reaction(C) Friedel-Crafts reaction	(B) Hunsdiecker bromo decarboxylation reaction(D) Kolbe's reaction					
H-8.	RCOOH \longrightarrow RCH ₂ COOH. This conversion is k (A) Arndt-Eistert reaction	nown as reaction : (B) Hunsdicker reaction					
	(C) HVZ reaction	(D) Cannizaro reaction					
Section	on (I) : Acid Derivatives (Acid Halide,	Ester, Anhydride & Amide)					
I-1.æ	Acetic anhydride is prepared in the laboratory b (A) ethyl chloride (B) acetyl chloride	y heating sodium acetate with (C) conc. H ₂ SO ₄ (D) zinc dust					
I-2.æ	A compound with molecular formula $C_4H_{10}O_4$ on acylation with acetic anhydride gives a compound with molecular formula $C_{12}H_{18}O_8$. How many hydroxyl groups are present in the compound ? (A) one (B) Two (C) Three (D) Four						

PART - III : MATCH THE COLUMN

1.2

Match the column :

2. Match the column :

	Column-I		Column-II
	(Reaction)		(Reactions involved)
(A)	$ \begin{array}{c} O \\ = \\ C_2H_5 - C - OH \xrightarrow{C_2H_5O} \end{array} $	(p)	Hydrolysis
(B)	$\overset{O}{\underset{\mathbb{Z}_{2}H_{5}-C-OH}{\oplus}} \xrightarrow{\oplus} C_{2}H_{5}OH/H \xrightarrow{\oplus}$	(q)	Esterification
(C)	$ \begin{array}{c} O \\ \parallel \\ C_2H_5 - C - OC_2H_5 \xrightarrow{\oplus} H_3O \xrightarrow{\oplus} \end{array} $	(r)	Saponification
(D)	$ \begin{array}{c} O \\ \parallel \\ C_2H_5 - C - OC_2H_5 \xrightarrow{\Theta} OH \end{array} $	(s)	Acid base reaction

Exercise-2

The products (A) and (B) are, respectively :

5. In the given reaction sequence B is

(A) LiAlH₄

(B) Na / C₂H₅OH

(C) H₂ / Ni

(D) $CH_2 = O/\overline{O}H$

The incorrect statement is

- (A) Total five alknes are obtained.
- (B) Total six different carbonyl compounds are obtained on ozonolysis.
- (C) All carbonyl compounds can give aldol reaction when treated with dil KOH.
- (D) Only two carbonyl compounds give positive iodoform test.

PART - IV : COMPREHENSION

Read the following passage carefully and answer the questions.

Comprehension # 1

Aldehydes and Ketones reacts with NH₂OH to form Aldoximes and Ketoximes respectively. Configuration of these can be determined by Beckmann rearrangement as that group migrates which is anti w.r.t –OH.

$$\begin{array}{c} R' \\ R' \\ R' \\ \end{array} \xrightarrow{H^{\oplus}} C = N \xrightarrow{R'} C = N \xrightarrow{O} R' \xrightarrow{$$

Comprehension # 2

Carbonyl compound which contains α -H gives aldol condenation reaction in presence of alkaline medium. The reaction between two molecules of acetaldehyde take place as follows in presence of base.

$$\begin{array}{cccc} CH_{3}-C-H & \underbrace{\ddot{O}H} & \dot{C}H_{2}-C-H & \longleftrightarrow & CH_{2}=CH \\ & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

4. Aldol condensation reaction is given by (A) C_6H_5 -CHO (B) CX_3 - CHO (C) O_2N -CHO (D) C_6H_5 -CH₂-CHO

5.
(A)
$$Ph - CH = CH - (CH_2)_5 - CHO$$

(B) $Ph - (CH_2)_5 - CH = CH - CHO$
(C) $Ph - CH = CH - (CH_2)_4 - CHO$
(D) $Ph - CH = CH - (CH_2)_4 - CHO$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 - CH_3$
(D) $Ph - CH = CH - (CH_2)_4 -$

(A) 2,5-diketone

(C) 2,6 and 2,8-diketone

(B) 2,7-diketone(D) All of these

Comprehension # 3

The conversion of aldehyde having no alpha hydrogen to a mixture of carboxylic acid and primary alcohol is known as cannizzaro reaction. The most important feature of this reaction is the conjugate base of hydrate of aldehyde.

Comprehension # 5

Answer Q.12, Q.13 and Q.14 by appropriately matching the information given in the three columns of the following table.

Column-1, 2 & 3 containing reactions, intermediate/mechanism & product on completion respectively.						
Column-1		Column-2		Column-3		
(I)	$ \begin{array}{c} O \\ II \\ H - C - H + OH^{-} \xrightarrow{\Delta} \end{array} $	(i)	Hydride shift	(P)	Product with same no. of carbon as it is an reactant.	
(11)	$ \begin{array}{c} O\\ II\\ CH_3 - C - H + OH^- \longrightarrow \end{array} $	(ii)	Carbanion	(Q)	Product with lesser no. of carbon than reactant.	
(111)	$ \begin{array}{c} O \\ \\ CH_3 - C - H + I_2 / OH^- \longrightarrow \end{array} $	(iii)	Enolate anion	(R)	Product with greater no. of carbon than reactant.	
(IV)	$ \begin{array}{c} O\\ \\ CH_3 - C - O - CH_3 + OH^- \longrightarrow \end{array} $	(iv)	sp ³ hybrid intermediate	(S)	Product shows stereoisomerism.	

12.	Which of the given combination is correct ?						
	(A) (I) (i) (Q)	(B) (II) (ii) (P)	(C) (III) (iii) (S)	(D) (IV) (iv) (Q)			
13.	In which of the following combination, β -hydroxy carbonyl is obtained ?						
	(A) (I) (i) (P)	(B) (II) (ii) (S)	(C) (III) (ii) (P)	(D) (IV) (ii) (Q)			

10. Cyclohexene on ozonolysis followed by reaction with zinc dust and water gives compound E. Compound E on further treatment with aqueous KOH yields compound F. Compound F is :

Comprehension #1

A tetriary alcohol H upon acid catalysed dehydration gives a product I. Ozonolysis of I leads to compounds J and K. Compound J upon reaction with KOH gives benzyl alcohol and compound L, whereas K on reaction with KOH gives only M.

(C) Photoch₃, Photoch₂CHO and CH₃COC

(D) PhCHO, PhCOCH₃ and PhCOO⁻K⁺

Comprehension # 2

A carbonyl compound **P**, which gives positive iodoform test, undergoes reaction with MeMgBr followed by dehydration to give an olefin **Q**. Ozonolysis of **Q** leads to a dicarbonyl compound **R**, which undergoes intramolecular aldol reaction to give predominantly **S**.

14. The structure of the carbonyl compound **P** is :

[JEE 2009, 4/160]

[JEE 2009, 4/160]

Me

(C)

15. The structures of the products **Q** and **R**, respectively, are :

16. The structure of the product **S** is :

17. Match each of the compounds given in **Column I** with the reaction(s), that they can undergo, given in column II. [JEE-2009, 8/160]

18. In the scheme given below, the total number of intramolecular aldol condensation products formed from 'Y' is: [JEE 2010, 3/163]

$$\underbrace{1. O_3}{2. Zn, H_2O} Y \xrightarrow{1. NaOH(aq)}{2. heat}$$

Comprehension # 3

Two aliphatic aldehydes P and Q react in the presence of aqueous K₂CO₃ to give compound R, which upon treatment with HCN provides compound S. On acidification and heating, S gives the product shown below :

The compounds P and Q respectively are : [JEE 2010, 3/163] 19. CH₃ CH. (B) H and (A) H₂C and H₃C H₃C CH H₃C CH H₃C (C) and (D) and ĊH, ĊH,

CARBOXYLIC ACID & DERIVATIVES

33. There is a solution of p-hydroxy benzoic acid and p-amino benzoic acid. Discuss one method by which we can separate them and also write down the confirmatory test of the functional groups present.

[JEE-2003, 4/60]

40. The major product H in the given reaction sequence is [IIT-JEE 2012, 3/136] $\xrightarrow{\Theta}$ CN G $\xrightarrow{95\%}$ H₂SO₄ \rightarrow H CH₃-CH₂-CO-CH₃-Heat (A) CH₃-CH=C-COOH (B) CH_3 -CH= ĊΗ ĊH соон (D) CH₃-CH=C-CO-NH₂ $(C) CH_{a}-CH_{a}$ The total number of carboxylic acid groups in the product P is : 41. [JEE(Advanced)-2013, 4/120] $\xrightarrow{1. H_3O^{\dagger}, \Delta} P$ \cap 3. H₂O₂ \cap Answer Q.42, Q.43 and Q.44 by appropriately matching the information given in the three columns of the following table. Columns 1, 2 and 3 contain starting materials, reaction conditions, and type of reactions, respectively. Column 1 Column 2 Column 3 (I) Toluene (i) NaOH/Br₂ (P) Condensation (II) Acetophenone (ii) Br_2/hv (Q) Carboxvlation (R) Substitution (III) Benzaldehyde (iii) (CH₃CO)₂O/CH₃COOK (IV) Phenol (iv) NaOH/CO₂ (S) Haloform 42. The only CORRECT combination in which the reaction proceeds through radical mechanism is : [JEE(Adv.)-2017, 3/122] (A) (IV) (i) (Q) (B) (III) (ii) (P) (C) (II) (iii) (R) (D) (I) (ii) (R) 43. For the synthesis of benzoic acid, the only CORRECT combination is : [JEE(Adv.)-2017, 3/122] (A) (II) (i) (S) (B) (I) (iv) (Q) (C) (IV) (ii) (P) (D) (III) (iv) (R)

44.The only CORRECT combination that gives two different carboxylic acids is : [JEE(Adv.)-2017, 3/122](A) (IV) (iii) (Q)(B) (II) (iv) (R)(C) (I) (i) (S)(D) (III) (iii) (P)

Comprehension # 5

Treatment of benzene with CO/HCI in the presence of anhydrous AlCl₃/CuCl followed by reaction with Ac₂O/NaOAc gives compound **X** as the major product. Compound **X** upon reaction with Br₂/Na₂CO₃, followed by heating at 473 K with moist KOH furnishes **Y** as the major product. Reaction of **X** with H₂/Pd-C, followed by H₃PO₄ treatment gives **Z** as the major product.

45. The compound **Y** is

[JEE(Advanced)-2018, 3/120]

Comprehension # 6

An organic acid **P** (C₁₁H₁₂O₂) can easily be oxidized to a dibasic acid which reacts with ethyleneglycol to produce a polymer Dacron. Upon ozonolysis, **P** gives an aliphatic ketone as one of the products. **P** undergoes the following reaction sequences to furnish **R** *via* **Q**. The compound **P** also undergoes another set of reactions to produce **S**.

Carbonyl Compounds (Aldehydes & Ketones) & Carboxylic Acids 5. In Cannizzaro reaction given below [AIEEE-2009, 4/144] 2Ph CHO $\xrightarrow{:^{\circ}H}$ PhCH₂OH + PhCO₂ $\overset{\Theta}{\rightarrow}$ the slowest step is : (1) the transfer of hydride to the carbonyl group (2) the abstraction of proton from the carboxylic group (4) the attack of : $\ddot{O}H$ at the carboxyl group (3) the deprotonation of PhCH₂OH 6. Trichloroacetaldehyde was subjected to Cannizzaro's reaction by using NaOH. The mixture of the products contains sodium trichloroacetate ion and another compound. The other compound is : [AIEEE 2011, 4/120] (1) 2, 2, 2–Trichloroethanol (2) Trichloromethanol (3) 2, 2, 2–Trichloropropanol (4) Chloroform 7. Ozonolysis of an organic compound 'A' produces acetone and propionaldehyde in equimolar mixture. Identify 'A' from the following compounds : [AIEEE 2011, 4/120] (2) 2-Pentene (1) 1-Pentene (3) 2-Methyl-2-pentene (4) 2-Methyl-1-pentene 8. lodoform can be prepared from all except : [AIEEE 2012, 4/120] (1) Ethyl methyl ketone (2) Isopropyl alcohol (3) 3-Methyl-2-butanone (4) Isobutyl alcohol **CARBOXYLIC ACID & DERIVATIVES** 9. On vigorous oxidation by permangnate solution $(CH_3)_2C = CHCH_2CHO$ gives [AIEEE-2002, 3/225] (1) (CH₃)₂CO and OHCCH₂CHO (2) $(CH_3)_2C - CHCH_2CHO$ ÓH ÓH (3) (CH₃)₂CO and OHCCH₂COOH (4) (CH₃)₂CO and CH₂(COOH)₂ 10. End product of the following reaction is : [AIEEE-2002, 3/225] alcoholic KOH Cl_2 CH₃CH₂COOH red F (2) CH_2CH_2COOH (3) $CH_2 = CHCOOH$ (1) $CH_3CHCOOH$ (4) CH₂CHCOOH CL OH OH OH 11. p-cresol reacts with chloroform in alkaline medium to give the compound A which adds hydrogen cyanide to form, the compound B. The latter on acidic hydrolysis gives chiral carboxylic acid. The structure of the carboxylic acid is : [AIEEE-2005, 4¹/₂/225] CH₃ CH₂COOH (1) CH₂COOH OH OH CH₃ CH₃ CH(OH)COOH (3) CH(OH)COOH OH OH An organic compound having molecular mass 60 is found to be contain C = 20%, H = 6.67% and 12. N = 46.67% while rest is oxygen. On heating it gives NH_3 along with a solid residue. The solid residue give violet colour with alkaline copper sulphate solution. The compound is : [AIEEE-2005, 4½/225] (2) (NH₂)₂CO (3) CH₃CONH₂ (1) $CH_3CH_2CONH_2$ (4) CH₃NCO A liquid was mixed with ethanol and a drop of concentrated H₂SO₄ was added. A compound with a 13. fruity smell was formed. The liquid was : [AIEEE-2009, 4/144] (1) HCHO (2) CH_3COCH_3 (3) CH₃COOH (4) CH₃OH

- 14. A compound with molecular mass 180 is acylated with CH₃COCI to get a compound with molecular mass 390. The number of amino groups present per molecule of the former compound is : [JEE(Main)-2013, 4/120]
 - (1) 2

(2)5

- (3) 4
- (4) 6
- 15. Compound (A), C₈H₉Br, gives a white precipitate when warmed with alcoholic AgNO₃. Oxidation of (A) gives an acid (B), $C_8H_6O_4$. (B) easily forms anhydride on heating. Identify the compound (A). [JEE(Main)-2013. 4/120]

CH₂Br

CH₂Br CH.

JEE(MAIN) ONLINE PROBLEMS

ALDEHYDES & KETONES

- Which one of the following reactions will not result in the formation of carbonation bond ? 1 [JEE(Main) 2014 Online (09-04-14), 4/120]
 - (1) Reimer-Tieman reaction
 - (3) Wurtz reaction
- 2. Tischenko reaction is a modification of (1) Aldol condensation
 - (3) Cannizzaro reaction

(2) Friedel Craft's acylation (4) Cannizzaro reaction

[JEE(Main) 2014 Online (11-04-14), 4/120]

- (2) Claisen condensation
- (4) Pinacol-pinacolone reaction
- 3. A compound A with molecular formula $C_{10}H_{13}CI$ give a white precipitate on adding silver nitrate solution. A on reacting with alcoholic KOH gives compound B as the main product. B on ozonolysis gives C and D. C gives Cannizaro reaction but not aldol condensation. D gives aldol condensation but not Cannizaro reaction. A is : [JEE(Main) 2015 Online (10-04-15), 4/120] (2) $C_6H_5 - CH_2 - CH_2 - CH - CH_3$

(1)
$$C_6H_5$$
-- CH_2 -

$$C_{6}H_{5}-CH_{2}-C < CH_{3}$$

4. In the reaction sequence 2CH₃CHO $\xrightarrow{\text{OH}^-}$ A $\xrightarrow{\Delta}$ B; the product B is :

(1) CH₃-CH₂-CH₂-CH₂-OH

(3) CH₃-CH₂ -CH₂-CH₃

[JEE(Main) 2015 Online (11-04-15), 4/120] (2) CH₃-CH=CH-CHO 0

5. The correct statement about the synthesis of erythritol $(C(CH_2OH)_4)$ used in the preparation of PETN is: [JEE(Main) 2016 Online (10-04-16), 4/120]

(1) The synthesis requires two aldol condensations and two Cannizzaro reactions.

- (2) Alpha hydrogens of ethanol and methanol are involved in this reaction.
- (3) The synthesis requires four aldol condensations between methanol and ethanol.

(4) The synthesis requires three aldol condensations and one Cannizzaro reaction.

(4

(4) CH_3 —C— CH_2

6. A compound of molecular formula C₈H₈O₂ reacts with acetophenone to form a single cross-aldol product in the presence of base. The same compound on reaction with conc. NaOH forms benzyl alcohol as one of the products. The structure of the compound is :

7. The major product formed in the following reaction is : [JEE(Main) 2019 Online (09-01-19), 4/120] O_{CH_3}

 8. Which is the most suitable reagent for the following transformation? [JEE(Main) 2019 Online (10-01-19), 4/120]
 OH

 $\begin{array}{cccc} CH_{3}-CH=CH-CH_{2}-CH-CH_{3} \longrightarrow CH_{3}-CH=CH-CH_{2}CO_{2}H\\ (1) CrO_{2} CI_{2}/CS_{2} \\ (3) Tollen's reagent \\ (4) I_{2}/NaOH \end{array}$

9. In the following reactions, products A and B are :

CARBOXYLIC ACID & DERIVATIVES

10. An organic compound A, C5H8O; reacts with H2O, NH3 and CH3COOH as described below, A is : [JEE(Main) 2014 Online (11-04-14), 4/120]

11.

(2) Lactic acid

(1) Pyruvic acid

(3) Butyric acid

(4) Acetic acid

- In the presence of small amount of phosphorous, aliphatic carboxylic acids react with chlorine or 12. bromine to yield a compound in which α -hydrogen has been replaced by halogen. This reaction is [JEE(Main) 2015 Online (10-04-15), 4/120] known as :
 - (1) Wolff-Kishner reaction (3) Rosenmund reaction

- (2) Etard reaction
- (4) Hell-Volhard-Zelinsky reaction

13. Which dicarboxylic acid in presence of a dehydrating agent is least reactive to give an anhydride? [JEE(Main) 2019 Online (10-01-19), 4/120]

14.

In the following reaction Aldehyde + Alcohol \xrightarrow{HCI} Acetal Aldehyde Alcohol HCHO ^tBuOH CH₃CHO MeOH The best combination is : (1) HCHO and ^tBuOH (3) HCHO and MeOH

[JEE(Main) 2019 Online (12-01-19), 4/120]

(2) CH₃CHO and ^tBuOH

(4) CH₃CHO and MeOH

I-2.	(a)	l (b) H	0 Ⅲ ⊢C−NH− { } +	· C₂H₅OI		H – NH₂	(d)	о С-о-о С-он	℃H₃	
				PAF	RT – ΙΙ			0		
A-1.	(A)	A-2.	(A)	A-3.	(C)	A-4.	(A)	B-1.	(B)	
B-2.	(D)	B-3.	(A)	B-4.	(B)	C-1.	(A)	C-2.	(A)	
D-1.	(A)	D-2.	(A)	D-3.	(C)	D-4.	(B)	E-1.	(A)	
E-2.	(B)	F-1.	(D)	F-2.	(D)	G-1.	(A)	G-2.	(D)	
G-3.	(A)	G-4.	(C)	H-1.	(C)	H-2.	(B)	H-3.	(A)	
H-4.	(C)	H-5.	(C)	H-6.	(A)	H-7.	(B)	H-8.	(A)	
I-1.	(B)	I-2.	(D)							
	PART – III									
1.	(A - p,q) ; (B -	p,r) ; (C	- q,s) ; (D - r,s)	2.	(A - s) ; (B -	(A - s) ; (B - q) ; (C - p) ; (D - p, r)				
			E	XER	CISE - 2					
				PA	RT - I					
1.	(B)	2.	(B)	3.	(B)	4.	(D)	5.	(B)	
6.	(B)	7.	(C)	8.	(A)	9.	(D)	10.	(C)	
11.	(A)	12.	(D)	13.	(B)	14.	(A)	15.	(B)	
16.	(C)	17.	(B)	18.	(B)	19.	(C)	20.	(C)	
21.	(C)	22.	(C)	23.	(C)					
				PA	RT - II					
1.	5(1,2,3,5,6)	2.	2	3.	3	4.	9	5.	8	
6.	5 (2,3,4,5,6)									
				ΡΔΕ	ат - III					
1	(BCD)	2	(ABCD)	3		4	(AC)	5	(ABC)	
6.	(ABD)		(1202)	0.	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	()			PAF	RT - IV					
1.	(A)	2.	(B)	3.	(A)	4.	(D)	5.	(D)	
6.	(D)	 7.	(<u>)</u>	8.	(C)	9.	(<u>-</u>) (A)	10.	(C)	
11.	(B)	12.	(_)	13.	(E)	14.	(D)		(-)	
				-	· · /		· /			

