IONIC EQUILIBRIUM-I

Exercise-1

> Marked questions are recommended for Revision.

PART - I : SUBJECTIVE QUESTIONS

Section (A) : Acid-Base Concepts

Commit to memory :

Polyprotic Arrhenius acid : 2 or more replaceable H per acid molecule. Polyprotic Arrhenius base : 2 or more replaceable OH per base molecule. Acid - 1 H⁺ = its Conjugate Base

Base + 1 H⁺ = its Conjugate Acid

Amphiprotic species : H⁺ donor as well as acceptor.

Lewis acid : Lone pair acceptor

Lewis base : Lone pair donor

- A-1. (a) Select Polyprotic Arrhenius acids from the following : H₃PO₂, H₃PO₃, H₃BO₃, HCOOH, (COOH)₂.
 (b) Write conjugate acids of SO₄²⁻, RNH₂, NH₂⁻, C₂H₅OC₂H₅, F⁻
 - (c) Write conjugate base of HNO_2 , OH^- , H_2CO_3 , $HCIO_4$.
 - (d) Write conjugate acid and conjugate base of following amphoteric species : HS⁻, NH₃, C₂H₅OH, H₂O
 - (e) Classify the following into Lewis acid & Lewis base : H⁺, FeCl₃, (CH₃)₃N, F⁻, CH₂
- A-3. Comment upon H₂O as an Arrhenius acid/base, Bronsted–Lowry acid/base and Lewis acid/base.

Section (B) : Properties of water, pH scale, Autoprotolysis

Commit to memory :

$$\begin{split} &\mathsf{K}_{\mathsf{w}} = [\mathsf{H}^+] \, [\mathsf{OH}^-] = 10^{-14} \text{ at } 25^\circ \mathsf{C} \\ & [\mathsf{H}^+] = [\mathsf{OH}^-] \text{ (in water / a neutral solution)} \\ & \mathsf{pH} = -\mathsf{log} \, [\mathsf{H}^+] \text{ ; } \mathsf{pOH} = -\mathsf{log} \, [\mathsf{OH}^-] \\ & \mathsf{For} \, \mathsf{H}_2\mathsf{O}, \, \mathsf{pH} \, \& \, \mathsf{pOH} \, \downarrow \, \mathsf{with} \, \uparrow \, \mathsf{in temperature} \\ & \mathsf{pH} + \mathsf{pOH} = \mathsf{pK}_{\mathsf{w}} = 14 \text{ (for an aqueous solution at } 25^\circ \mathsf{C}) \\ & \mathsf{K}_{\mathsf{self ionisation}} \text{ of } \mathsf{HA} = [\mathsf{A}^-] \, [\mathsf{H}_2\mathsf{A}^+] \end{split}$$

B-1. At -50° C, liquid NH₃ has ionic product is 10^{-30} . How many amide (NH₂⁻) ions are present per mm³ in pure liquid NH₃? (Take N_A = 6 × 10^{23})

Section (C) : Relation between K_a and K_b for conjugate acid - base pair

Commit to memory :

 $K_{a \ (acid)} \times K_{b \ (conjugate \ base)} = K_{w} \\ p K_{a \ (acid)} + p K_{b \ (conjugate \ base)} = p K_{w} = 14 \ (at \ 25^{\circ}C)$

- **C-1.** What is ionisation constant of HOCI, if K_b of OCI⁻ = 4 × 10⁻¹⁰ ? Also find its pKa.
- **C-2.** K_{a_1} , K_{a_2} and K_{a_3} values for H₃PO₄ are 10⁻³, 10⁻⁸ and 10⁻¹² respectively. If K_w (H₂O) = 10⁻¹⁴, then :

(i) What is dissociation constant of HPO_4^{2-} ?

- (ii) What is K_b of HPO₄²⁻?
- (iii) What is K_b of H₂PO₄-?
- (iv) What is order of K_b of PO₄³⁻ (K_{b_3}), HPO₄²⁻(K_{b_2}) and H₂PO₄⁻(K_{b_1})?

E-2. Prove that degree of dissociation of a weak monoprotic acid is given by :

$$\alpha = \frac{1}{1+10^{(pK_a-pH)}}$$

where K_a is its dissociation constant.

- **E-3.** Calculate the pH of a 500 mL solution of 1 M BOH. ($K_b = 2.5 \times 10^{-5}$)
- **E-4.** Whose pH increases by greater value on dilution from initial pH = 2? (a) CH₃COOH solution (b) HCl solution.

Section (F) : Salt hydrolysis, pH calculation : Solutions of salt of monoprotic acid and monoacidic base

Commit to memory :

Salt of strong acid and weak base : $K_h \times K_b = K_w$; $h = \sqrt{\frac{K_h}{c}}$; $pH = \frac{1}{2} [pK_w - pK_b - \log c]$ (valid if h < 0.1 or 10%) Salt of strong base and weak acid : $K_h \times K_a = K_w$; $h = \sqrt{\frac{K_h}{c}}$; $pH = \frac{1}{2} [pK_w + pK_a + \log c]$ (valid if h < 0.1 or 10%)

Salt of weak acid and weak base : $K_h \times K_a \times K_b = K_w$; $\left(\frac{h}{1-h}\right) = \sqrt{K_h}$; $pH = \frac{1}{2} \left[pK_w + pK_a - pK_b\right]$

- F-1. Which of the following ions or compounds in a solution tend to produce an acidic, a basic or a neutral solution ? (a) $C_2H_5O^-$ (b) Cu^{+2} (c) SO_3^{2-} (d) F^- (e) NH_4^+ (f) CH_3COONa (g) KNO_3 (h) NaOCI (i) Na_2CO_3 (j) $ZnCl_2$
- **F-2.** Calculate pH of 0.2 M aqueous solution of sodium butyrate. Given : K_a of butyric acid = 2 × 10⁻⁵.
- **F-3.** A 0.25 M solution of pyridinium chloride C₅H₅NH⁺Cl⁻ was found to have a pH of 2.75. What is K_b for pyridine, C₅H₅N ?
- **F-4.** Calculate the percentage hydrolysis & the pH of 0.02 M CH₃COONH₄. $K_b(NH_3) = 1.6 \times 10^{-5}$, $K_a(CH_3COOH) = 1.6 \times 10^{-5}$.

PART - II : ONLY ONE OPTION CORRECT TYPE

Section (A) : Acid-Base Concepts

Commit to memory : Polyprotic Arrhenius acid : 2 or more replaceable H per acid molecule. Polyprotic Arrhenius base : 2 or more replaceable OH per base molecule. Acid – 1 H⁺ = its Conjugate Base Base + 1 H⁺ = its Conjugate Acid Amphiprotic species : H⁺ donor as well as acceptor. Lewis acid : Lone pair acceptor Lewis base : Lone pair donor

A-1. ▲ An acid with molelcular formula C₇H₆O₃ forms three types of sodium salts. i.e. C₇H₅O₃Na, C₇H₄O₃Na₂ and C₇H₃O₃Na₃. The basicity of the acid is :
 (A) One
 (B) Two
 (C) Three
 (D) Six

A-2. Select the incorrect option :
(A) H₃PO₄ is a tribasic acid.
(C) Sr(OH)₂ is a strong diacidic base.

- (B) H₃BO₃ is not an Arhenius acid.
- (D) NH₃.H₂O is a strong monoacidic base.

A-3.	In the reaction $HC_2O_4^-$ (aq) + PO_4^{3-} (aq) =	\implies HPO ₄ ^{2–} (aq) + C ₂ O ₄ ^{2–} (aq), which are the two Bronsted
	bases ?	
	(A) HC ₂ O ₄ ⁻ and PO ₄ ³⁻	(B) HPO_4^{2-} and $C_2O_4^{2-}$
	(C) $HC_2O_4^-$ and HPO_4^{2-}	(D) PO_4^{3-} and $C_2O_4^{2-}$
	- , , , , , , , , , , , , , , , , , , ,	

A-4. The following equilibrium is established when HClO₄ is dissolved in weak acid HF solvent : $HF + HClO_4 \rightleftharpoons ClO_4^- + H_2F^+$ Which of the following is correct set of conjugate acid base pair ? (A) HF and HClO₄ (B) HF and ClO₄⁻ (C) HF and H₂F⁺ (D) HClO₄ & H₂F⁺

A-5. Which of the following correctly explains the nature of boric acid in aqueous medium ? (A) $H_3BO_3 \xrightarrow{H_2O} H_3O^+ + H_2BO_3^-$ (B) $H_3BO_3 \xrightarrow{2H_2O} 2H_3O^+ + HBO_3^{2^-}$ (C) $H_3BO_3 \xrightarrow{3H_2O} 3H_3O^+ + BO_3^{2^-}$ (D) $H_3BO_3 \xrightarrow{H_2O} B(OH)_4^- + H^+$

Section (B) : Properties of water, pH scale, Autoprotolysis

Commit to memory :

 $\begin{array}{l} \mathsf{K}_{\mathsf{w}} = [\mathsf{H}^+] \left[\mathsf{O}\mathsf{H}^-\right] = 10^{-14} \text{ at } 25^\circ\mathsf{C} \\ [\mathsf{H}^+] = \left[\mathsf{O}\mathsf{H}^-\right] (\text{in water } / \text{ a neutral solution}) \\ \mathsf{p}\mathsf{H} = -\mathsf{log} \left[\mathsf{H}^+\right] ; \ \mathsf{p}\mathsf{O}\mathsf{H} = -\mathsf{log} \left[\mathsf{O}\mathsf{H}^-\right] \\ \mathsf{For } \mathsf{H}_2\mathsf{O}, \ \mathsf{p}\mathsf{H} \And \mathsf{p}\mathsf{O}\mathsf{H} \downarrow \text{ with } \uparrow \text{ in temperature} \\ \mathsf{p}\mathsf{H} + \mathsf{p}\mathsf{O}\mathsf{H} = \mathsf{p}\mathsf{K}_{\mathsf{w}} = 14 \text{ (for an aqueous solution at } 25^\circ\mathsf{C}) \\ \mathsf{K}_{\mathsf{self ionisation}} \text{ of } \mathsf{H}\mathsf{A} = [\mathsf{A}^-] \left[\mathsf{H}_2\mathsf{A}^+\right] \end{array}$

- **B-1.** Which of the following expression is not true ?
 - (A) $[H^+] = [OH^-] = \sqrt{K_w}$ for a neutral solution at all temperatures.
 - (B) $[H^+] > \sqrt{K_w} \& [OH^-] < \sqrt{K_w}$ for an acidic solution.
 - (C) $[H^+] < \sqrt{K_w} \& [OH^-] > \sqrt{K_w}$ for an alkaline solution.
 - (D) $[H^+] = [OH^-] = 10^{-7} \text{ M}$ for a neutral solution at all temperatures .
- B-2. pOH of H₂O is 7 at 298 K. If water is heated to 350 K, which of the following statement should be true ?
 (A) pOH will decrease.
 (B) pH will increase.
 (C) pOH will remain 7.
 (D) Both (A) and (B).
- **B-3.** K_w of H₂O at 373 K is 1 × 10⁻¹². Identify, which of the following is incorrect : (A) pH + pOH = 12, for every aqueous solutions. (B) pH of H₂O is 6.
 - (C) $\alpha_{\text{H}_{\text{O}}}$ has increased from its value at 298 K.

(D) H₂O is acidic.

Committe

B-4. In pure HCOOH liquid, concentration of HCOO⁻ = 10^{-3} M at 27°C. What is the self ionisation constant at 27°C (K = [HCOOH₂+] [HCOO⁻]) ? (A) 10^{-3} (B) 10^{3} (C) 10^{6} (D) 10^{-6}

Section (C) : Relation between K_a and K_b for conjugate acid-base pair

Comi		y : onjugate base) = K _w o (conjugate base) = pK _w = 14 (at 25°C	C)		
C-1.	Given % Which relation	$HF + H_2O \stackrel{K_a}{\longleftrightarrow} H_3O^+ + F^-$ $F^- + H_2O \stackrel{K_b}{\longleftrightarrow} HF + OH^-$			
	(A) $K_b = \frac{1}{K_a}$		(C) Ka.Kb.Kw = 1	(D) $\frac{K_a}{K_b} = K_w$	
	K K _a			K _b	

10///0	Equilibrium (Eleme	nicer y)		
C-2.	 (B) K_a (strong acid). K (C) K_a (weak acid). K_t 	(conjugate weak base) (conjugate weak base)	e) = K _w	
Section	containing mixtu	ire of two or more	strong acids, Solut	base solutions, Solutions ions containing mixture of ixture of strong acid and
Comn				of H⁺ ions per acid molecule. < number of OH⁻ ions per base
	Mixture of two strong		$\frac{V_1 + [H^+]_2 V_2}{V_1 + V_2}$	
	Mixture of two strong	bases : $[OH^-]_f = \frac{[OH^-]_f}{I}$	$\frac{H^{-}]_{1}V_{1} + [OH^{-}]_{2}V_{2}}{V_{1} + V_{2}}$	
	Mixture of a strong ac	cid and a strong base :	$[H^{*}]V_{1} > [OH^{-}]V_{2}$ $[H^{*}] = \frac{[H^{*}]V_{1} - [OH^{-}]V_{2}}{V_{1} + V_{2}}$ final solution will	If $[OH^-]V_2 > [H^+]V_1$ $[OH^-] = \frac{[H^+]V_2 - [OH^-]V_1}{V_1 + V_2}$ final solution will
			be acidic in nature	Further, $[H^{\dagger}]_r = \frac{10^{-14}}{[OH^{-}]_r}$ (at 25°C)
D-1.		of 0.016 M HCI (aq) is : (B) 3 × 10 ^{–10} M	(C) 6.25 × 10 ⁻¹³ M	(D) 1.6 × 10 ^{−3} M
D-2.১	How many moles of from 12 to 11 ? (A) 0.009	NaOH must be remove (B) 0.01	ed from one litre of its at (C) 0.09	queous solution to change its pH (D) 0.1
D-3.	Which statement/relat (A) pH of aqueous so	•	0.1M HCl, 0.1M HI at 25⁰	C is not equal.
	(B) For a dilute solution	on, pH = $-\log\frac{1}{[H^+]}$		
	(C) At 25°C, the pH of (D) The value of pK _w a			
D-4.	Upon mixing equal vo will have pH : (A) equal to 3 (C) closer to 4 than 2	olume of two solutions	of strong acids having pl (B) closer to 2 than 4 (D) closer to 3 than 2	
D-5.	On adding 0.04 g soli	d NaOH to a 100 mL, $\frac{1}{2}$	$\frac{M}{200}$ Ba(OH) ₂ solution, det	ermine change in pH :
	(A) 0	(B) +0.3	(C) –0.3	(D) +0.7
D-6.	Upon mixing equal v resulting solution : (A) may be less than (C) will be equal to 7	-	d solution (HA) and a st (B) may be greater th (D) Both (A) & (B)	rong base (BOH) solution, pH of nan 7
D-7.১	(A) 100 mL of M/10 H	g solutions will have pH ICl + 100 mL of M/10 Na Cl + 45 mL of M/10 NaO	aOH	

(C) 10 mL of M/10 HCl + 90 mL of M/10 NaOH (D) 75 mL of M/5 HCl + 25 mL of M/5 NaOH.

Section (E) : Ostwald dilution law, pH calculation : Solutions of weak monoprotic acid, Solutions of weak monoacidic base

Comr	nit to memory :	F A ± 37		
	AB (aq) ← A+ (a	ıq) + B⁻ (aq) ; K _{eq} = [A⁺][[Af	$\frac{[B^{-}]}{[B]]} = \frac{C\alpha \cdot C\alpha}{C(1-\alpha)} = \frac{C\alpha^{2}}{(1-\alpha)}$	
	$\alpha = \sqrt{\frac{K_{eq}}{C}}$; [A ⁺] =	$[B^-] = C \alpha = \sqrt{CK_{eq}}$ (both	n valid if α < 0.1 or 10%)	
	Weak Acid (monop	rotic) solution : $\alpha = \sqrt{\frac{K_a}{C}}$	$; pH = \frac{1}{2} (pK_a - \log C) (I)$	both valid if α < 0.1 or 10%)
	Weak base (monoa	icidic) solution : $\alpha = \sqrt{\frac{K_{b}}{C}}$; pOH = $\frac{1}{2}$ (pK _b – log C)	(both valid if α < 0.1 or 10%)
	Acid strength of H Acid strength of H	$\frac{A_1}{A_2} = \frac{\alpha_1}{\alpha_2} = \sqrt{\frac{K_{a_1}}{K_{a_2}}}; \frac{Basic}{Basic}$	$\frac{\text{strength of BOH}_1}{\text{strength of BOH}_2} = \frac{\alpha_1}{\alpha_2} = \frac{\alpha_1}{\alpha_2}$	$=\sqrt{\frac{K_{b_1}}{K_{b_2}}}$
E-1.	Which of the followi (A) 1 M NH_3	ing has the maximum dec (B) 0.001 M NH ₃	gree of ionisation ? (C) 0.1 M NH₃	(D) 0.0001 M NH₃.
E-2.	K _a for formic acid a acids is :	and acetic acid are 1.8 >	< 10 ⁻⁴ and 1.8 × 10 ⁻⁵ res	spectively. The relative strength of
	(A) 10 : 1	(B) 1 : 10	(C) 1 : √10	(D) √10 : 1
E-3.	Ka for a monobasic (A) 10 ^{–10}	acid, whose 0.1 M solution (B) 10 ⁻⁸	on has pH of 4.5, is : (C) √10 × 10 ^{_4}	(D) √10 × 10 ⁻⁶
Saati				
Secu	monoacidic ba	2		alt of monoprotic acid and
	nit to memory :		<u></u>	
			(<u>-</u>	K₀–log c] (valid if h < 0.1 or 10%)
	of strong base and w	veak acid : $K_h \times K_a = K_w$;	$h = \sqrt{\frac{K_h}{c}}; pH = \frac{1}{2} [pK_w + p]$	K _a +log c] (valid if h < 0.1 or 10%)
			•	
Salt	of weak acid and we		K_w ; $\left(\frac{h}{1-h}\right) = \sqrt{K_h}$; pH =	$\frac{1}{2}[pK_w+pK_a-pK_b]$
Salt		ak base : $K_h \times K_a \times K_b = 1$	due to behaviour of	
	Aqueous solution o (A) acidic ; NH4+ The chloride salt of	ak base : K _h × K _a × K _b = I f NH₄Cl is in nature (B) alkalline ; NH₄ ⁺ a certain weak monoacio Given that the ionic pro	due to behaviour of (C) acidic ; Cl [_] dic organic base is hydrol	_ ion in solution :
F-1.	Aqueous solution of (A) acidic ; NH ₄ ⁺ The chloride salt of solution at 25°C. dissociation constant (A) \approx 1 x 10 ⁻¹⁰	ak base : K _h × K _a × K _b = f NH₄Cl is in nature (B) alkalline ; NH₄ ⁺ a certain weak monoacid Given that the ionic pro nt of the base? (B) ≈ 1 x 10 ⁻⁹ lution of the following sale NaCN < HCl	due to behaviour of (C) acidic ; Cl [_] dic organic base is hydrol oduct of water is 10 ⁻¹⁴	_ ion in solution : (D) alkalline ; Cl [_] ysed to an extent of 3% in its 0.1M at this temperature, what is the (D) 3.33 x 10 ⁻¹⁰ aCl < NaCN
F-1.	Aqueous solution o (A) acidic ; NH ₄ + The chloride salt of solution at 25°C. dissociation constant (A) \approx 1 x 10 ⁻¹⁰ The pH of 0.1 M so (A) NaCl < NH ₄ Cl < (C) NaCN < NH ₄ Cl The degree of hydrighted solution is found to	ak base : $K_h \times K_a \times K_b = 1$ f NH ₄ Cl is in nature (B) alkalline ; NH ₄ + a certain weak monoacid Given that the ionic pro- nt of the base? (B) $\approx 1 \times 10^{-9}$ lution of the following sal- NaCN < HCl < NaCl < HCl rolysis of a salt of weak	due to behaviour of (C) acidic ; Cl ⁻ dic organic base is hydrol oduct of water is 10 ⁻¹⁴ (C) 3.33 x 10 ⁻⁹ ts increases in the order : (B) HCl < NH ₄ Cl < N (D) HCl < NaCl < Na c monobasic acid and w	_ ion in solution : (D) alkalline ; Cl [_] ysed to an extent of 3% in its 0.1M at this temperature, what is the (D) 3.33 x 10 ⁻¹⁰ aCl < NaCN
F-1. F-2.æ	Aqueous solution o (A) acidic ; NH ₄ + The chloride salt of solution at 25°C. dissociation constant (A) \approx 1 x 10 ⁻¹⁰ The pH of 0.1 M so (A) NaCl < NH ₄ Cl < (C) NaCN < NH ₄ Cl The degree of hyd	ak base : $K_h \times K_a \times K_b = 1$ f NH ₄ Cl is in nature (B) alkalline ; NH ₄ + a certain weak monoacid Given that the ionic pro- nt of the base? (B) $\approx 1 \times 10^{-9}$ lution of the following sal- NaCN < HCl < NaCl < HCl rolysis of a salt of weak	due to behaviour of (C) acidic ; Cl ⁻ dic organic base is hydrol oduct of water is 10 ⁻¹⁴ (C) 3.33 x 10 ⁻⁹ ts increases in the order : (B) HCl < NH ₄ Cl < N (D) HCl < NaCl < Na c monobasic acid and w	_ ion in solution : (D) alkalline ; Cl ⁻ ysed to an extent of 3% in its 0.1M at this temperature, what is the (D) 3.33 x 10 ⁻¹⁰ aCl < NaCN aCN < NH₄Cl eak monoacidic base in its 0.1 M

PART - III : MATCH THE COLUMN

1. Match the Column.

	Column-I		Column-II
(A)	HCI	(p)	Lewis acid
(B)	KOH	(q)	Arrhenius acid
(C)	NH ₃	(r)	Lewis base
(D)	BF₃	(s)	Arrhenius base

Exercise-2

> Marked questions are recommended for Revision.

PART - I : ONLY ONE OPTION CORRECT TYPE

1.	room temperature. The c in pure fomic acid are co	density of formic acid is nverted to formate ion	s 1.15 g/cm ³ . What perc ?	-] has been estimated as 10 ⁻⁶ at entage of formic acid molecules
	(A) 0.002%	(B) 0.004%	(C) 0.006%	(D) 0.008%
2.	pK _a for an acid HA is 6. (A) 1×10^{-6}	The value of K for the r (B) 1 × 10 ⁸	eaction A⁻ + H₃O⁺ ╤═ (C) 1 × 10⁻ ⁸	$\stackrel{>}{=}$ HA + H ₂ O is : (D) 1 × 10 ⁶
3.	10 ^{–6} M HCI is diluted to 1 (A) 6	100 times. Its pH is : (B) 8	(C) 6.98	(D) 7.02
4.	Which of the following so (A) 10^{-8} M HCl solution (C) 2 × 10^{-6} M Ba(OH) ₂ s		ly equal to 8 ? (B) Solution containing (D) 10 ^{–8} M NaOH solut	
5.24	4. The pH of the resulting	g solution will be : (B) 3.3	(C) 3.7	her strong acid solution of pH =
6.	% dissociation of a 0.024 (A) 0.25%	4 M solution of a weak a (B) ≈ 29%	acid HA (Ka = 2 × 10 ⁻³) is (C) 25%	s : (D) ≈ 0.29%
7.	For a weak base BOH, K (A) 10	K₀ = 10 ⁻⁴ . Calculate pH (B) 9.79	of 10 ⁻⁴ M BOH solution. (C) 8	(Take log 6.2 = 0.79) (D) None of these
8.2	when each solution has o			pH 7, 9, 10 and 11 respectively, : (D) HZ
	PART - II : SI	NGLE AND DOL	JBLE VALUE IN1	EGER TYPE
1.24	If an acid-base reaction following statements are		— HB(aq) + A⁻ (aq) ha	as $K_{eq} = 10^{-4}$, how many of the
2.	 (i) HB is stronger acid that (iii) HA and HB have the (v) A⁻ is stronger base th (vii) A⁻ is the conjugate b (ix) A⁻ can be F⁻ and B⁻ c What is pOH of an aque 	an HA same acidic strength aan B⁻ base of acid HA. can be CN⁻. eous solution with [H⁺] :	= 10^{-2} M and K _w = 2 × 1	than A⁻
	dividing by 2 and round it	t off to the nearest who	le number.	
3.	Percentage ionisation of water at this temperature			: 10^{-7} %. Calculate K _w and pH of

4. 0.1 mole HCl is dissolved in distilled water of volume V. Then, at $\lim_{V \to \infty}$, (pH)_{solution} is equal to

- **5.** Determine $pK_a(H_2O) + pK_a(H_3O^+)$.
- 6. What volume (in L) of water must be added to 1 L of 0.1 M solution of B (weak organic monoacidic base; ionisation constant = 10^{-5}) to triple the % ionisation of base ?
- **7.** If $pH_{x\%}$ is the pH of a 1 M weak monoprotic acid which is x % ionised, then find the value of $\left\lceil \underline{pH}_{50\%} \right\rceil \times 100.$

 $\left\lfloor \frac{\mathsf{pH}_{50\%}}{\mathsf{pH}_{10\%}} \right\rfloor \times 100$

- **8.** If the equilibrium constant for the reaction of weak acid HA with a strong base is 10⁹, then determine pH of 0.1 M NaA solution.
- **9.** What is the concentration of CH₃COOH(aq) in a solution prepared by dissolving 0.01 mole of $NH_4^+CH_3COO^-$ in 1 L H₂O ? Report your answer after multiplying by 9 × 10⁵. [K_a(CH₃COOH) = 1.8 × 10⁻⁵; K_b(NH₃.H₂O) = 1.8 × 10⁻⁵]

PART - III : ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

- Which statement(s) is/are correct ?
 - (A) All Bronsted bases are also Lewis bases.
 - (B) All Bronsted acids are not Lewis acids.
 - (C) Most cations are acids and most anions are bases.
 - (D) All Bronsted bases are also Arrhenius bases.
- Select the incorrect statement(s) :

 (A) NH₄⁺ (aq) is a strong acid.
 (C) H⁻ is a weak base.
- (B) CH₃COO⁻ (aq) is a weak base.
- (D) HS⁻ is a weak acid as well as a weak base.

3. For pure water :

1.

- (A) $\dot{p}K_w$ increases with decrease in temperature.
- (B) Absolute dissociation constant decreases with decrease in temperature.
- (C) α_{H_2O} increases with decrease in temperature.
- (D) Both pH and pOH decrease with rise in temperature.
- 4. One litre of a strong acid solution contains 10⁻⁵ moles of H⁺ ions. Then :
 - (A) pOH = 9.
 - (B) Percentage ionisation of water in solution is 1.8×10^{-9} %.
 - (C) Number of OH⁻ ions per mL of solution = 6.022×10^{15} .
 - (D) $[H^+]_{\text{from H}_2\text{O}} = 10^{-9} \text{ M}$
- 5. Equal volumes of 0.2 M HCl and 0.2 M Sr(OH)₂ are mixed. Which of the following statement is/are correct?
 - (A) $[Sr^{2+}] = 0.1 \text{ M}$ (C) pH of resulting solution = 13

(B) [CI⁻] = 0.1 M(D) Solution is neutral.

6. If $0.1 \text{ M CH}_3\text{COOH}$ (K_a = 1.8×10^{-5}) is diluted at 25°C, then which of the following will be correct ? (A) [H⁺] will increase. (C) number of H⁺ ions will increase. (D) K_a will increase.

- 7. Degree of hydrolysis for a salt of strong acid and weak base :
 - (A) is independent of dilution
 - (B) increases with dilution
 - (C) increases with decrease in $K_{\rm b}$ of the bases
 - (D) decreases with decrease in temperature.
- 8. Equal volumes of following solutions are mixed, in which case the pH of resulting solution will be average value of pH of two solutions.
 - (A) Aqueous HCl of pH = 2, aqueous NaOH of pH = 12
 - (B) Aqueous HCl of pH = 2, aqueous HCl of pH = 4
 - (C) Aqueous NaOH of pH = 12, aqueous NaOH of pH = 10
 - (D) Aqueous CH₃COOH of pH = 5, aqueous NH₃ of pH = 9. [K_a (CH₃COOH) = K_b (NH₃)]

	PART - IV : COMPREHENSION
Read	the following passages carefully and answer the questions.
Comp	prehension # 1
	pH calculation upon dilution of a strong acid solution is generally done by equating n _{H⁺} in original solution & diluted solution. However, if strong acid solution is very dilute, then H ⁺ from water are also to be considered.
4.	Take log $3.7 = 0.568$ and answer the following questions.
1.24	A 1 litre solution of $pH = 4$ (solution of a strong acid) is added to the 7/3 litre of water. What is the pH of resulting solution ?
	(A) 4.52 (B) 4.365 (C) 4.4 (D) 4.432
2.24	A 1 litre solution of $pH = 6$ (solution of a strong acid) is added to the 7/3 litre of water. What is the pH ofresulting solution ? Neglect the common ion effect on H2O.(A) 6.4(B) 6.52(C) 6.365(D) 6.432
Comp	prehension # 2 Consider a solution of CH ₃ COONH ₄ which is a salt of weak acid & weak base. The equilibrium involved in the solutions are : CH ₃ COO ⁻ + H ₂ O \rightleftharpoons CH ₃ COOH + OH ⁻ (1) NH ₄ ⁻ + H ₂ O \rightleftharpoons CH ₃ COO + H +(2) H ⁺ + OH ⁻ \rightleftharpoons H ₂ O \implies CH ₃ COO + H ⁺ (3) If we add these three reactions, then the net reaction is : CH ₃ COO ⁻ + NH ₄ ⁺ + H ₂ O \rightleftharpoons CH ₃ COOH + NH ₃ .H ₂ O(4) Both CH ₃ COO ⁻ and NH ₄ ⁺ get hydrolysed independently and their hydrolysis depends on : (i) their initial concentration (ii) the value of K _h which is $\frac{K_w}{K_a}$ for CH ₃ COO ⁻ and $\frac{K_w}{K_b}$ for NH ₄ ⁺ . Since both of the ions were produced from the same salt, their initial concentrations are same. Therefore unless & until the value of $\frac{K_w}{K_a}$ and $\frac{K_w}{K_b}$ or K _a and K _b is same, the degree of hydrolysis of ion can't be same. To explain why we assume that degree of hydrolysis of cation and anion is same, we need to now look at the third reaction i.e., combination of H ⁺ and OH ⁻ ions. It is obvious that this reaction happens only because one reaction produced H ⁺ ion and the other produced OH ⁻ ions. We can also note that this reaction causes both the hydrolysis reaction to occur more since their product ions are being consumed. Keep this thing in mind that the equilibrium which has smaller value of equilibrium constant is affected more by the common ion effect. For the same reason, if for any reason a reaction is made to occur to a greater extent by the comsumption of any one of the product ion, the reaction with the smaller value of equilibrium constant tends to get affected more. Therefore we conclude that firstly the hydrolysis of both the ions occurs more in the presence of each other (due to consumption of the product ions) than in each other's absence. Secondly, the hydrolysis of the ion which occurs to a lesser extent (due to smaller value of K _h) is affected more than the one whose K _h is greater. Hence, we can see that
J . (A	

- 4.2
- For 0.1 M CH₃COONH₄ salt solution given, K_a (CH₃COOH) = K_b (NH₃.H₂O) = 2 × 10⁻⁵. In this case, degree of hydrolysis of cation and anion are :
 - (A) exactly same
 - (B) slightly different
 - (C) can't say
 - (D) different but can be take approximatly same

Exercise-3

JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

		JEE(MAIN) OFF	LINE PROBLEMS	
1.	The conjugate base c (1) PO ₄ ^{3–}	f H₂PO₄⁻ is : (2) P₂O₅	(3) H ₃ PO ₄	[AIEEE-2004, 3/225] (4) HPO4 ^{2–}
2.	What is the conjugate (1) O ₂	base of OH⁻ ? (2) H₂O	(3) O [_]	[AIEEE-2005, 3/225] (4) O ²⁻
3.	Hydrogen ion concen (1) 3.98 × 10 ⁸	tration in mol/L in a soluti (2) 3.88 × 10 ⁶	on of pH = 5.4 will be : (3) 3.68 × 10 ⁻⁶	[AIEEE-2005, 3/225] (4) 3.98 × 10 ⁻⁶
4.		dissociation constants of on constant of the acid wi (2) 0.2 × 10 ⁵		0 ⁻⁵ and 5.0 × 10 ⁻¹⁰ respectively. [AIEEE-2007, 3/120] (4) 5.0 × 10 ¹⁵
5.		cid, HA, is 4.80. The pK bonding salt, BA, will be : (2) 7.01		is 4.78. The pH of an aqueous [AIEEE-2008, 3/105] (4) 9.58
6.	(i) $H_3PO_4 + H_2O \rightarrow H_3$ (ii) $H_2PO_4^- + H_2O \rightarrow H_3$ (iii) $H_2PO_4^- + OH^- \rightarrow H_3$	1PO4 ^{2–} + H ₃ O ⁺		[AIEEE-2010, 4/144] (4) (i) only
7.	The pH of a 0.1 mola is: (1) 3 × 10 ⁻¹	r solution of the acid HQ (2) 1 ×10 ⁻³	is 3. The value of the io (3) 1×10^{-5}	nization constant, K _a of the acid [AIEEE-2012, 4/120] (4) 1 × 10 ⁻⁷
8.	How many litres of w an aqueous solution v (1) 0.1 L		litre an aqueous solution (3) 2.0 L	of HCl with a pH of 1 to create [JEE(Main) 2013, 4/120] (4) 9.0 L
9.		HA) and pK _b of a weak b (2) 7.0	ase (BOH) are 3.2 and 3 (3) 1.0	8.4, respectively. The pH of their [JEE(Main) 2017, 4/120] (4) 7.2
10.	Which of the following (1) FeCl₃	salts is the most basic ir (2) Pb(CH ₃ COO) ₂	n aqueous solution? (3) Al(CN) ₃	[JEE(Main) 2018, 4/120] (4) CH ₃ COOK
		JEE(MAIN) ON	LINE PROBLEMS	
1.	Assuming that the dep (K _a = 1.0 × 10 ⁻⁵) will b (1) 5.0		ll, the pH of 0.1 M solutior [JEE(Main) (3) 8.0	n of sodium acetate 2014 Online (11-04-14), 4/120] (4) 9.0
2.	The conjugate base c (1) N ^{_3}	f hydrazoic acid is : (2) N₃⁻	[JEE(Main) (3) N₂⁻	2014 Online (12-04-14), 4/120] (4) HN ₃ ⁻

	c Equilibrium (1	Elemen	tary)							
3.					of a mono-protic of a 29.875% acid [JEE	solution	n ?	ust be mix nline (09-		
	(1) 330		(2) 316	6	(3) 320	. ,	(4) 32	•		-
4.					nixing different vo vill be equal to 1? [JEE(N)H and H ine (15-0-		
	(1) 100 mL <u>M</u>	HCI + ²	100 mL	M 10 NaOH	(2) 75 mL	ICI + 25	5 mL <u>M</u> 5	NaOH		
	(3) 60 mL	HCI + 40	0 mL <u>M</u> 10	NaOH	(4) 55 mL	HCI + 4	5 mL <u>№</u> 10	1_NaOH 0		
	Answ	ers								
				EXER	CISE - 1					
				PA	NRT - I					
A-1.	 (a) H₃PO₃, (CC (b) HSO₄⁻, RNI (c) NO₂⁻, O²⁻, I (d) Conjugate a Conjugate b 	H₃⁺, NH₃ HCO₃⁻, (acids: H	ĊlÒ₄⁻ ₂S, NH₄⁺		3 O +					
	(e) Lewis acid: Lewis base: (C		-							
		пз <i>ј</i> зіл, г								
A-2.	Acidic – (vi), (v	,		– (i), (iv) ;	Amphiprotic –	(ii), (iii),	(v)			
	Acidic – (vi), (v	ii);	Basic	., . ,	Amphiprotic – ed–Lowry acid, Bi		. ,	base, Lev	vis base	e but not
A-3.	Acidic – (vi), (vi H ₂ O – Arrheniu	ii) ; ıs acid,	Basic	., . ,		onsted-	. ,	base, Lev	vis base	e but not
A-3. B-1.	Acidic – (vi), (v H ₂ O – Arrheniu Lewis acid.	ii) ; ıs acid,	Basic - Arrheniu	is base, Bronst	ed–Lowry acid, Bı 2.5 × 10 ^{–5} ; 4.6	onsted-	–Lowry	base, Lev	vis base	e but not
A-3. B-1. C-2.	Acidic – (vi), (v H ₂ O – Arrheniu Lewis acid. 600 ions / mm ³	ii) ; ıs acid,	Basic - Arrheniu	is base, Bronst C-1.	ed–Lowry acid, Br 2.5 × 10 ^{–5} ; 4.6 (iv) K _b	onsted-	–Lowry		vis base	e but not
A-3. B-1. C-2. D-1.	Acidic – (vi), (vi), (vi), (vi), H ₂ O – Arrheniu Lewis acid. 600 ions / mm ³ (i) 10^{-12}	ii) ; ıs acid, (ii) 10 ⁻ (ii) 2,	Basic - Arrheniu	us base, Bronst C-1. (iii) 10 ⁻¹¹ (iii) 12,	ed–Lowry acid, Br 2.5 × 10 ^{–5} ; 4.6 (iv) K _b	ronsted- $_{1} < K_{b_{2}}$	–Lowry < K _{b3} (v) 11			
A-3. B-1. C-2. D-1. D-2.	Acidic – (vi), (vi H ₂ O – Arrheniu Lewis acid. 600 ions / mm^3 (i) 10^{-12} (i) 3,	ii) ; ıs acid, (ii) 10 ⁻ (ii) 2,	Basic - Arrheniu	us base, Bronst C-1. (iii) 10 ⁻¹¹ (iii) 12,	ed–Lowry acid, Br 2.5 × 10 ^{–5} ; 4.6 (iv) K _b (iv) 7.0	onsted- , < K _{b2} ·)2, D-4.	–Lowry ∣ < K _{b₃} (v) 11 (a) 13	.2 3; (b) 7;		
A-3. B-1. C-2. D-1. D-2. E-1.	Acidic – (vi), (vi), (vi) H_2O – Arrheniu Lewis acid. 600 ions / mm ³ (i) 10 ⁻¹² (i) 3, (i) 11.7, (ii) 1,	ii) ; ıs acid, (ii) 10 ⁻ (ii) 2,	Basic - Arrheniu	c-1. (iii) 10 ⁻¹¹ (iii) 12, 1.92 D-3.	ed–Lowry acid, Br 2.5 × 10 ^{–5} ; 4.6 (iv) K _b (iv) 7.0 0.7	onsted- , < K _{b2} ·)2, D-4.	–Lowry ∣ < K _{b₃} (v) 11 (a) 13	.2 3; (b) 7;		
A-2. A-3. B-1. C-2. D-1. D-2. E-1. E-3. F-1.	Acidic – (vi), (vi) H_2O – Arrheniu Lewis acid. 600 ions / mm ³ (i) 10^{-12} (i) 3, (i) 11.7, (ii) 1, 1.69×10^{-5}	ii) ; ıs acid, (ii) 10 ⁻ (ii) 2,	Basic - Arrheniu ⁻⁶ .7, (iv) dic	us base, Bronst C-1. (iii) 10 ⁻¹¹ (iii) 12, 1.92 D-3. E-2.	ed–Lowry acid, Br 2.5 × 10 ^{–5} ; 4.6 (iv) K _b (iv) 7.0 0.7 Refer class no	onsted- , < K _{b2} ·)2, D-4.	–Lowry < K _{b3} (v) 11 (a) 13 eet theo	.2 3; (b) 7;	(c) 1.:	
A-3. B-1. C-2. D-1. D-2. E-1. E-3. F-1.	Acidic – (vi), (vi) H_2O – Arrheniu Lewis acid. 600 ions / mm ³ (i) 10^{-12} (i) 3, (i) 11.7, (ii) 1, 1.69 × 10 ⁻⁵ 11.7 (a) Basic	ii) ; is acid, (ii) 10 ⁻ (ii) 2, (iii) 10 (b) aci	Basic - Arrheniu ⁻⁶ .7, (iv) dic	us base, Bronst C-1. (iii) 10 ⁻¹¹ (iii) 12, 1.92 D-3. E-2. E-4. (c) basic	ed–Lowry acid, Br 2.5 × 10 ⁻⁵ ; 4.6 (iv) K _b (iv) 7.0 0.7 Refer class nor HCl (d) basic	onsted- , < K _{b2} · 02, D-4. tes / sho	–Lowry < K _{b3} (v) 11 (a) 13 eet theo	.2 3; (b) 7; ry.	(c) 1.: ic	
A-3. B-1. C-2. D-1. D-2. E-1. E-3. F-1.	Acidic – (vi), (vi) H_2O – Arrheniu Lewis acid. 600 ions / mm ³ (i) 10^{-12} (i) 3, (i) 11.7, (ii) 1, 1.69 × 10^{-5} 11.7 (a) Basic (g) neutral	ii) ; is acid, (ii) 10 ⁻ (ii) 2, (iii) 10 (b) aci	Basic - Arrheniu ⁻⁶ .7, (iv) dic	C-1. (iii) 10 ⁻¹¹ (iii) 12, 1.92 D-3. E-2. E-4. (c) basic (i) basic F-3.	ed–Lowry acid, Br 2.5 × 10 ⁻⁵ ; 4.6 (iv) K _b (iv) 7.0 0.7 Refer class nor HCl (d) basic (j) acidic	onsted- , < K _{b2} · 02, D-4. tes / sho	–Lowry < K _{b3} (v) 11 (a) 13 eet theo	l.2 3; (b) 7; ry. (f) basi	(c) 1.: ic	
A-3. B-1. C-2. D-1. D-2. E-1. E-3. F-1.	Acidic – (vi), (vi) H_2O – Arrheniu Lewis acid. 600 ions / mm ³ (i) 10^{-12} (i) 3, (i) 11.7, (ii) 1, 1.69 × 10^{-5} 11.7 (a) Basic (g) neutral	ii) ; is acid, (ii) 10 ⁻ (ii) 2, (iii) 10 (b) aci	Basic - Arrheniu ⁻⁶ .7, (iv) dic	C-1. (iii) 10 ⁻¹¹ (iii) 12, 1.92 D-3. E-2. E-4. (c) basic (i) basic F-3.	ed–Lowry acid, Br 2.5×10^{-5} ; 4.6 (iv) K _b (iv) 7.0 0.7 Refer class nor HCl (d) basic (j) acidic K _b = 8 × 10 ⁻¹⁰	onsted- , < K _{b2} · 02, D-4. tes / sho	–Lowry < K _{b3} (v) 11 (a) 13 eet theo	l.2 3; (b) 7; ry. (f) basi	(c) 1.: ic	
A-3. B-1. C-2. D-1. D-2. E-1. E-3. F-1. F-2.	Acidic – (vi), (vi) H_2O – Arrheniu Lewis acid. 600 ions / mm ³ (i) 10^{-12} (i) 3, (i) 11.7, (ii) 1, 1.69 × 10^{-5} 11.7 (a) Basic (g) neutral 9	ii) ; is acid, (ii) 10 ⁻ (ii) 2, (iii) 10 (iii) 10 (b) aci (h) bas	Basic - Arrheniu ⁶ .7, (iv) dic sic	C-1. (iii) 10 ⁻¹¹ (iii) 12, 1.92 D-3. E-2. E-4. (c) basic (i) basic F-3. PA	ed–Lowry acid, Br 2.5×10^{-5} ; 4.6 (iv) K _b (iv) 7.0 0.7 Refer class nor HCI (d) basic (j) acidic K _b = 8 × 10 ⁻¹⁰ .RT - II	onsted- , < K _{b2} ·)2, D-4. tes / sho (e) ac F-4.	–Lowry < K _{b3} (v) 11 (a) 13 eet theo idic 0.625	l.2 3; (b) 7; ry. (f) basi	(c) 1.: ic 7	3.
A-3. B-1. C-2. D-1. D-2. E-1. E-3. F-1. F-2. A-1. B-1.	Acidic – (vi), (vi) H_2O – Arrheniu Lewis acid. 600 ions / mm^3 (i) 10^{-12} (i) 3, (i) 11.7, (ii) 1, 1.69×10^{-5} 11.7 (a) Basic (g) neutral 9 (C)	ii) ; is acid, (ii) 10 ⁻ (ii) 2, (iii) 10 (b) aci (h) bas A-2.	Basic · Arrheniu ⁶ .7, (iv) dic sic (D)	C-1. (iii) 10 ⁻¹¹ (iii) 12, 1.92 D-3. E-2. E-4. (c) basic (i) basic F-3. PA A-3.	ed–Lowry acid, Br 2.5×10^{-5} ; 4.6 (iv) K _b (iv) 7.0 0.7 Refer class nor HCl (d) basic (j) acidic K _b = 8 × 10 ⁻¹⁰ .RT - II (D)	ronsted- , < K _{b2} .)2, D-4. tes / sho (e) ac F-4. A-4.	-Lowry < K _{b3} (v) 11 (a) 13 eet theo idic 0.625 (C)	l.2 3; (b) 7; ry. (f) basi	(c) 1.: ic 7 A-5.	3. (D)
A-3. B-1. C-2. D-1. D-2. E-1. E-3.	Acidic – (vi), (vi) H_2O – Arrheniu Lewis acid. 600 ions / mm^3 (i) 10^{-12} (i) 3, (i) 11.7, (ii) 1, 1.69×10^{-5} 11.7 (a) Basic (g) neutral 9 (C) (D)	ii) ; is acid, (ii) 10 ⁻ (ii) 2, (iii) 10 (b) aci (h) bas A-2. B-2.	Basic - Arrheniu -6 .7, (iv) dic sic (D) (A)	C-1. (iii) 10 ⁻¹¹ (iii) 12, 1.92 D-3. E-2. E-4. (c) basic (i) basic F-3. PA A-3. B-3.	ed–Lowry acid, Br 2.5×10^{-5} ; 4.6 (iv) K _b (iv) 7.0 0.7 Refer class nor HCl (d) basic (j) acidic K _b = 8 × 10 ⁻¹⁰ .RT - II (D) (D)	onsted- , < K _{b₂} ·)2, D-4. tes / sho (e) ac F-4. F-4. B-4.	-Lowry < K _{b3} (v) 11 (a) 13 eet theo idic 0.625 (C) (D)	l.2 3; (b) 7; ry. (f) basi	(c) 1.: ic 7 A-5. C-1.	3. (D) (B)
A-3. B-1. C-2. D-1. D-2. E-1. E-3. F-1. F-2. A-1. B-1. C-2.	Acidic – (vi), (vi) H_2O – Arrheniu Lewis acid. 600 ions / mm^3 (i) 10^{-12} (i) 3, (i) 11.7, (ii) 1, 1.69×10^{-5} 11.7 (a) Basic (g) neutral 9 (C) (D) (C)	ii) ; is acid, (ii) 10- (ii) 2, (iii) 10 (b) aci (h) bas A-2. B-2. D-1.	Basic - Arrheniu ⁶ .7, (iv) dic sic (D) (A) (C)	C-1. (iii) 10 ⁻¹¹ (iii) 12, 1.92 D-3. E-2. E-4. (c) basic (i) basic F-3. PA A-3. B-3. D-2.	ed–Lowry acid, Br 2.5×10^{-5} ; 4.6 (iv) K _b (iv) 7.0 0.7 Refer class nor HCl (d) basic (j) acidic K _b = 8 × 10 ⁻¹⁰ .RT - II (D) (D) (A)	ronsted- , < K _{b2} · , D-4. tes / she (e) ac F-4. A-4. B-4. D-3.	-Lowry < K _{b3} (v) 11 (a) 13 eet theo idic 0.625 (C) (D) (C)	l.2 3; (b) 7; ry. (f) basi	(c) 1.3 ic 7 A-5. C-1. D-4.	3. (D) (B) (B)

1. (A) \rightarrow r; (B) \rightarrow s; (C) \rightarrow r; (D) \rightarrow p

			E	KERCI	SE – 2				
				PA	ART - I				
1.	(B)	2.	(D)	3.	(C)	4.	(B)	5.	(C)
6.	(C)	7.	(B)	8.	(A)				
				PA	RT - II				
1.	4 (i, v, vi, vii)	2.	5 (Actual a	nswer = 9.	.7)	3.	$K_w = 4 \times 10^{10}$	0 ^{–14} , pH =	6.7
4.	7	5.	14	6.	8	7.	30		
8.	9	9.	50						
				PA	RT - III				
1.	(ABC)	2.	(AC)	3.	(ABD)	4.	(ABD)	5.	(ABC)
6.	(BC)	7.	(BCD)	8.	(AD)				
				PA	RT - IV				
1.	(A)	2.	(D)	3.	(D)	4.	(A)		
				EXER	CISE – 3	1			
			JEE(M	AIN) OF	FLINE PRO	BLEMS			
1.	(4)	2.	(4)	3.	(4)	4.	(1)	5.	(2)
6.	(1)	7.	(3)	8.	(4)	9.	(1)	10.	(4)
			JEE(M	AIN) ON	ILINE PROE	BLEMS			
1.	(4)	2.	(2)	3.	(2)	4.	(2)		