IONIC EQUILIBRIUM-II

Exercise-1

Note : Take water as solvent and temperature as 25°C, if not specified. Take $\log 2 = 0.3$, $\log 3 = 0.48$, $\log 5 = 0.7$, $\log 7 = 0.845$, if not specified.

Marked questions are recommended for Revision.

PART - I: SUBJECTIVE QUESTIONS

Section (A): Buffer Solutions: Definition and Identification

Commit to memory:

Buffer Solutions : Solution containing weak acid and it's conjugate base, solution containing weak base and it's conjugate acid, solution containing salt of weak acid and weak base.

Preparation:

- (i) Solution of weak acid (or weak base) + Solution of it's conjugate base (or it's conjugate acid)
- (ii) Solution of weak acid (or weak base) + Solution of strong base (or strong acid) $(n_1 > n_2)$
- (iii) Solution of salt of weak acid and strong base (or salt of weak base and strong acid) + Solution of strong acid (or strong base) $(n_1 > n_2)$
- **A-1.** № V₁ mL of a CH₃COONa solution (of molarity M₁) and V₂ mL of a HCl solution (of molarity M₂) are available. Can the two be mixed to obtain a buffer solution? If yes, what should be the mathematical condition relating M₁, M₂, V₁ & V₂ for this?
- A-2. Select pair(s) of solutions from below which could be mixed to produce a buffer solution: NH_4OH solution (S₁), $(NH_4)_2$ SO₄ solution (S₂), HCl solution (S₃), KOH solution (S₄).

Section (B): pH Calculation: Buffer solutions generated from Monobasic acid / Monoacidic base

Commit to memory:

pH Calculation: Buffer solutions generated from Monobasic acid / Monoacidic base:

(i) pH of a buffer solution consisting of a weak acid (HA; C1 concentration) and its salt with a strong

base (NaA; C_2 concentration of anion): $pH = pK_a + log \frac{[Anion of Salt]}{[Acid]}$

(ii) pH of a buffer solution consisting of a weak base (B; C1 concentration) and its salt with a strong acid

 $(BH^+CI^-;\,C_2\;concentration\;of\;cation):\;pOH=pK_b+log\;\frac{[Cation\,of\;Salt]}{[Base]}$

- **B-1.** Calculate pH of following solutions :
 - (a) (4 g CH₃COOH + 4.1 g CH₃COONa) in 100 mL aqueous solution; K_a for CH₃COOH = 1.8 x 10⁻⁵
 - (b) 5 mL of 0.1 M BOH + 25 mL of 0.1 M BCl ; K_b for BOH = 1.8×10^{-5}
- **B-2.** 50 mL of 0.2 M solution of an acid HA ($K_a = 10^{-5}$) & 50 mL of a NaA solution are given. What should be the concentration of NaA solution to make a buffer solution with pH = 4 upon mixing the two?
- **B-3.** Calculate the pH of 0.5 L of a 0.2 M $NH_4CI 0.2$ M NH_3 buffer before and after addition of (a) 0.05 mole of NaOH and (b) 0.05 mole of HCI. Assume that the volume remains constant. [Given: pK_b of $NH_3 = 4.74$]

PART - II: ONLY ONE OPTION CORRECT TYPE

Section (A): Buffer Solutions: Definition and Identification

Commit to memory	' :
------------------	-----

Buffer Solutions : Solution containing weak acid and it's conjugate base, solution containing weak base and it's conjugate acid, solution containing salt of weak acid and weak base.

Preparation:

- (i) Solution of weak acid (or weak base) + Solution of it's conjugate base (or it's conjugate acid)
- (ii) Solution of weak acid (or weak base) + Solution of strong base (or strong acid) (n₁ > n₂)
- (iii) Solution of salt of weak acid and strong base (or salt of weak base and strong acid) + Solution of strong acid (or strong base) $(n_1 > n_2)$
- **A-1.** A solution is 0.1 M in CH₃COOH and 0.1 M in CH₃COONa. Which of the following will change its pH significantly?
 - (A) Addition of small amount of water
- (B) Addition of small amount of HCI
- (C) Addition of small amount of NaOH
- (D) None will change the pH significantly.
- **A-2.** Which of the following may be added to one litre of water to act a buffer?
 - (A) One mole of CH₃COOH and one mole of HCI
 - (B) One mole of NH₄OH and one mole of NaOH
 - (C) One mole of NH₄Cl and one mole of HCl
 - (D) One mole of CH₃COOH and 0.5 mole of NaOH
- **A-3.** In which of the following respective volume ratios should 0.1 M NH₄OH solution & 0.1 M HCl solution be mixed, so that the resulting solution behaves like a buffer solution?

(A) 1:1

(B) 2:1

(C) 1:2

(D) No such volume ratio is possible

Section (B): pH Calculation: Buffer solutions generated from Monobasic acid / Monoacidic base

Commit to memory:

pH Calculation: Buffer solutions generated from Monobasic acid / Monoacidic base:

(i) pH of a buffer solution consisting of a weak acid (HA; C1 concentration) and its salt with a strong

base (NaA; C_2 concentration of anion): $pH = pK_a + log \frac{[Anion of Salt]}{[Acid]}$

(ii) pH of a buffer solution consisting of a weak base (B; C1 concentration) and its salt with a strong acid

(BH+Cl-; C_2 concentration of cation) : pOH = pK_b + log $\frac{[Cation of Salt]}{[Base]}$

- **B-1.** Fear or excitement generally cause one to breathe rapidly and it results in the decrease of concentration of CO₂ in blood. In what way, it will change pH of blood?
 - (A) pH will significantly increase

(B) pH will significantly decrease

(C) No significant change in pH

- (D) pH will be 7
- **B-2.** pH of a mixture containing 0.1 M X^- and 0.2 M HX is : [pK_b (X^-) = 4]

(A) 4 + log 2

(B) $4 - \log 2$

(C) 10 + log 2

(D) $10 - \log 2$

B-3. K_a for HCN is 5×10^{-10} . For maintaining a constant pH of 9, the volume of 5 M KCN solution required to be added to 10 mL of 2 M HCN solution is :

(A) 4 mL

(B) 8 mL

(C) 2 mL

(D) 10 mL

B-4. A buffer solution made up of BOH and BCl of total molarity 0.29 M has pH = 9.6 and $K_b = 1.8 \times 10^{-5}$. Concentration of salt and base respectively is :

(A) 0.09 M and 0.2 M

(B) 0.2 M and 0.09 M

(C) 0.1 M and 0.19 M

(D) 0.19 M and 0.1 M

TORIC Equilibrium (Elemeniary)	<i>Ionic</i>	Equilibrium ((Elementary)
--------------------------------	--------------	---------------	--------------

PART - III: MATCH THE COLUMN

- **1.** At the equivalence point of titration of (equivalence point = the point at which reaction is just complete):
 - (A) a strong acid with a strong base

(p) pH < 7

(B) a weak acid with a strong base

(q) pH > 7

(C) a weak base with a strong acid

(r) pH = 7

(D) a weak acid with a weak base

(s) pH may be less than or greater than 7

Exercise-2

Marked guestions are recommended for Revision.

PART - I: ONLY ONE OPTION CORRECT TYPE

1. To prepare a buffer of pH 8.26 amount of (NH₄)₂ SO₄ to be added to 500 mL of 0.01 M NH₄OH solution

is : $[pK_a(NH_4^+) = 9.26]$ (A) 0.05 mole

(B) 0.025 mole

(C) 0.10 mole

- (D) 0.005 mole
- 2. A weak acid (HA) after treatment with 12 mL of 0.1 M strong base (BOH) solution has a pH of 5. At the end point, the volume of same base solution required is 27 mL. Ka of acid is:

(A) 1.8×10^{-5}

- (B) 8×10^{-6}
- (C) 1.8×10^{-6}
- (D) 8×10^{-5}

PART - II: SINGLE AND DOUBLE VALUE INTEGER TYPE

- 1.3 How many of the following statement(s) is/are correct for making a buffer solution?
 - (i) It can be formed by mixing equal concentrations of HCl and CH₃COONa
 - (ii) It can be formed by mixing equal concentrations of HNO₃ and NH₃
 - (iii) It can be formed by mixing equal concentrations of HCOOH and Aniline.
 - (iv) It can be formed by mixing equal volumes of NH₄OH and HClO₄.
 - (v) It can be formed by mixing equal volumes of HCN and KOH.
 - (vi) There is no change in the pH of a buffer solution on adding small amount of a strong acid/base.
 - (vii) The concentrations of acid and base being mixed must be different to form a buffer.
 - (viii) The volumes of acid and base being mixed must be different to form a buffer.
 - (ix) The concentrations and volumes of acid and base being mixed must be different to form a buffer.
- 1 M benzoic acid (pKa = 4.2) and 1M C₆H₅ COONa solutions are given separately. What is the volume of benzoic acid required to prepare a 93 mL buffer solution of pH = 4.5 ?

PART - III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

A buffer solution can be prepared from a mixture of :

[JEE-1999, 3/80]

- (A) Sodium acetate and acetic acid in water
- (B) Sodium acetate and hydrochloric acid in water
- (C) Ammonia and ammonium chloride in water
- (D) Ammonia and sodium hydroxide in water

Exercise-3

JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

JEE(MAIN) OFFLINE PROBLEMS

1. The pKa of a weak acid (HA) is 4.5. The pOH of an aqueous buffered solution of HA, in which 50% of the acid is ionized, is : [AIEEE-2007, 3/120]

(1) 9.5

1.

(2) 7.0

(3) 4.5

(4) 2.5

_Ion	ic Equilibrium	(Eleme	ntary),								_
			J	EE(MAI	N) ON	LINE P	ROBL	EMS			
1.	In some solution strong bas						known a	as:			•
	(1) Ideal solu	tions	(2) C	Colloideal	solutins	(3) tru	e solutio			ne (11-04-14 r solutions	4), 4/120]
2.	Addition of s constant of H						ation in	the buffe	er solution v		
	(1) 10 : 1		(2) 4	: 5		(3) 1 :		(Wall) 2	(4) 5 : 4	5 (00-0 4 -17)	, -// 120]
3.	50 mL of 0.2 4.75, the pH (1) 4.75			ill be :	treated	with 25 i	[JEE			f ammonia s e (09-04-17)	
4.	20 mL of 0.1 mixture is : (p (1) 9.0			4.7)	ded to 3	30 mL of	[JEE(ne pH of the (09-01-19),	
	Answ	vers									
					VED	CICE	4				
					XER(- '				
A-1.	Yes, M ₁ V ₁ >	M2 V2.			PA	RT – I	A-2.	S ₁ & 3	S ₂ ; S ₁ & S ₃	: S ₂ & S ₄ .	
B-1.	(a) 4.62	(b) 8.	56	B-2.	0.02	М	B-3.			H = 9.74 ; (b) 8.78
					PAI	RT - II					
A-1.	(D)	A-2.	(D)		A-3.	(B)		B-1.	(C)	B-2.	(D)
B-3.	(C)	B-4.	(A)		DAD	RT - III					
1.	$(A) \rightarrow R; (B)$	→ O· (C) → P· (D) → S	PAI	X 1 - III					
	(/ // / / ()	, Q, (O	, , , (XER	CISE	_ 2				
				<u> </u>		RT - I					
1.	(B)	2.	(B)		1.7	IX 1 - 1					
	` ,		,		PAI	RT - II					
1.	5 [(i) to (v)]	2.	31								
					PAF	RT - III					
1.	(A) (B)(C)										
				E	XER	CISE	- 3				
			JE	E(MAII	N) OFF	LINE F	PROBL	EMS			
1.	(1)										
			J	EE(MAI	IN) ON	LINE P	ROBL	EMS			
1.	(4)	2.	(1)		3.	(3)		4.	(1)		