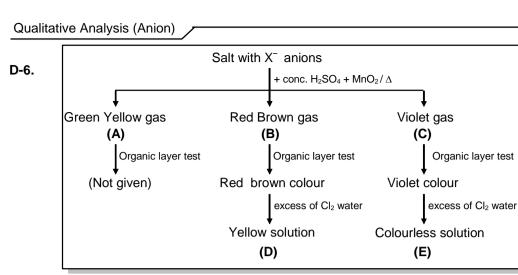
Exercise-1

PART - I : SUBJECTIVE QUESTIONS

Section (A) : Heating in dry test tube

- A-1. What is importance of dry tests and it is applicable to which kind of substances ?
- A-2. Give the observation when each of the following is heated in a dry test tube. Also give balanced equations :
 - (a) $HgCO_3$ (b) NH_4NO_2 (c) $(NH_4CI + NaNO_3)$ mixture (d) $Pb(NO_3)_2$

Section (B) : Flame and borax bead test


- B-1. Why compounds shows colours in flame test?
- B-2. Is intensity of colour in flame test, depends upon the concentration of metal present ?
- B-3. Why is a green flame not obtained in the case of barium sulphate or barium phosphate ?
- **B-4.** Colourless salt (A) $\xrightarrow{\Delta}_{740^{\circ}C}$ (B) + (C) $\xrightarrow{Cu^{2+,\Delta}}$ blue coloured bead (D) Identify the compound (A), (B), (C) and (D).

Section (C) : dil. HCl / dil. H₂SO₄ group

- C-1. Why is sodium carbonate extract acidified before performing the confirmatory test for anions ?
- **C-2.** Can sodium carbonate extract be used test for CO_3^{2-} ions ?
- **C-3.** What will happen if a solution of Ca(HCO₃)₂, formed by passing the carbon dioxide through a milky solution of CaCO₃ for a longer time if, ammonia solution is added ?
- C-4. What will happen if bromine water is added in a white precipitate of BaSO₃ ?
- C-5. Salt (A) + lime water → white precipitate ↓ white precipitate + prolong passage of gas (B) → it forms soluble salt (C), gas (B) has burning sulphur smell Identify the anion of salt (A) and (C).
- C-6.> What will happen ? (Also write the chemical equations).
 (a) When a filter paper moistened with potassium iodate and starch solution is brought in contact with sulphur dioxide gas.
 (b) When H₂S gas is made to react with sodium tetrahydroxidoplumbate(II) solution.
 - (c) When sulphite reacts with dilute H_2SO_4 in presence of zinc
- C-7. A nitrite solution is added to a saturated solution of iron(II) acidified with dilute acetic acid or with dilute sulphuric acid. If any reactions occurs then write the name and chemical composition of the products formed. Also write the chemical equations involved.

Section (D) : Conc. H₂SO₄ group

- D-1. Why is it necessary to test for the acid radicals first with dil. H₂SO₄ and then with conc. H₂SO₄?
- D-2. Why chromyl chloride test is carried out in a dry test tube ?
- D-3. Why bromides and iodides do not respond to chromyl chloride test ?
- D-4. NaCl on heating with conc. H₂SO₄ gives HCl where as NaBr and NaI give Br₂ and I₂ respetively, why?
- D-5. Dilute Hydrochloric acid contains chloride ions but it doesnot give positive chromyl chloride test, why?

Identify the gas A, B and C.

- **D-7.** Why heavy metal chlorides such as Hg₂Cl₂, AgCl, PbCl₂ etc. do not respond to chromyl chloride test.
- D-8. Why is a freshly prepared solution of FeSO4 used for the detection of nitrate and nitrite ?

Section (E) : Precipitation Reactions

- E-1. Cu²⁺ and Ba²⁺ interfere in the flame test for borate, why ?
- **E-2.** In which of the following reagents, the white precipitate of PbSO₄ is soluble ? dilute HCI, hot concentrated H₂SO₄, ammonium acetate (6M), ammonium tartrate 6M in the presence of ammonia, sodium hydroxide solution.
- E-3. How will you distinguish between sulphite and sulphate ions?

PART - II : ONLY ONE OPTION CORRECT TYPE

Section (A) : Heating in dry test tube

A-1.	When a metal sulphate sulphate may be :	is heated in dry test tul	be, the colour changes f	from blue to white. Then metal	
	(A) BaSO ₄	(B) CuSO ₄ .5H ₂ O	(C) Na ₂ SO ₄	(D) None of these	
A-2.	Which of the following c (A) NaNO ₃ (s)		one gas (vapour) if heat (C) FeSO4(s)	ed in dry test tube. (D) (NH ₄) ₂ Cr ₂ O ₇ (s)	
A-3.১	again.The salt may be			v and on cooling, turns white	
	(A) PbCO ₃	(B) MgCO ₃	(C) ZnCO₃	(D) K ₂ CO ₃	
A-4.	Which of the following n (A) Na ₂ CO ₃	netal carbonates liberate (B) K ₂ CO ₃	. CO ₂ (g) on heating : (C) Rb ₂ CO ₃	(D) Ag ₂ CO ₃	
A-5. 🕿	In which of the following reactions a brown coloured gas is evolved ?				
	(A) KBr (s) + dil. H ₂ SO ₄		(B) $NH_4NO_2 \xrightarrow{\Lambda}$		
	(C) NaNO ₃ $\xrightarrow{\Delta}_{800^{\circ}C}$		(D) AgNO ₃ (s) + conc. H ₂ SO ₄ \longrightarrow		

Section (B) : Flame and borax bead test

B-1. Why is concentrated HCI used to dissolve the given metal salt in the flame test ?

- (A) strong acids produce better flame test.
- (B) HCl is volatile
- (C) Volatile metal chloride produce better flame test.
- (D) sharper coloured are seen in the flame in presence of CI⁻ ions.

B-2.	The hottest part of the	flame of a Bunsen burne	r is the	
	(A) Blue Zone(C) Zone fo partial con		(B) Zone of complete co(D) All parts of the flam	
B-3.æ	Metal (M) shows crims (A) Li	on red colour in flame tes (B) Mg	t and its halide is delique (C) Ca	escent then metal (M) could be (D) Ba
B-4.	In Borax bead test, me (A) orthoborate ion	tal oxides react with B ₂ O (B) metaborate ion	₃ and form a coloured be (C) double oxide	ad. This bead contains. (D) tetraborate ion
B-5.	Which one of the follow (A) Cr ³⁺	ving ions does not give bo (B) Cu ²⁺	orax bead test : (C) Mn²+	(D) Zn ²⁺
B-6.১	In the Borax bead test (A) B_2O_3	of Co ²⁺ , the blue colour c (B) Co ₃ B ₂	f bead is due to the form (C) Co(BO ₂) ₂	ation of : (D) CoO
B-7.	A salt gives white re represents:	sidue in charcoal cavity	test but in cobalt nitra	ate test it gives pink mass. I
	(A) Zn ⁺²	(B) Al ⁺³	(C) Mg ⁺²	(D) PO ₄ ⁻³
Sectio	on (C) : dil. HCI / di	I. H ₂ SO ₄ group		
C-1.		anions are identified by d (B) NO2 ⁻ , NO3 ⁻ , SO3 ²⁻		(D) CH₃COO⁻, I⁻, CO₃²⁻
C-2.๖	turned lead acetate pa and B respectively are	aper black and B evolved :	a gas which turned lim	evolved a colourless gas whicl e water milky. The anions in <i>I</i>
	(A) SO_3^{2-} , CO_3^{2-}	(B) S ^{2–} , CO ₃ ^{2–}	(C) PO_4^{3-} , HSO_3^{-}	(D) S ^{2–} , NO ₃ [–]
C-3.๖	which of the following	can be present?		odourless gas is produced the
	(A) CO_3^{2-}	(B) S ^{2–}	(C) Cl⁻	(D) NO ₃ ⁻
C-4.	A gas turns lime water (A) HCI	milky and acidified K ₂ Cr ₂ (B) H ₂ S	O ₇ solution green then g (C) SO ₂	as is : (D) CO ₂
C-5.	A gas has smell like ro (A) NO ₂	tten egg and turns lead a (B) H ₂ S	cetate paper black. The (C) CO ₂	gas is : (D) SO ₂
C-6.≽	Yellow ppt↓ ← ^{CdCO₃ susp (S)}	Rotten egg smell (P) Δ dil. H ₂ SO ₄ ension Salt with X ⁻² anion – Sodium Nitrop	(CH₃COO)₂Pb Black ppt √ (Q)	L
		Violet (R)		
	Anion (X^{2–}) is: (A) CO _{3^{2–}}	(B) SO ₃ ^{2–}	(C) S ^{2–}	(D) S ₂ O ₃ ^{2–}
C-7.	The acidic solution of presence of : (A) Sulphite	a salt produces blue co (B) Bromide	lour with KI starch solut (C) Nitrite	ion. The reaction indicates the
C-8.æ		with Na ₂ [Fe(CN) ₅ NO] to f p + 3	. ,	compound (X). In this reaction

Sectio	ative Analysis (Anion)		ad by cone H SO	
D-1.8	(A) NO_3^- , CO_3^{2-}	pair of anions are identifi (B) Cl⁻, NO₃⁻	(C) Br [−] , CO ₃ ^{2−}	(D) CO ₃ ^{2–} , CH ₃ COO [–]
D-2.	Which of the following a (A) Cl⁻ (C) Br⁻	anion behaves in a differ	ent manner than other o (B) I⁻ (D) All behave in a sim	n heating with conc. H₂SO₄? ilar manner
D-3.	Which of the following (A) NaNO3	reagents turns white pred (B) Na₃AsO₃	cipitate of AgCl yellow ? (C) Na ₃ AsO ₄	(D) NaCN
D-4.১	brown vapours are obtaprecipitate. The salt (S)	ained. The vapours wher) contains.	n brought in contact with	n vapours but with conc. H ₂ SO AgNO ₃ solution do not give any
	(A) NO ₂ -	(B) NO ₃ -	(C) I-	(D) Br−
D-5.	When a mixture of solid are obtained. This is due (A) chromous chloride	ue to the formation of :)7 is heated with concen(C) chromic chloride	trated H ₂ SO ₄ , deep red vapours (D) chromic sulphate
D-6.æ	AgCI dissolves in amm (A) Ag ⁺ , NH ₄ ⁺ and Cl ⁻ (C) [Ag ₂ (NH ₃)] ²⁺ and Cl	00	(B) [Ag(NH₃)]⁺ and Cl⁻ (D) [Ag(NH₃)₂]⁺ and Cl⁻	-
D-7.	A mixture upon adding (A) $Cr_2O_7^{2-}$ and CI^-	conc. H ₂ SO ₄ gives deep (B) Br [_] and Cr ₂ O ₇ ^{2–}	red fumes. Mixture may (C) NO ₃ ⁻ and Cl ⁻	r contain the anions pair : (D) CrO4 ^{2–} and NO3 ^{2–}
D-8.	salt may contain :		·	with starch iodide solution. The
	(A) chloride	(B) carbonate	(C) acetate	(D) bromide
D-9.		e action of concentrated		olution but no precipitate with a diberates a suffocating reddish
	(A) Ba(CH ₃ COO) ₂	(B) CaCl ₂	(C) Nal	(D) NaBr
D-10.æ	Which of the following ((A) CO ₂	gas turn starch iodide pa (B) SO ₂	per blue? (C) NO ₂	(D) H ₂ S
D-11.	Nitrate is confirmed by (A) ferrous nitrite (C) ferrous nitrate	ring test. The brown cold	our of the ring is due to fo (B) nitroso ferrous sulp (D) FeSO4 .NO2	
		ning phosphate is heated te is formed. The formula	a of the yellow precipitate	ammonium molybdate solution, a e is : ₃ (D) (NH₄)₃PO₄.(NH₄)₂MO₄
E-2.		ives a yellow precipitate onium hydroxide. The sc (B) I [_]		precipitate dissolves in dil. Nitric (D) SO4 ²⁻
		、 <i>,</i>	· · ·	· · ·
		PART - III : MATO		N

1. Match the anions with the changes observed on qualitative analysis :

	Column-I		Column-II
(A)	SO4 ²⁻	(p)	Canary yellow ppt. with ammonium molybdate.
(B)	NO₃ [_]	(q)	Brown ring test.
(C)	NO ₂ -	(r)	White ppt. with BaCl ₂ solution.
(D)	PO4 ³⁻	(s)	Yellow ppt. with AgNO ₃ solution.
		(t)	White ppt. with AgNO ₃ solution.

2. Match the reagent which are used in qualitative analysis of given anions :

	Column-I		Column-II
(A)	AgNO ₃ solution	(p)	CO32-
(B)	BaCl ₂ solution	(q)	CI-
(C)	Pb(NO ₃) ₂ solution	(r)	S ²⁻
(D)	Acidified KMnO ₄ solution	(S)	NO ₂ -

Exercise-2

 \mathbf{x} Marked questions are recommended for Revision.

PART - I : ONLY ONE OPTION CORRECT TYPE

1.	The compound formed (A) Cu	in the borax bead test of (B) CuBO ₂	Cu ²⁺ ion in oxidising flar (C) Cu(BO ₂) ₂	ne is : (D) None of these
2.	A fire work gave bright (A) Ca	crimson red light. It proba (B) Sr	ably contained a salt of : (C) Ba	(D) Mg
3.	Alkali metal salt "X" give (A) NaCl	es a pale violet colour in (B) LiCl	flame test "X" is : (C) KCl	(D) None of these
4.	Borax bead is responde (A) Alkali metal salt (C) p-block metal salt		(B) Alkaline earth metal (D) d-block metal salt	S
		dil. H₂SO₄ → Colourless ga	as with brick effervescen	ce
5.2	Salt of Anion A		boil Turns black	
	~	Acidic K ₂ Cr ₂ O ₇ Green colour	r	
	Shape of anion A will be (A) Tetrahedral (C) Trigonal pyramidal	e :	(B) Trigonal planer (D) Linear	
6.2			ne gas on treatment with	
	I : SO ₃ ^{2–} (A) I and II only (C) I, II, III and IV	II : HSO₃ [_]	III : S ^{2–} (B) I, II and III only (D) I, III and IV only	IV : CI⁻
7.24	the product in the above (A) FeCl ₃ / dilute HCl, w (B) FeCl ₃ / dilute HCl, w (C) K ₂ Cr ₂ O ₇ / HCl, when	reaction; Nitrite + Acetic e reaction can be identifi when blood red colour ap when blue colour appears n green colour appears. colourless solution is for	ed by : pears. s.	+ HSCN + 2H ₂ O. Formation of
8.2	nitrate solution is adde HNO ₃ . The anion could	d to the solution, a white be :	e precipitate is obtained	s neutral to litmus. When silver which does not dissolve in dil.
	(A) CO ₃ ^{2–}	(B) CI [_]	(C) SO ₃ ^{2–}	(D) S ²⁻
9.2	which is insoluble in co	ncentrated HNO3. Anion	in the salt may be :	BaCl ₂ gives a white precipitate,
	(A) SO ₄ ²⁻	(B) CO ₃ ²⁻	(C) NO ₂ -	(D) S ^{2–}

			Fuse this precipitate on	
			charcoal with Na₂CO₃ and	
	No SO \pm BoCl	→ White precipitate	extract the soluble substar with H_2O	 Aqueous solution.
0.	$\operatorname{Na}_2 \operatorname{SO}_4 + \operatorname{DaOI}_2 =$			
				udd dil H₂SO₄ and eat the solution
				↓ Gas 'G' is evolved
	(A) It turns lead ace(B) It turns acidified		en.	n sodium nitroprusside already made
1.28			O₄ and C₂H₅OH gives	a compound (A) which burns with a
	green edged flame. (A) H ₂ B ₄ O ₇	The compound (A) is : (B) (C ₂ H ₅) ₂ B ₄ O ₇	(C) H ₃ BO ₃	(D) (C ₂ H ₅) ₃ BO ₃
	PART - II :	SINGLE AND D	OUBLE VALUE	INTEGER TYPE
l.xa	How many compour (i) (NH ₄) ₂ SO ₄ (iv) NH ₄ NO ₃	nds liberate NH ₃ on heat (ii) (NH ₄) ₂ CO ₃ (v) (NH ₄) ₂ Cr ₂ O ₇	ting from the following? (iii) NH₄Cl	
2.	How many of followi (i) Na (v) Sr (ix) Be	ng metals impart a char (ii) Li (vi) Mg (x) Ca	acteristic colour to the (iii) K (vii) Rb (xi) Cu	Bunsen flame ? (iv) Ba (viii) Cs
3.	Number of ions whic (i) SO4 ²⁻ (v) NO2 ⁻	ch are identified by dil. H (ii) CO₃²⁻ (vi) NO₃⁻	ICI from the following. (iii) SO ₃ ^{2–} (vii) CH ₃ COO [–]	(iv) HCO₃⁻ (viii) PO₄³⁻
4.		er of acidic radical which (ii) I⁻		
	(v) SO ₃ ²⁻	(vi) HCO_3^-		
j. za		₅NO] —→ "X" (Violet co possible isomers for co		the ambident behaviour of CN⁻ is no
ð.æ		D_7 + Conc. H ₂ SO ₄ \longrightarrow ", rbital are involved in hybrid		es)
7. 20		$_{4}(\text{conc.}) \rightarrow 'X' \text{ (Brown rient of complex 'X' to its respectively)}$		
3.24	How many anions e (i) CO ₃ ^{2–} (v) Br–	volve brownish gas whe (ii) SO ₃ ^{2–} (vi) NO ₃ –	n treated with dil./conc (iii) NO2 (vii) CH₃COO⁻	. HCl ? (iv) Cl⁻
).æ		O ₂ , Na ₂ SO ₃ , NaBr, CH ₃ recipitate is/are obtained		v treated with AgNO₃ solution. In How
0.	BO3 ³⁻ + conc. H ₂ SO	4 + CH ₃ CH ₂ –OH		is responsible for green flame ?

Qualit	ative Analysis (Anion)
11.๖	NaCl (s) $K_2Cr_2O_7 / Conc. H_2SO_4 \qquad Y (g)$
	a = difference in the oxidation number of CI in the product X and product Y, respectively b = total number of atom in X and Y c = total number of lone pair in X then calculate $a + b + c = ?$
	PART - III : ONE OR MORE THAN ONE OPTION CORRECT TYPE
1.	$\begin{array}{llllllllllllllllllllllllllllllllllll$
2.	Which of the following salts release reddish brown gas when heated in a dry test tube?(A) LiNO3(B) KNO3(C) Pb(NO3)2(D) AgNO3
3.2	Which of the following can decompose on heating to give CO2?(A) Li2CO3(B) Na2CO3(C) KHCO3(D) BaCO3
4.	Metals which do not give flame test?(A) Be(B) Li(C) Mg(D) Ba
5. 🕿	In the following diagram bunsen flame the (X) represent. (A) Oxidising zone (B) Reducing zone (C) Lower temperature zone (D) Hottest portion of flame
6.	Metal salts, which respond to Borax bead test? (A) Nickel salts (B) Copper salts (C) Cobalt salts (D) Aluminium salts
7.	Which of the following gases turn lime water milky when passed throught it.(A) SO2(B) CO2(C) HCI(D) H2S
8.2	A (mixture of
	Then A may have : (A) CO32-, Br- (B) Br-, S2- (C) CH3COO-, S2- (D) CH3COO-, SO32-
9.2	S ^{2–} and SO ₃ ^{2–} can be distinguished by : (A) (CH ₃ COO) ₂ Pb (B) Cr_2O7^{2-} / H ⁺ (C) Na ₂ [Fe(CN) ₅ NO] (D) Zn + dil. H ₂ SO ₄ followed by (CH ₃ COO) ₂ Pb
10.	Which statements is/ are correct about sodium nitroprusside test? (A) This test is used for detection of S ^{2–} anion. (B) H ₂ S also gives positive test. (C) Formation of Na ₂ [Fe(H ₂ O) ₅ NOS] complex confirm the presence of S ^{2–} anion. (D) Iron has +2 oxidation state in sodiumthionitroprusside complex.

<u>uuann</u> 11.≿	(A) This test is given b(B) Brown ring test de(C) Brown ring is form	/are correct about Brov by NO ₂ ⁻ , NO ₃ ⁻ anions. spend upon the reductioned due to formation of [brown ring complex is +	- n of NO₂⁻ and NO₃⁻ to Ni Fe(H₂O)₅NO]₂(SO₄)₃	tric oxide.
12.2	Which of the following (A) NaCl	g metal chloride will give (B) KCl	chromyl chloride test ? (C) AgCl	(D) SbCl₃
13.	Which of the following (A) AgCl	y will be completely or p (B) AgBr	artially dissolved in NH₄C (C) AgI	0H ? (D) BaSO₄
14.	Reddish-brown gas is (A) Br⁻	obtained when the follo (B) NO ₂ ⁻	wing are treated with correct $(C) NO_3^-$	nc. H ₂ SO ₄ ? (D) SO ₃ ^{2–}
15.		iodine when the solution	eous solutions of iodide ons are vigorously mixed? (C) Chlorine water	and CHCl₃ separately. Which will ? (D) Bromine water
16.2			(Filtrate) $\xrightarrow{\text{boil}}$ White	ppt↓.
	Anion of (A) could be (A) SO ₃ ^{2−} , HSO ₃ [−]	: (B) CO ₃ ^{2–} , SO ₃ ^{2–}	(C) SO ₃ ^{2–} , HCO ₃ –	(D) None of these
		PART - IV : CO	ect option.	<u> </u>
Read	the following passage rehension # 1 Step	ve more than one corr carefully and answer I Step-II	ect option. the questions. Step-III	
Read	the following passage rehension # 1 Step	ve more than one corr carefully and answer I Step-II	ect option. the questions.	
Read t	the following passage rehension # 1 Step	ve more than one corr carefully and answer I Step-II	ect option. the questions. Step-III C	D
Read t Comp 1.	the following passage rehension # 1 A $\frac{K_2Cr_2}{conc.H_2}$ (chloride salt) $\frac{K_2Cr_2}{conc.H_2}$ 'A' can be : (A) PbCl ₂ In step-III if Pb(CH ₃ CC may be:	ve more than one corr carefully and answer -I Step-II 27 SO ₄ B <u>passed through</u> dil NaOH solution (B) SbCl ₃ DO) ₂ is added without a	ect option. the questions. Step-III C	D (D) RbCl CH₃COOH then possible product
Read f Comp 1. 2.*	the following passage rehension # 1 A $(chloride salt) \frac{K_2 C t_2 C}{conc H_2}$ 'A' can be : (A) PbCl ₂ In step-III if Pb(CH ₃ CC may be: (A) PbCrO ₄	ve more than one corr carefully and answer -I Step-II -I B SO₄ B (B) SbCl ₃	ect option. the questions. Step-III C <u>acidif iedwithCH₃COOH</u> & Pb(CH ₃ COO) ₂ is added (C) SnCl ₂	D (D) RbCl
Read f Comp 1. 2.*	the following passage rehension # 1 A $\frac{K_2Cr_2}{conc.H_2}$ (chloride salt) $\frac{K_2Cr_2}{conc.H_2}$ 'A' can be : (A) PbCl ₂ In step-III if Pb(CH ₃ CC may be:	ve more than one corr carefully and answer -I Step-II D7 SO ₄ B passed through dil NaOH solution (B) SbCl ₃ DO) ₂ is added without a (B) Na ₂ Cr ₂ O ₇	ect option. the questions. Step-III C	 D (D) RbCl CH₃COOH then possible product (D) Na₂PbO₂
Read f Comp 1. 2.*	the following passage rehension # 1 A $(chloride salt) \frac{K_2 C t_2 C}{conc H_2}$ 'A' can be : (A) PbCl ₂ In step-III if Pb(CH ₃ CC may be: (A) PbCrO ₄	ve more than one corr carefully and answer H Step-II $\begin{array}{c} 0_7 \\ SO_4 \end{array}$ B $\xrightarrow{\text{passed through}} \\ \hline dil NaOH solution \end{array}$ (B) SbCl ₃ DO) ₂ is added without a (B) Na ₂ Cr ₂ O ₇ (A) $\overbrace{\text{Conc. HCl}} \\ Gas$ Black $(CH_3COO)_2 pb$ Heat/air	ect option. the questions. Step-III C $\frac{acidif iedwithCH_3COOH}{\& Pb(CH_3COO)_2 is added}$ (C) SnCl ₂ cidifying the solution with (C) Na ₂ CrO ₄ White ppt $dil.H_2SO_4$ (B) + Compound (C)	 D (D) RbCl CH₃COOH then possible product (D) Na₂PbO₂
Read f Comp 1. 2.*	the following passage rehension # 1 Step- A (chloride salt) $\frac{K_2Cr_2C}{conc.H_2}$ 'A' can be : (A) PbCl ₂ In step-III if Pb(CH ₃ CC may be: (A) PbCrO ₄ rehension # 2	ve more than one corr carefully and answer H Step-II $\begin{array}{c} 0_7 \\ SO_4 \end{array}$ B $\xrightarrow{\text{passed through}} \\ \hline dil NaOH solution \end{array}$ (B) SbCl ₃ DO) ₂ is added without a (B) Na ₂ Cr ₂ O ₇ (A) $\overbrace{\text{Conc. HCl}} \\ Gas$ Black $(CH_3COO)_2 pb$ Heat/air	ect option. the questions. Step-III C $\frac{\text{acidif iedwithCH}_{S}COOH}{&Pb(CH}_{S}COO)_{2} \text{ is added}}$ (C) SnCl ₂ cidifying the solution with (C) Na ₂ CrO ₄ White ppt $\int dil.H_{2}SO_{4}$ (B) + Compound (C) (Soluble in hot wat $\frac{K_{2}Cr_{2}O_{7} \text{ solution}}{Solution}$	 D (D) RbCl CH₃COOH then possible product (D) Na₂PbO₂

Comprehension # 3

Answer Q.5, Q.6 and Q.7 by appropriately matching the information given in the three columns of the following table.

In the	In the following three tables, information regarding Qualitative analysis of anion is given						
Col	umn-1		Column-2			Column-3	
(I)	SO32-	(i)	Reaction with AgNO ₃		(P)	Precipitate is obtained	
(II)	C⊢	(ii)	Pungent smelling product with conc. H ₂ SO ₄		(Q)	Product is coloured gas.	
(III)	NO₂ [−]	(iii)	Form X ₂ with K ₂ Cr ₂ O ₇ (s) + conc. H ₂ SO ₄		(R)	Product formed is soluble in excess NH ₃ .	
(IV)	Br⁻	(iv)	Reaction with Pb(NO ₃) ₂ (aq)		(S)	Product gives blue colour with starch iodide solution.	
5.	Select t (A) (I) (y correct option. (B) (II) (ii) (Q) (C)	(I) (ii) (S)	(D) (II) (iii) (Q)	
.	Select t (A) (III)		y incorrect option. (B) (I) (ii) (Q) (C)	(C) (IV) (i) (R)		(D) (IV) (ii) (Q)	
7.			y incorrect option.) (B) (IV) (ii) (S) (C)	(II) (iv)	(P)	(D) (II) (ii) (S)	

Exercise-3

* Marked Questions may have more than one correct option.

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

1. The acidic aqueous solution of Ferrous ion forms a brown complex in the presence of NO₃⁻ by the following two steps : [JEE 1993] $[Fe(H_2O)_6]^{2+} + NO_3^- + H^+ \longrightarrow \dots + [Fe(H_2O)_6]^{3+} + H_2O$

 $[Fe(H_2O)_6]^{2+}$ + + H₂O Complete and balance the equations.

- In nitroprusside ion the iron and NO exist. They exist as Fe^{II} and NO⁺ rather than Fe^{III} and NO. These forms can be differentiated by : [JEE 1998]
 - (A) estimating the concentration of Iron.
 - (B) measuring the concentration of CN.
 - (C) measuring the solid state magnetic moment.
 - (D) thermally decomposing the compound.
- **3. Assertion :** Sulphate is estimated as BaSO₄ and not as MgSO₄.

Reason : Ionic radius of Mg²⁺ is smaller than that of Ba²⁺.

[JEE 1998]

- (A) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (B) Both Assertion and Reason are true but Reason is not correct explanation of Assertion.
- (C) Assertion is true but Reason is false.
- (D) Assertion is false but Reason is true.
- A gas 'X' is passed through water to form a saturated solution. The aqueous solution on treatment with silver nitrate gives a white precipitate. The saturated aqueous solution also dissolves magnesium ribbon with evolution of a colourless gas 'Y'. Identify 'X' and 'Y'?
 [JEE 2002(S), 3/90]
 (A) X = CO₂, Y = Cl₂
 (B) X = Cl₂, Y = CO₂
 (C) X = Cl₂, Y = H₂
 (D) X = H₂, Y = Cl₂

Quali	tative Analysis (Anion)			
5.	[Y] + K ₂ Cr ₂ O ₇ + H ₂ SO [X] and [Y] is :	0	U	[JEE 2003(S), 3/84]
	(A) SO ₃ ^{2–} , SO ₂	(B) Cl⁻, HCl	(C) S ^{2–} , H ₂ S	(D) CO ₃ ^{2–} , CO ₂
6.	A dilute aqueous solu anion of the sodium sa (A) HCO3 ⁻		forms white precipitate (C) NO ₃ -	with MgCl ₂ , only after boiling. The [JEE 2004(S), 3/84] (D) SO4 ²⁻
7.		n solution when CO_2 is	 dissolved in water are : (B) HCO₃⁻, CO₃²⁻ (D) CO₂, H₂CO₃ 	[JEE 2006, 5/184]
8.*	The reagent(s) that ca is(are) (A) CuCl ₂	an selectively precipita (B) BaCl ₂	te S ^{2–} from a mixture of (C) Pb(OOCCH ₃) ₂	S ^{2–} and SO ^{2–} in aqueous solution [JEE(Advanced) 2016, 4/120] (D) Na₂[Fe(CN)₅NO]
	PART - II : JEE	(MAIN) / AIEEE	E PROBLEMS (P	REVIOUS YEARS)
			NLINE PROBLEMS	
1.	Sodium extract is hea	.	HNO3 before testing for h	nalogens because : in) 2016 Online (10-04-16), 4/120]
	(2) Silver halides are t(3) Ag₂S and AgCN at	th halides in acidic me totally insoluble in nitric re soluble in acidic med sent, are decomposed	dium. c acid. dium.	ce do not interfere in the test.
2.		ed to the aforementior	ned solution, a white pre	ch is neutral to litmus. When silver cipitate is obtained which does not 2018 Online (15-04-18), 4/120] (4) CI-
	Answers	;		
		FXFI	RCISE - 1	
			ART - I	
A-1.		rmation in short time a wet analysis may be r		about the presence or absence of
A-2.	(a) HgCO ₃ $\xrightarrow{\Delta}$ Hg	+ CO ₂ ↑ + $\frac{1}{2}$ O ₂ ↑		
	. ,	$_{2}^{\uparrow} + 2H_{2}O^{\uparrow}$ (no solid rentification (no solid rentification) (no solid rentificati		
	(d) Pb(NO ₃) ₂ \longrightarrow F	$PbO + 2NO_2\uparrow + \frac{1}{2}O_2\uparrow$		
B-1.	•		•••••	p into the empty orbitals at higher fall back and transmit the light as
B-2.	Yes, because intensity	y of the absorbed light	is proportional to the cor	ncentration of element in the flame.

B-3. Both barium sulphate and barium phosphate are insoluble and cannot be easily converted into chlorides. Therefore, the green flame is either indistinct or visible with difficulty.

B-4.	Na2B4O7 .10H2O -	$\xrightarrow{\Lambda} 2NaBO_2 + B_2O_3 \xrightarrow{Cu}$	$\xrightarrow{D^{2^+},\Delta}$ Cu (BO ₂) ₂
	(A)	(B+C)	(Blue bead)
			(D)

- **C-1.** Sodium carbonate extract in addition to the sodium salts of anions contain carbonate also. On heating with the test reagent carbonates of certain metals precipitate which interfere in the detection of acid redicals. Because of this, Na₂CO₃ is decomposed by adding HCI, HNO₃, H₂SO₄, depending upon the nature of test.
- **C-2.** No, because it already contains CO_3^{2-} ions.
- **C-3.** White precipitate of CaCO₃ is formed. Ca(HCO₃)₂ + 2 NH₃ \longrightarrow (NH₄)₂CO₃ + CaCO₃ \downarrow
- **C-4.** Colour of bromine water is discharged according to the following reaction. BaSO₃ + Br₂ + H₂O \longrightarrow BaSO₄ \downarrow (white) + 2HBr
- **C-5.** (A) = SO_3^{-2} (C) = HSO_3^{-1} (Lime water test)
- **C-6.** (a) Blue colouration develops due to the formation of iodine gas. $5 \text{ SO}_2 + 2\text{ IO}_3^- + 4 \text{ H}_2\text{O} \longrightarrow \text{I}_2 + 5 \text{ SO}_4^{2-} + 2 \text{ H}^+$ $\text{I}_2 + \text{ Starch} \longrightarrow \text{Blue}$ (starch iodine adsorption complex) (b) Black precipitate is formed owing to the formation of PbS.
 - $[Pb(OH)_4]|^{2-} + H_2S \longrightarrow PbS\downarrow + 2OH^- + 2 H_2O$ (c) SO₃²⁻ + 3 Zn + 8 H⁺ \longrightarrow H₂S + 3 Zn²⁺ + 3 H₂O
 - $(0) 003 + 021 + 011 \longrightarrow 1120 + 0211 + 01120$
- **C-7.** $NO_2^- + CH_3COOH \longrightarrow HNO_2 + CH_3COO^-$ 3 HNO₂ \longrightarrow H₂O + HNO₃ + 2 NO[↑] NO [↑] + Fe²⁺ + SO₄²⁻ \longrightarrow [FeNO]SO₄ (Nitroso ferrous sulphate)
- **D-1.** There are some ions like, SO_3^{2-} , S^{2-} , NO_2^{-} and CH_3COO^- which can react with dilute/conc. H_2SO_4 whereas ions like CI^- , Br^- , I^- , NO_3^{Θ} , etc. react only with con. H_2SO_4 . Now if conc. H_2SO_4 is used first then the anions of both the types will react. Hence, it is desired to test acid radicals first with dilute H_2SO_4 and then with conc. H_2SO_4 .
- **D-2.** Because in presence of water, chromyl chloride forms the chromic acid. $CrO_2Cl_2 + 2H_2O \longrightarrow H_2CrO_4 + 2HCl$
- **D-3.** Because chromyl bromide (CrO₂Br₂) and chromyl iodide. (CrO₂I₂) compounds are unstable and are not formed. In such case bromine and iodine are evolved
- **D-4.** HBr and HI are reducing agent where as H₂SO₄ is oxidizing agent and thus Br₂ and I₂ are formed. NaCl + H₂SO₄ \rightarrow NaHSO₄ + HCl NaBr / Nal + H₂SO₄ \rightarrow NaHSO₄ + HBr/HI HBr/HI + H₂SO₄ \rightarrow Br₂/I₂ + SO₂ + 2H₂O
- **D-5.** Because in presence of water chromic acid is obtained in place of chromyl chloride.
- **D-6.** $A = Cl_2$; $B = Br_2$; $C = l_2$
- **D-7.** Because heavy metal chlorides are partially dissociated. This test is given generally by lonic chloride.
- **D-8.** This is because Fe²⁺ ions on long standing are oxidised to Fe³⁺ ions which are not used for the detection of nitrate and nitrite.
- **E-1.** Because they also impart green colour to flame.
- **E-2.** Not in dilute HCl but dissolves in all other reagents. $PbSO_4 \downarrow + H_2SO_4 \longrightarrow Pb^{2+} + 2 HSO_4^{-}; PbSO_4 \downarrow + 4 CH_3COO^- \longrightarrow [Pb(CH_3COO)_4]^{2-} + SO_4^{2-}$ $PbSO_4 \downarrow + 2 C_6H_4O_6^{2-} \longrightarrow [Pb(C_6H_4O_6)_2]^{2-} + SO_4^{2-}$ $PbSO_4 \downarrow + 4 OH^- \longrightarrow [Pb(OH)_4]^{2-} + SO_4^{2-}$

E-3. BaCl₂ gives a white precipitate. with both sulphite and sulphate ions. BaSO₃ is soluble in conc.HCl whereas BaSO₄ is insoluble in conc.HCl. $\begin{array}{l} SO_{3^{2^{-}}} + MnO_{4^{-}} + H^{+} \longrightarrow Mn^{2+} (colourless) \\ SO_{4^{2^{-}}} + MnO_{4^{-}} + H^{+} \longrightarrow (No \ colour \ change) \end{array}$

PART - II

A-1.	(B)	A-2.	(B)	A-3.	(C)	A-4.	(D)	A-5.	(D)
B-1.	(C)	B-2.	(B)	B-3.	(A)	B-4.	(B)	B-5.	(D)
B-6.	(C)	B-7.	(C)	C-1.	(C)	C-2.	(B)	C-3.	(A)
C-4.	(C)	C-5.	(B)	C-6.	(C)	C-7.	(C)	C-8.	(D)
D-1.	(B)	D-2.	(A)	D-3.	(B)	D-4.	(B)	D-5.	(B)
D-6.	(D)	D-7.	(A)	D-8.	(D)	D-9.	(D)	D-10.	(C)
D-11.	(B)	E-1.	(C)	E-2.	(C)				

PART - III

(A) - (r,t); (B) - (q); (C) - (q,t); (D) - (p,r,s) 1.

2. (A) - (p,q,r,s); (B) - (p); (C) - (p,q,r); (D) - (q,r,s)

				EXER	CISE - 2				
				PA	RT - I				
1.	(C)	2.	(B)	3.	(C)	4.	(D)	5.	(C)
6.	(B)	7.	(A)	8.	(B)	9.	(A)	10.	(D)
11.	(D)								
				PA	RT - II				
1.	3 (i, ii, iii)	2.	9 (All, exce	ept vi and i	<)	3.	5 (ii, iii, iv,	v, vii)	
4.	3 (iii, v, vi)	5.	3	6.	0	7.	4		
8.	1 (only iii)	9.	5 (All exce	pt NaBr)		10.	3		
11.	14 (a = 1, b =	= 7, c = 6)						
				ΡΑ	RT - III				
1.	(BD)	2.	(ACD)	3.	(ACD)	4.	(AC)	5.	(BC)
6.	(ABC)	7.	(AB)	8.	(D)	9.	(ABC)	10.	(AD)
11.	(ABD)	12.	(AB)	13.	(ABC)	14.	(ABC)	15.	(CD)
16.	(AC)								
				PA	RT - IV				
1.	(D)	2.	(AD)	3.	(B)	4.	(B)	5	(A)
6	(B)	7	(D)						

				EXER	CISE - 3	3			
				PA	ART - I				
1.	$3[Fe(H_2O)_6]^{2+} + NO_{3^-} + H^+ \longrightarrow NO + 3[Fe(H_2O)_6]^{3+}$ $[Fe(H_2O)_6]^{2+} + NO \longrightarrow [Fe(H_2O)_5NO]^{2+} + H_2O$								
2.	(C)	3.	(B)	4.	(C)	5.	(A)	6.	(A)
7.	(A)	8.*	(A or AC)						
				PA	RT - II				
			JEE(M	AIN) ON	ILINE PRC	BLEMS			
1.	(4)	2.	(4)						