# **Exercise-1**

Marked questions are recommended for Revision.

### **PART - I: SUBJECTIVE QUESTIONS**

#### Section (A): Polymers

- A-1. Differentiate between a homopolymer and a copolymer. Give one example of each type.
- A-2. What is meant by vulcanisation of rubber? Why is rubber vulcanised? Give an important application of vulcanised rubber.
- A-3. The partial structure of neoprene, a polymer is given below. Identify the monomer unit.

- Classify the following as addition and condensation polymer A-4. polymers: Terylene, Bakelite, polyvinyl chloride, polythene
- A-5. What is the difference between Buna-N and Buna-S
- A-6. Arrange the following in the increasing order of their intermolecular forces Nylon-6, Neoprene, Polyvinyl chloride (I) (II)(III)

# PART - II: ONLY ONE OPTION CORRECT TYPE

## Section (A): Polymers

- CH<sub>3</sub> A-1. Monomer of given polymer is: CH<sub>3</sub>
- (A) 2-Methylpropene
  - (B) Styrene
- (C) Propylene
- (D) Ethene

- A-2. Starch is polymer of
  - (A) α-D-Glucose

- (B) β-D-Glucose
- (C)  $\alpha$ -D-Glucose and  $\beta$ -D-Glucose
- (D) α-D-Fructose
- A-3. Polymer which has amide linkage is
  - (A) Nylon -6,6
- (B) Terylene
- (C) Teflon
- (D) Bakelite

- Nylon-6,6 is made by using A-4.
  - (A) Phenol
- (B) Benzaldehyde
- (C) Adipic acid
- (D) Succinic acid
- A-5. Which of the following is a nitrogen containing polymer?
  - (A) Polyvinyl chloride
- (B) Bakelite
- (C) Nylon
- (D) Terylene

- A-6. Buna-S is a polymer of:
  - (A) Butadiene only

(B) Butadiene and nitryl

- (C) Styrene only

- (D) Butadiene and styrene
- Condensation product of caprolactum is: A-7.
  - (A) nylon-6
- (B) nylon-6,6
- (C) nylon-60
- (D) nylon-6, 10

- A-8. Ziegler-Natta catalyst is:
  - (A)  $K[PtCl_3(C_2H_4)]$
- (B) (Ph<sub>3</sub>P)<sub>3</sub>RhCl
- (C)  $Al_2(C_2H_5)_6 + TiCl_4$
- (D)  $Fe(C_5H_5)_2$

## **PART - III: MATCH THE COLUMN**

1. Match Column-I with Column-II.

|     | Column-I      |     | Column-II                            |
|-----|---------------|-----|--------------------------------------|
|     | (polymer)     |     | (monomer)                            |
| (A) | Bakelite      | (p) | ε-caprolactum                        |
| (B) | Polypropylene | (q) | Ethylene glycol + phthalic anhydride |
| (C) | Glyptal       | (r) | propene                              |
| (D) | Nylon-6       | (s) | Phenol + formaldehyde                |

# Exercise-2

marked questions are recommended for Revision.

# **PART - I: ONLY ONE OPTION CORRECT TYPE**

1. Which of the following contains isoprene unit?

(A) Natural rubber

(B) Polyethylene

(C) Nylon-6,6

(D) Dacron

2.b Which of the following is condensation polymer?

(A) Polystyrene

(B) PVC

(C) Polyester

(D) Teflon

3. Which of the following polymerises most easily?

(A) CH<sub>3</sub>CH<sub>2</sub>C≡CH

(B) CH<sub>2</sub>=CH–CH=CH<sub>2</sub>

(C) CH<sub>3</sub>CH<sub>2</sub>-CH=CH<sub>2</sub>

(D) CH=C-C=CH

4. Which of the following is radical initiator

(A) R-N=N-R

(B) C-0-0-C

(D) All

5. The polymerisation reaction shown below

 $2\text{CH} = \text{CH} \xrightarrow{\text{CuCl}} \text{CH} = \text{CH} = \text{CH}_2 \xrightarrow{\text{HCl}} \xrightarrow{\text{CH}_2 = \text{C} - \text{CH} = \text{CH}_2} \xrightarrow{\text{CH}_2 = \text{C} - \text{CH} = \text{CH}_2} \xrightarrow{\text{CH}_3 \text{MgCl}} \begin{bmatrix} -\text{CH}_2 - \text{C} = \text{CH} - \text{CH}_2 \\ \text{CH}_3 \end{bmatrix}_{\text{reconstruction}}$ 

would produce:

(A) PVC

(B) neoprene

(C) chloroprene

(D) Rubber

# **PART - II: SINGLE AND DOUBLE VALUE INTEGER TYPE**

- **1.** Among the following no. of condenstion polymer Nylon-6, Buna-N, Buna-S, Nylon-6,6, Nylon-6,10, PVC, Polystyrene, Teflon.
- 2. How many of the following polymers are addition polymer

(i) Polyvinyl chloride

(ii) Terylene

(iii) Teflon

(iv) Neoprene

(v) Buna-S

(vi) Nylon-6,6

(vii) Natural rubber

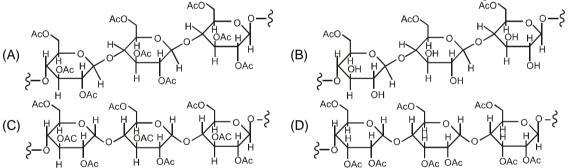
(viii) Bakelite

## PART - III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

- **1.** Which of the following are polyamide polymer?
  - (A) Protein
- (B) Nylon-6,6
- (C) Nylon-6
- (D) Polystyrene
- 2. Preparation of nylon from hexamethylene diamine and adipic acid is an example of :
  - (A) addition polymerisation

- (B) homopolymerisation
- (C) condensation polymerisation
- (D) copolymerisation
- **3.** Which of the following are condensation polymer?
  - (A) Terylene
- (B) Bakelite
- (C) Polyvinyl chloride
- (D) Nylon-6,6

# **Exercise-3**


## PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

- 1. Write down the heterogenous catalyst involved in the polymerisation of ethylene. [JEE-2003, 2/60]
- 2. Match the chemical substances in **Column-I** with type of polymers/type of bonds in **Column-II**.

  [JEE-2007, 6/162]

|     | Column-I  |     | Column-II         |
|-----|-----------|-----|-------------------|
| (A) | cellulose | (p) | natural polymer   |
| (B) | nylon-6,6 | (q) | synthetic polymer |
| (C) | protein   | (r) | amide linkage     |
| (D) | sucrose   | (s) | glycoside linkage |

3. Cellulose upon acetylation with excess acetic anhydride/H<sub>2</sub>SO<sub>4</sub> (catalytic) gives cellulose triacetate whose structure is [JEE-2008, 4/163]



- 4. Among celluose, poly vinyl chloride, nylon and natural rubber, the polymer in which the intermolecular force of attraction is weakest is : [JEE 2009, 3/160]
  - (A) Nylon
- (B) Poly vinyl chloride
- (C) Cellulose
- (D) Natural Rubber
- 5.\* The correct functional group X and the reagent/reaction conditions Y in the following scheme are

$$X - (CH_2)_4 - X$$
 (ii)  $C - (CH_2)_4 - C$  ondensation polymer: [JEE 2011, 4/180]

- (A)  $X = COOCH_3$ ,  $Y = H_2/Ni/heat$
- (B)  $X = CONH_2$ ,  $Y = H_2Ni/heat$
- (C)  $X = CONH_2$ ,  $Y = Br_2/NaOH$
- (D) X = CN,  $Y = H_2/Ni/heat$

<sup>\*</sup> Marked Questions may have more than one correct option.

| Poly | mers /                                                                                                                                                                                                                                    |                                                    |                                                                                                                         |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 6.   | The total number of lone-pairs of electrons in me                                                                                                                                                                                         | elamine is                                         | [JEE(Advanced)-2013, 4/120]                                                                                             |
| 7.   | On complete hydrogenation, natural rubber prod (A) ethylene-propylene copolymer (C) polypropylene                                                                                                                                         | uces [<br>(B) vulcanised rubbe<br>(D) polybutylene | JEE(Advanced)-2016, 3/124]<br>er                                                                                        |
|      | PART - II : JEE (MAIN) / AIEEE P                                                                                                                                                                                                          | ROBLEMS (PI                                        | REVIOUS YEARS)                                                                                                          |
|      | JEE(MAIN) OFFL                                                                                                                                                                                                                            | INE PROBLEMS                                       |                                                                                                                         |
| 1.   | Monomers are converted to polymers by (1) Hydrolysis of monomer (3) Protonation of monomers                                                                                                                                               | (2) Condensation be (4) none                       | [AIEEE-2002, 3/225] etween monomers                                                                                     |
| 2.   | Complete hydrolysis of cellulose gives (1) D-fructose (2) D-ribose                                                                                                                                                                        | (3) D-glucose                                      | [AIEEE-2003, 3/225]<br>(4) L-glucose                                                                                    |
| 3.   | Nylon threads are made up of (1) Polyvinyl polymer (2) Polyester polymer                                                                                                                                                                  | (3) Polyamide polym                                |                                                                                                                         |
| 4.   | Which of the following is a polyamide? (1) Bakelite (2) Terylene                                                                                                                                                                          | (3) Nylon-6,6                                      | [AIEEE-2005, 1½/225]<br>(4) Teflon                                                                                      |
| 5.   | Which of the following is fully fluorinated polyme (1) PVC (2) Thiokol                                                                                                                                                                    | r<br>(3) Teflon                                    | [AIEEE-2005, 3/225]<br>(4) Neoprene                                                                                     |
| 6.   | Bakelite is obtained from phenol by reacting with (1) CH <sub>3</sub> CHO (2) CH <sub>3</sub> COCH <sub>3</sub>                                                                                                                           | (3) HCHO                                           | [AIEEE-2008, 3/105]<br>(4) (CH <sub>2</sub> OH) <sub>2</sub>                                                            |
| 7.   | Buna-N synthetic rubber is a copolymer of : (1) $H_2C=CH-CH=CH_2$ and $H_5C_6-CH=CH_2$ (3) $H_2C=CH-CN$ and $H_2C=CH-C=CH_2$ $CH_3$                                                                                                       | (2) $H_2C = CH - CN$ and (4) $H_2C = CH - C = C$   | [AIEEE-2009, 4/144] d H <sub>2</sub> C=CH-CH=CH <sub>2</sub> CH <sub>2</sub> and H <sub>2</sub> C=CH-CH=CH <sub>2</sub> |
| 8.   | The polymer containing strong intermolecular for (1) teflon (2) nylon-6,6                                                                                                                                                                 | rces e.g. hydrogen bo<br>(3) polystyrene           | onding is [AIEEE-2010, 4/144] (4) natural rubber                                                                        |
| 9.   | Which one is classified as a condensation polym (1) Dacron (2) Neoprene                                                                                                                                                                   | ner ?<br>(3) Teflon                                | [JEE (Main)-2014, 4/120]<br>(4) Acrylonitrile                                                                           |
| 10.  | Which polymer is used in the manufacture of pai<br>(1) Bakelite (2) Glyptal                                                                                                                                                               | nts and lacquers? (3) Polypropene                  | [ <b>JEE(Main) 2015, 4/120</b> ]<br>(4) Poly vinyl chloride                                                             |
| 11.  | Which of the following statements about low den (1) It is a poor conductor of electricity. (2) Its synthesis required dioxygen or a peroxide (3) It is used in the manufacture of buckets, dust (4) Its synthesis requires high pressure. | initiator as a catalyst                            |                                                                                                                         |
| 12.  | The formation of which of the following polymers (1) Bakelite (2) Nylon 6,6                                                                                                                                                               | involves hydrolysis r<br>(3) Terylene              | eaction? <b>[JEE(Main) 2017, 4/120]</b><br>(4) Nylon 6                                                                  |
|      | JEE(MAIN) ONLI                                                                                                                                                                                                                            | NE PROBLEMS                                        |                                                                                                                         |
| 1.   | Structure of some important polymers are given. $CH_3$ $(1) (-CH_2 - C = CH - CH_2 -)_n$                                                                                                                                                  |                                                    | ts Buna-S ?<br>4 Online (09-04-14), 4/120]                                                                              |
|      |                                                                                                                                                                                                                                           | (2) $(-CH_2 - CH = C$                              | H – CH <sub>2</sub> – CH – CH <sub>2</sub> –) <sub>n</sub><br> <br>  C <sub>6</sub> H <sub>5</sub>                      |
|      | (3) $(-CH_2 - CH = CH - CH_2 - CH - CH_2 -)_n$<br>CN                                                                                                                                                                                      | (4) $(-CH_2 - C = CH)$                             | - CH <sub>2</sub> -) <sub>n</sub>                                                                                       |

| Pol | ymers /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |                                                                                      |                                                                                                                                                            |                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 2.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ollowing class of compou                                                             |                                                                                      | nerization of acetylene ?<br>n) 2014 Online (09-04-14), 4/120                                                                                              | 1                                |
|     | (1) Poly-yne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2) Poly-ene                                                                         | (3) Poly-ester                                                                       | (4) Poly-amide                                                                                                                                             | •                                |
| 3.  | Which one of the f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ollowing is an example of                                                            |                                                                                      | s ?<br>n) 2014 Online (19-04-14), 4/120]                                                                                                                   | 1                                |
|     | (1) Neoprene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2) Buna-N                                                                           | (3) Nylon 6, 6                                                                       | (4) Bakelite                                                                                                                                               | •                                |
| 4.  | Match the polyme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s in column-A with their r                                                           |                                                                                      | and choose the correct answer :<br>ain) 2015 Online (10-04-15), 4/12                                                                                       | 201                              |
|     | Column-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      | Column-B                                                                             |                                                                                                                                                            | .0,                              |
|     | (A) Polystyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      | (i) Paints and lacq                                                                  | uers                                                                                                                                                       |                                  |
|     | (B) Glyptal (C) Polyvinyl chlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ide                                                                                  | (ii) Rain coats<br>(iii) Manufacture o                                               | f tovs                                                                                                                                                     |                                  |
|     | (D) Bakelite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      | (iv) Computer disc                                                                   |                                                                                                                                                            |                                  |
|     | (1) (A) - (iii) , (B) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (i), (C) - (iii), (D) - (iv)<br>(iv), (C) - (iii), (D) - (i)                         | (2) (A) - (iii) , (B) -                                                              | (i), (C) - (ii), (D) - (iv)                                                                                                                                |                                  |
| _   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |                                                                                      | (iv), (C) - (ii), (D) - (i)                                                                                                                                |                                  |
| 5.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ollowing structures repres                                                           |                                                                                      | mer ?<br>ain) 2015 Online (11-04-15), 4/12                                                                                                                 | 20]                              |
|     | (1) $\begin{array}{c} +CH_2 - CH_2 - CH_2 - CH_3 - CH_5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del>)</del> n                                                                       | (3) TCH - CH7                                                                        |                                                                                                                                                            |                                  |
|     | $C_6H_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      | (2) <del>(</del> CH <sub>2</sub> – CH <del>)</del> <sub>n</sub><br> <br>  CN         |                                                                                                                                                            |                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      | CN                                                                                   |                                                                                                                                                            |                                  |
|     | (3) (CH <sub>2</sub> - C = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CH – CH <sub>2</sub> <del>)</del> <sub>n</sub>                                       | (4) (CH <sub>2</sub> – CH <sub>2</sub> )                                             |                                                                                                                                                            |                                  |
|     | Ċι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      | Ċι                                                                                   |                                                                                                                                                            |                                  |
|     | Reason: Mechan  (1) Both assertion (2) Both assertion (3) Assertion is income.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and reason are correct, a<br>and reason are incorrect,<br>correct statement, but the | ties of cellulose can be i  [JEE(Mail and the reason is the col . reason is correct. | e better than natural cotton. mproved by acetylation. n) 2016 Online (09-04-16), 4/120 rect explanation for the assertion. not the correct explanation for | •                                |
| 7.  | Which of the follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ving polymers is synthesi:                                                           |                                                                                      | polymerization technique ?<br>n) 2016 Online (10-04-16), 4/120                                                                                             | ]                                |
|     | (1) Teflon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2) Melamine polyn                                                                   | mer (3) Nylon                                                                        | 6,6 (4) Terylene                                                                                                                                           | 20] 120] 20] 20] 20] 20] 20] 20] |
| 8.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ving is a biodegradable po<br>O                                                      |                                                                                      | n) 2017 Online (09-04-17), 4/120                                                                                                                           | ]                                |
|     | $(1) = \underbrace{HN - (CH_2)_6NH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ CO-(CH_2)_4-C$                                                                     | (2)_(HN-(CH <sub>2</sub> ) <sub>5</sub> CO                                           | II )<br>NH—CH₂—C →n                                                                                                                                        |                                  |
|     | (1) $\downarrow_{HN-(CH_2)_6NF}$<br>(3) $\downarrow_{HN-(CH_2)_5-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      | (4) <del> </del>                                                                     | $OO-(CH_2)_2-O_n$                                                                                                                                          |                                  |
| 9.  | peroxide is :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                      | nd acrylonitrile in the presence<br>n) 2018 Online (15-04-18), 4/120                                                                                       |                                  |
|     | $(1) \begin{array}{c} H_5C_6 CN \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      | $(2) \begin{bmatrix} -CH_2 - CH - CH_2 \\ I \\ C_6H_5 \end{bmatrix}$                 | J N                                                                                                                                                        |                                  |
|     | $ \begin{array}{c c}  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & &$ |                                                                                      | (4) +CH-CH <sub>2</sub> -CH <sub>2</sub>                                             | CN CH                                                                                                                                                      |                                  |
|     | <sup>(3)</sup> <del>[</del> CH₂–CH–CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -CH <sub>2</sub> -                                                                   | (+) TOI I-OI 12-OF 2<br>  C <sub>6</sub> H <sub>5</sub>                              |                                                                                                                                                            |                                  |

10. Which of the following statements is not true?

- (1) Step growth polymerization requires a bifunctional monomer.
- (2) Nylon 6 is an example of step-growth polymerization.
- (3) Chain growth polymerization includes both homopolymerisation and copolymerisation.
- (4) Chain growth polymerization involves homopolymerisation only.

#### **11.** Major product of the following reaction is :

$$\begin{array}{c|c} CI & NH_2 \\ \hline + H_2N & & \\ \hline O & O & \\ \end{array}$$

$$(2) \begin{array}{c} O & CI \\ HN \\ O \end{array} NH_2$$

$$(4) \overbrace{\begin{array}{c} CI \\ N \\ H \end{array}} O \underset{H}{\overset{O}{\bigvee}} NH_2$$

**12.** The major product of the following reaction is:

$$\begin{array}{c|c} \text{CH}_3 \\ \text{CH}_3 \\ \text{OH} \end{array} \xrightarrow[]{\begin{array}{c} \text{(i) dil. HCl/}\Delta \\ \text{(ii)(COOH)}_2/\\ \text{Polymerisation} \\ \end{array}}}$$

(4)

13. The polymer obtained from the following reactions is: [JEE(Main) 2019 Online (11-01-19), 4/120]

$$NH_2 = \frac{(i)NaNO_2/H_3O^+}{(ii)poly meris aion}$$

(1) 
$$-O-(CH_2)_4-C$$

(3) 
$$+ C - (CH_2)_4 - N + C$$

$$(4) \quad \begin{array}{c} \begin{array}{c} O \\ II \\ OC-(CH_2)_4O \end{array} \end{array}$$

14. The homopolymer formed from 4-hydroxy-butanoic acid is: [JEE(Main) 2019 Online (11-01-19), 4/120]

$$(1) = \begin{bmatrix} O & O \\ II & II \\ C(CH_2)_2C \end{bmatrix}_n$$

$$(2) = \begin{bmatrix} O & O \\ II & II \\ C(CH_2)_2C-O \end{bmatrix}_n$$

(3) 
$$\begin{array}{c} O \\ II \\ OC(CH_2)_3 - O \end{array}$$

(4) 
$$-\begin{bmatrix} O \\ II \\ C(CH_2)_3 - O \end{bmatrix}_n$$

**15.** Poly- $\beta$ -hydroxybutyrate-co- $\beta$ -hydroxyvalerate (PHBV) is a copolymer of

[JEE(Main) 2019 Online (12-01-19), 4/120]

- (1) 3-hydroxybutanoic acid and 2-hydroxypentanoic acid
- (2) 3-hydroxybutanoic acid and 4-hydroxypentanoic acid
- (3) 2-hydroxybutanoic acid and 3-hydroxypentanoic acid
- (4) 3-hydroxybutanoic acid and 3-hydroxypentanoic acid

16. The two monomers for the synthesis of Nylon-6,6 are: [JEE(Main) 2019 Online (12-01-19), 4/120]

- (1) HOOC(CH<sub>2</sub>)<sub>4</sub>COOH & H<sub>2</sub>N-(CH<sub>2</sub>)<sub>6</sub>-NH<sub>2</sub>
- (2) HOOC(CH<sub>2</sub>)<sub>6</sub>COOH & H<sub>2</sub>N(CH<sub>2</sub>)<sub>4</sub>NH<sub>2</sub>
- (3) HOOC(CH<sub>2</sub>)<sub>6</sub>COOH & H<sub>2</sub>N(CH<sub>2</sub>)<sub>6</sub> NH<sub>2</sub>
- (4) HOOC(CH<sub>2</sub>)<sub>4</sub>COOH, H<sub>2</sub>N-(CH<sub>2</sub>)<sub>4</sub>NH<sub>2</sub>

# **Answers**

### **EXERCISE - 1**

#### PART - I

**A-1. (i) Homopolymers**: Polymers in which repeating structural units are derived from only one type of monomer units are called homopolymers.

n-CH<sub>2</sub> = CH<sub>2</sub> Polymerization 
$$+$$
 CH<sub>2</sub> - CH<sub>2</sub> $+$  Polyethylene (Monomer) (Polymer)

Other examples polypropylene, polyvinyl chloride (PVC), polyisoprene, neoprene (polychloroprene) polyacrylonitrile (PAN), nylon-6, polybutadiene, teflon (polytetrafluoroethylene), cellulose, starch, glycogen etc.

(ii) Copolymers: Polymers in which repeating structural units are derived from two or more types of monomer units are called copolymers.

A-2. Raw rubber does not possess the characteristic of the rubber with which we are familiar in order to give it strength & elasticity it is vulcanised. In the vulcanization process, raw rubber is mixed with small amount of sulphur and heated.

1-3 % S is used for rubber bands & 5% S is used for tyre rubber.

$$CI$$
 | CH<sub>2</sub> = C - CH = CH<sub>2</sub>

**A-4.** Addition polymer: Polyvinyl chloride, polythene Condensation polymer: Bakelite, terylene

**A-5.** Buna-N → Copolymer of 1, 3-butadiene and acrylnitride Buna-S → Copolymer of 1, 3-butadiene and styrene

**A-6.** || < ||| < |

PART - II

**A-1.** (A) **A-2.** (A) **A-3.** (A) **A-4.** (C) **A-5.** (C)

**A-6.** (D) **A-7.** (A) **A-8.** (C)

PART - III

1.  $A \rightarrow s$ ,  $B \rightarrow r$ ,  $C \rightarrow q$   $D \rightarrow p$ 

|     |             |              | Е                                          | XER                                                   | CISE - 2 | 2     |     |     |     |
|-----|-------------|--------------|--------------------------------------------|-------------------------------------------------------|----------|-------|-----|-----|-----|
|     |             |              |                                            | PA                                                    | RT – I   |       |     |     |     |
| 1.  | (A)         | 2.           | (C)                                        | 3.                                                    | (B)      | 4.    | (D) | 5.  | (D) |
|     |             |              |                                            | PA                                                    | RT – II  |       |     |     |     |
| 1.  | 3           | 2.           | 5                                          |                                                       |          |       |     |     |     |
|     |             |              |                                            | PAI                                                   | RT – III |       |     |     |     |
| 1.  | (ABC)       | 2.           | (CD)                                       | 3.                                                    | (ABD)    |       |     |     |     |
|     |             |              | E                                          | XER                                                   | CISE - 3 | 3     |     |     |     |
|     |             |              |                                            | PA                                                    | RT – I   |       |     |     |     |
| 1.  | Ziegler Nat | ta catalyst. | . (R <sub>3</sub> AI + TiCl <sub>4</sub> ) | <b>2.</b> (A - p, s); (B - q, r); (C - p, r); (D - s) |          | 3.    | (A) |     |     |
| 4.  | (D)         | 5.           | (CD)                                       | 6.                                                    | 6        | 7.    | (A) |     |     |
|     |             |              |                                            | PA                                                    | RT – II  |       |     |     |     |
|     |             |              | JEE(MAI                                    | N) OFF                                                | LINE PRO | BLEMS |     |     |     |
| 1.  | (2)         | 2.           | (3)                                        | 3.                                                    | (3)      | 4.    | (3) | 5.  | (3) |
| 6.  | (3)         | 7.           | (2)                                        | 8.                                                    | (2)      | 9.    | (1) | 10. | (2) |
| 11. | (3)         | 12.          | (4)                                        |                                                       |          |       |     |     |     |
|     |             |              | JEE(MAI                                    | N) ON                                                 | LINE PRO | BLEMS |     |     |     |
| 1.  | (2)         | 2.           | (1)                                        | 3.                                                    | (4)      | 4.    | (2) | 5.  | (3) |
| 6.  | (1)         | 7.           |                                            | 8.                                                    | (2)      | 9.    | (2) | 10. | (4) |
| 11. | (1)         | 12.          | (1)                                        | 13.                                                   | (1)      | 14.   | (4) | 15. | (4) |
| 16. | (1)         |              |                                            |                                                       |          |       |     |     |     |