Ionic Equilibrium (Elementary)

IONIC EQUILIBRIUM-III

Exercise-1

PART - I : SUBJECTIVE QUESTIONS

Section (A) : Solubility, Solubility product and Simple solubility calculations

Commit to memory :

Solubility (s ; in mol/L) of a sparingly soluble salt A_xB_y : $K_{sp} = x^x.y^y.(s)^{x+y}$

A-1. If the solubility product of a salt MX is 3×10^{-10} at 0°C, determine its solubility.

- A-2. A saturated solution of PbCl₂ contains 2×10^{-3} mol of PbCl₂ per litre. What is the K_{sp} of PbCl₂?
- **A-3.** K_{sp} at 25°C of AgCl, AgBr and AgI are respectively 3×10^{-10} , 7.7×10^{-13} , 1.5×10^{-16} . Write decreasing order of solubility of these salts.

A-4. Write solubility product expression for Hg_2SO_4 .

Section (B) : Condition for precipitation, Common ion effect on solubility

Commit to memory :

Condition for precipitation of $A_x B_y$: lonic product or $K_{IP} > K_{sp}$; $[A^{y+}]^x [B^{x-}]^y > K_{sp}$ of $A_x B_y$ Common ion effect on solubility : Solubility (s') of $A_x B_y$ (sparingly soluble ; K_{sp}) in a solution of 'c' M $A_p D_q / E_r B_p$ (both readily soluble) : $(pc)^x (ys')^y = K_{sp}$; s' =

- **B-1.** Determine solubility of PbI₂ in a 0.1 M solution of Nal. (K_{sp} of PbI₂ = 8 × 10⁻⁹)
- **B-2.** Determine solubility of PbI₂ in a 0.1 M solution of Pb(NO₃)₂. (K_{sp} of PbI₂ = 8 × 10⁻⁹)
- **B-3.** At 25°C, the solubility of Ag_2CO_3 (K_{sp} = 4.3 × 10⁻¹³) would be in what order in the following solutions ? (a) 0.01 M AgNO₃ (b) 0.04 M K₂CO₃ (c) pure water (d) in a buffer (pH = 4)

PART - II : ONLY ONE OPTION CORRECT TYPE

Section (A) : Solubility, Solubility product and Simple solubility calculations

Commit to memory :

	; in mol/L) of a sparingly soluble salt $A_x B_y$: $K_{sp} = x^x . y^y . (s)^{x+y}$
SOLUDIIITY (S	In mol/L) of a spannoly soluble sait $A_{y}B_{y}$: $A_{sp} = X^{*}V^{*}(S)^{*}V^{*}$

- A-1. (Producing M^{x+} and OH^{-} ions) has $K_{sp} 4 \times 10^{-12}$ and solubility 10^{-4} M. The value of x is : (A) 1 (B) 2 (C) 3 (D) 4
- **A-2.** If the solubility of Lithium sodium hexafluoridoaluminate, Li₃Na₃[AlF₆]₂ is 's' mol L⁻¹, its solubility product is: (Assume no ionisation of $[AlF_6]^{3^-}$)

(D) 2916 s⁸

(A) 18 s³ (B) 186624 s⁸ (C) 1458 s⁸

A-3.Which of the following is most soluble in water ? Assume no reaction of cation/anion.(A) MnS ($K_{sp} = 2.5 \times 10^{-13}$)(B) ZnS ($K_{sp} = 1.6 \times 10^{-24}$)(C) Bi₂S₃ ($K_{sp} = 1.6 \times 10^{-72}$)(D) Ag₂S ($K_{sp} = 10^{-51}$)

- A-4. When different types of salts have nearly same solubility product constants K_{sp}, but less than one, the most soluble salt is that :
 - (A) Which produces maximum number of ions per formula unit
 - (B) Which produces minimum number of ions per formula unit
 - (C) Which produces ions with maximum charge
 - (D) Which produces ions with miniumum charge
- A-5. In a saturated solution of Ag_2SO_4 , silver ion concentration is 3×10^{-2} M. Its solubility product is : Assume no reaction of cation/anion.
 - (A) 1.35×10^{-5} (B) 1.08×10^{-4} (C) 2.7×10^{-5} (D) 4.5×10^{-4}

Ionic Equilibrium (Elementary)	-
---------------------	-------------	---

A-6. The minimum volume of the water needed to dissolve 1 g of BaSO₄ ($K_{sp} = 10^{-10}$) is about: Assume no reaction of cation/anion. [Mol. mass (BaSO₄) = 233 u] (A) 10⁵ litres (B) 430 litres (C) 43 litres (D) 4300 litres

Section (B) : Condition for precipitation, Common ion effect on solubility

Commit to memory : Condition for precipitation of $A_x B_y$: Ionic product or $K_{IP} > K_{sp}$; $[A^{y+}]^x [B^{x-}]^y > K_{sp}$ of $A_x B_y$

Common ion effect on solubility : Solubility (s') of AxBy (sparingly soluble ; Ksp) in a solution of 'c' M A_pD_q/E_rB_p (both readily soluble) : $(pc)^x(ys')^y = K_{sp}$; s' =

- **B-1.** The solubility product of BaCrO₄ is 2.4 × 10⁻¹⁰ M². The maximum concentration of Ba(NO₃)₂ possible without precipitation in a 6×10^{-4} M K₂CrO₄ solution is : (A) 4×10^{-7} M (B) 1.44 × 10⁻¹³ M (C) 2 × 10⁻⁷ M (D) 2.5 × 10⁶ M
- B-2. The solubility product of AgCl is 1.8 × 10⁻¹⁰. Precipitation of AgCl will occur only when equal volumes of solutions of :
 - (A) 2×10^{-5} M Ag⁺ and 2×10^{-5} M Cl⁻ are mixed.
 - (B) 10^{-7} M Ag⁺ and 10^{-7} M Cl⁻ are mixed.
 - (C) 10^{-5} M Ag⁺ and 10^{-5} M Cl⁻ are mixed.
 - (D) 10⁻⁴ M Ag⁺ and 10⁻⁴ M Cl⁻ are mixe
- B-3. The solubility of CaF₂ (K_{sp} = 5.3×10^{-9}) in 0.1 M solution of NaF would be : Assume no reaction of cation/anion. (A) 5.3×10^{-10} M (B) 5.3 × 10⁻⁸ M (C) 5.3 × 10⁻⁷ M (D) 5.3 × 10⁻¹¹ M
- B-4. Let the solubilities of AqCl in pure water, 0.01 M CaCl₂, 0.01 M NaCl & 0.05 M AqNO₃ be s₁, s₂, s₃ & s₄ respectively. What is the correct order of these quantities ? Neglect any complexation. (A) $S_1 > S_4 > S_3 > S_2$ (B) $S_1 > S_2 = S_3 > S_4$ (C) $S_1 > S_3 > S_2 > S_4$ (D) $S_4 > S_2 > S_3 > S_1$
- B-5. Solubility of BaF₂ in a solution of Ba(NO₃)₂ will be represented by which concentration term ? Assume no reaction of cation/anion. (B) [F-]
 - (A) [Ba2+]

(C) [F-]/2

(D) 2[]

PART - III : MATCH THE COLUMN

1. Match the correct K_{sp} expression in terms of solubility (s) for given salts : (Dont assume hydrolysis of any ion)

	Column-I		Column-II
(A)	Ca ₃ (PO ₄) ₂	(p)	4s ³
(B)	Hg_2I_2	(q)	27s ⁴
(C)	Cr(OH)₃	(r)	108s ⁵
(D)	CaF ₂	(s)	16s⁴

Exercise-2

> Marked questions are recommended for Revision.

PART - I : ONLY ONE OPTION CORRECT TYPE

1.2 Slaked lime, Ca(OH)₂ is used extensively in sewage treatment. What can be the maximum pH of Ca(OH)₂ (aq) ? (Take log11 = 1.04) $Ca(OH)_2(s) \equiv Ca^{2+}(aq) + 2OH^{-}(aq);$ $K_{sp} = 5.324 \times 10^{-6}$

(D) 14 (A) 12.04 (B) 12.34 (C) 10.68

The solubility of Ag₂CO₃ in water is 1.26×10^{-4} mole/litre. What is its solubility in 0.02 M Na₂CO₃ 2.2 solution ? Assume no hydrolysis of CO_3^{2-} ion. (Take $\sqrt[3]{2} = 1.26$)

(B) $\sqrt{50} \times 10^{-6}$ M (A) 5 × 10^{−6} M (C) 10⁻⁵ M (D) 2 × 10⁻⁵ M Ionic Equilibrium (Elementary)

PART - II : SINGLE AND DOUBLE VALUE INTEGER TYPE

 How many of the following relations are correct for the solubility product (K_{sp}) & solubility (s g/litre) of sparingly soluble salt A₃B₂ (producing A²⁺ & B³⁻ ions ; mol. wt. M) in water ? (Assume no hydrolysis of any ion).

1. K _{sp} = 108s ⁵	2. $K_{sp} = \left[\frac{3s}{M}\right]^3 \left[\frac{2s}{M}\right]^2$	3. $K_{sp} = (3[A^{2+}])^3 (2[B^{3-}])^2$
4. $[B^{3-}] = \frac{2s}{M}$	5. $\frac{[B^{3-}]}{K_{sp}} = \frac{1}{54} \frac{M^4}{s^4}$	6. $[A^{2+}] = \left(\frac{K_{sp}}{[B^{3-}]^3}\right)^{1/2}$
7. $[A^{2+}]^3 M^5 = \frac{108s^5}{[B^{3-}]^2}$	8. $\frac{K_{sp}}{[A^{2+}]} = 36s^4$	9. $K_{sp} = [A^{2+}]^2 [B^{3-}]^3$

2. 8 × 10⁻⁶ M AgNO₃ solution is gradually added in 1 L of 10⁻⁴ M KCl solution. Upto what volume of AgNO₃ solution being added (in L), precipitation of AgCl will not take place? (K_{sp} of AgCl = 2 × 10⁻¹⁰)

PART - III : ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

1. The solubility of a sparingly soluble salt A_xB_y in water is 1.4×10^{-4} M. The solubility product is 1.1×10^{-11} . The possibilities are : (A) x = 1, y = 2 (B) x = 2, y = 1 (C) x = 1, y = 3 (D) x = 3, y = 1

Exercise-3

JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1.	The solubility of Mg(O	H) $_2$ is s moles/litre. The s	olubility product under th	e same condition is : [AIEEE-2002, 3/225]
	(1) 4s ³	(2) 3s ⁴	(3) 4s ²	(4) S ³
2.	The solubility in water	of a sparingly soluble sa	lt AB₂ is 1.0 × 10 ^{–5} mol	L ⁻¹ . Its solubility product will be : [AIEEE-2003, 3/225]
	(1) 4 × 10 ⁻¹⁵	(2) 4 × 10 ⁻¹⁰	(3) 1 × 10 ⁻¹⁵	(4) 1×10^{-10}
3.	is K _{sp.} . s is given in ter	ms of K _{sp} by the relation	:	corresponding solubility product [AIEEE-2004, 3/225]
		(2) $s = (128K_{sp})^{1/4}$		
4.		ed aqueous solution of th		: 4 × 10 ⁻¹² . The concentration of [AIEEE-2005, 3/225] (4) 4.0 × 10 ⁻¹⁰ M
5.	equilibrium which sets AglO₃(s) ⇐╧ If the solubility produc	in is : Ag⁺(aq) + IO₃⁻ (aq)	at a given temperature is	D ₃ (Molecular mass = 283), the 5 1.0 × 10 ⁻⁸ , what is the mass of [AIEEE-2007, 3/120] (4) 2.83 × 10 ⁻³ g
6.		to form ? (Ksp for BaCO3		n. At what concentration of Ba ²⁺ [AIEEE-2009, 4/144] (4) 4.1 × 10 ⁻⁵ M
7.				hotassium bromide (molar mass hitrate to start the precipitation of [AIEEE-2010, 4/144] (4) 5.0 × 10 ⁻⁸ g
8.	At 25°C, the solubility	()	0×10^{-11} . At what pH, w	ill Mg ²⁺ ions start precipitating in [AIEEE-2010, 4/144] (4) 8

Ionic Equilibrium (Elementary)

9. An aqueous solution contains an unknown concentration of Ba2+. When 50 mL of a 1M solution of Na₂SO₄ is added, BaSO₄ just begins to precipitate. The final volume is 500 mL. The solubility product of [JEE(Main) 2018, 4/120] BaSO₄ is 1×10^{-10} . What is the original concentration of Ba²⁺. (1) $1.1 \times 10^{-9} \text{ M}$ (2) 1.0×10^{-10} M (3) 5 × 10⁻⁹ M $(4) 2 \times 10^{-9} M$

JEE(MAIN) ONLINE PROBLEMS

1. Zirconium phosphate [Zr₃(PO₄)₄] dissociates into three zirconium cations of charge +4 and four phosphate anions of charge -3. If molar solubility of zirconium phosphate is denoted by S and its solubility product by K_{sp} then which of the following relationship between S and K_{sp} is correct? [JEE(Main) 2014 Online (19-04-14), 4/120]

(1) $S = \{K_{sp} / (6912)^{1/7}\}$ (2) $S = \{K_{sp} / 144\}^{1/7}$

- 2. The minimum volume of water required to dissolve 0.1 g lead(II) chloride to get a saturated solution (Ksp of $PbCl_2 = 3.2 \times 10^{-8}$; atomic mass of Pb = 207 u) is : [JEE(Main) 2018 Online (15-04-18), 4/120] (3) 17.98 L (1) 1.798 L (2) 0.36 L (4) 0.18 L
- 3. A mixture of 100 m mol of Ca(OH)₂ and 2 g of sodium sulphate was dissolved in water and the volume was made up to 100 mL. The mass of calcium sulphate formed and the concentration of OH- in resulting solution, respectively, are : (Molar mass of Ca(OH)₂, Na₂SO₄ and CaSO₄ are 74, 143 and 136 g mol⁻¹, respectively; K_{sp} of Ca(OH)₂ is 5.5 × 10⁻⁶) [JEE(Main) 2019 Online (10-01-19), 4/120] (2) 13.6 g, 0.28 mol L⁻¹ (1) 13.6 g, 0.14 mol L⁻¹ (3) 1.9 q, 0.28 mol L⁻¹ (4) 1.9 g, 0.14 mol L⁻¹
- 4. If K_{sp} of Ag_2CO_3 is 8 x 10⁻¹², the molar solubility of Ag_2CO_3 in 0.1 M AgNO₃ is :

(1) 8 × 10⁻¹⁰ M

- (2) 8 × 10⁻¹² M
- [JEE(Main) 2019 Online (12-01-19), 4/120] $(3) 8 \times 10^{-1}$

(3) $S = (K_{sp}/6912)^{1/7}$

141	(0) 0	

$(4) 8 \times 10^{-11} \text{ M}$	()				
	^{−13} M	(4)	8 ×	10 ⁻¹¹	Μ

(4) $S = \{K_{sp} / 6912\}^7$

Answers

				E	XER	CISE - 1				
					PAI	RT – I				
A-1.	1.73 × 10 ⁻	⁻⁵ mol/L		A-2.	3.2 ×	10 ⁻⁸	A-3.	AgCl > A	gBr > AgI	
A-4.	[Hg ₂ ²⁺][S0	O ₄ 2-]		B-1.	8 × 10)−7 M	B-2.	1.414 × 10 ⁻⁴ M		
B-3.	(d) > (c) >	· (b) > (a)								
					PAF	RT - II				
A-1.	(B)	A-2.	(D)		A-3.	(A)	A-4.	(A)	A-5.	(A)
A-6.	(B)	B-1.	(A)		B-2.	(D)	B-3.	(C)	B-4.	(C)
B-5.	(C)									

PART - III

1. $(A \rightarrow r)$; $(B \rightarrow p)$; $(C \rightarrow q)$; $(D \rightarrow p)$

				EXERCISE - 2	
				PART - I	
1.	(B)	2.	(C)		
				PART - II	
1.	4 (2, 4, 5	and 7)		2 . 1	

				PA	RT - III				
•	(A) B)								
				EXER	CISE -	3			
			JEE(N	MAIN) OF	FLINE PRO	OBLEMS			
1.	(1)	2.	(1)	3.	(4)	4.	(2)	5.	(4)
6.	(1)	7.	(2)	8.	(2)	9.	(1)		
			JEE(MAIN) ON	ILINE PRO	BLEMS			
1.	(3)	2.	(4)	3.	(3)	4.	(1)		