IONIC EQUILIBRIUM-III

Exercise-1

> Marked questions are recommended for Revision.

PART - I : SUBJECTIVE QUESTIONS

Section (A) : Solubility, Solubility product and Simple solubility calculations

Commit to memory :

Solubility (s; in mol/L) of a sparingly soluble salt A_xB_y : $K_{sp} = x^x.y^y.(s)^{x+y}$

- **A-1.** Although it is a violent poison if swallowed, Mercury(II) cyanide Hg(CN)₂, has been used as a typical skin antiseptic. (K_{sp} of Hg(CN)₂ = 1.35 x 10⁻²³, Atomic mass of Hg = 200 u). Assume no ion to be undergoing hydrolysis.
 - (a) What is the molar solubility of this salt in pure water ?
 - (b) How many milligrams of $Hg(CN)_2$ dissolve per litre of pure water ?
 - (c) How many milliliters of water are required to dissolve 1.134 g of the salt ?
- A-2. How many milligrams of gold(III) ion are there per litre of solution in a saturated aqueous solution of gold (III) iodide ? Aul₃(s) \implies Au³⁺(aq) + 3l⁻(aq). K_{sp} of Aul₃ = 2.7 × 10⁻⁴⁷, atomic mass of Au = 197 u. Assume no hydrolysis of Au³⁺ ion.

Section (B) : Condition for precipitation, Common ion effect on solubility

Commit to memory :

Condition for precipitation of $A_x B_y$: Ionic product or $K_{IP} > K_{sp}$; $[A^{y+}]^x [B^{x-}]^y > K_{sp}$ of $A_x B_y$

Common ion effect on solubility : Solubility (s') of $A_x B_y$ (sparingly soluble ; K_{sp}) in a solution of 'c' M $A_p D_q / E_r B_p$ (both readily soluble) : $(pc)^x (ys')^y = K_{sp}$; s' =

- **B-1.** What can be the maximum concentration of equimolar solutions of ferrous sulphate (FeSO₄) and sodium sulphide (Na₂S), so that when mixed in equal volumes, there is no precipitation of iron sulphide (FeS) ? (For iron sulphide, $K_{sp} = 6.25 \times 10^{-18}$) Assume no ion to be undergoing hydrolysis.
- **B-2.** Calculate the solubility of silver phosphate (Ag₃PO₄) in mg/mL (a) in pure water and (b) in a solution that is 0.03 M in AgNO₃. [K_{sp}(Ag₃PO₄) = 2.7×10^{-23}]. Assume no ion to be undergoing hydrolysis. Atomic mass of Ag = 108 u.

Section (C) : Simultaneous Solubility, Complex Formation

Commit to memory :

Simultaneous solubility $(s_1 \& s_2)$ of $A_x B_y \& A_x C_y$ (both sparingly soluble) :

$$\frac{K_{sp}(A_{x}B_{y})}{K_{sp}(A_{x}C_{y})} = \frac{[B^{x-}]^{y}}{[C^{x-}]^{y}} = \frac{(ys_{1})^{y}}{(ys_{2})^{y}} = \left(\frac{s_{1}}{s_{2}}\right)^{y}$$

Further, $(xs_1 + xs_2)^x (ys_1)^y = K_{sp}(A_xB_y) \& (xs_2 + xs_1)^x (ys_2)^y = K_{sp}(A_xC_y)$. Put s₁ in terms of s₂ from eq.1 in eq.2 or eq.3 to obtain s₂ & then obtain s₁.

Complex formation: Upon mixing M^{n+} & L and analyzing the reaction $M^{n+} + xL \implies [ML_x]^{n+}$ through chemical equilibrium (assuming M^{n+} to be completely consumed), concentrations of L and $[ML_x]^{n+}$ can be obtained. When they are put in expression of K_c , $[M^{n+}]_{eq}$ can be obtained.

- **C-1.** Calculate the simultaneous solubility of AgCl and AgI. Assume no hydrolysis of Ag⁺ ion. K_{sp} (AgCl) = 1 × 10⁻¹⁰, K_{sp} (AgI) = 8.5 × 10⁻¹⁷
- **C-2.** On passing 1 mole NH₃ gas through 1 L of 0.2 M CuSO₄ solution, determine [Cu²⁺] in the resulting solution. Given : K_f of [Cu(NH₃)₄]²⁺ = 2 × 10¹³. Assume no hydrolysis of Cu²⁺ ion.

Section (D) : Selective Precipitation, Solubility exchange

Commit to memory :

Selective precipitation: On gradually adding $A_pB_q(s \ ; readily \ soluble)$ to a solution containing $C_1M \ X^{w-} \& C_2M \ Y^{z-}$

$$[A^{q+}] \text{ req. for } A_w X_q \text{ pptn} = \sqrt[w]{\frac{K_{sp}(A_w X_q)}{(C_1)^q}}; [A^{q+}] \text{ req. for } A_z Y_q \text{ pptn} = \sqrt[z]{\frac{K_{sp}(A_z Y_q)}{(C_2)^q}}$$

Minimum value of [A^{q+}] req. will tell which salt will precipitate first.

Solubility exchange: Upon treating a solution of $C_p D_q / C_p D_q(s)$ (readily soluble) with $A_x B_y(s) / saturated$ solution of $A_x B_y$ (sparingly soluble) such that some $A_x B_y$ gets converted to $A_p D_y(sparingly soluble)$, then :

$$\sqrt[x]{\frac{K_{sp}(A_{x}B_{y})}{[B^{x-}]_{f}^{y}}} = \sqrt[p]{\frac{K_{sp}(A_{p}D_{y})}{[D^{p-}]_{f}^{y}}}$$

- **D-1.** A solution which is 0.1 M in NaI and also 0.1 M in Na₂SO₄ is treated with solid Pb(NO₃)₂. Which compound, PbI₂ or PbSO₄, will precipitate first ? What is the concentration of anion of the least soluble compound when the more soluble one starts precipitating ? $K_{sp}(PbI_2) = 9 \times 10^{-9}$, $K_{sp}(PbSO_4) = 1.8 \times 10^{-8}$. Assume no hydrolysis of Pb²⁺ ion.
- D-2. 0.1 mole AgCl(s) is added to 1 litre H₂O. Next, crystals of NaBr are added until 75% of the AgCl is converted to AgBr(s), the less soluble silver halide. What is [Br⁻] in the resulting solution ? K_{sp} of AgCl is 1.75 × 10⁻¹⁰ and K_{sp} of AgBr is 5.25 × 10⁻¹³. Assume no hydrolysis of Ag⁺ ion.

PART - II : ONLY ONE OPTION CORRECT TYPE

Section (A) : Condition for precipitation, Common ion effect on solubility

Commit to memory :

Condition for precipitation of $A_x B_y$: lonic product or $K_{IP} > K_{sp}$; $[A^{y+}]^x [B^{x-}]^y > K_{sp}$ of $A_x B_y$ Common ion effect on solubility : Solubility (s') of $A_x B_y$ (sparingly soluble; K_{sp}) in a solution of 'c' M $A_p D_q / E_r B_p$ (both readily soluble) : $(pc)^x (ys')^y = K_{sp}$; s' =

A-1. What is the minimum pH at which Mg(OH)₂ starts precipitating from a solution containing 0.02 M MgCl₂? K_{sp} of Mg(OH)₂ = 1.8 × 10⁻¹¹. (A) 4.52 (B) 9.04 (C) 9.48 (D) 8.48

Section (B) : Simultaneous solubility and Complex formation

Commit to memory :

Simultaneous solubility (s1 & s2) of AxBy & AxCy (both sparingly soluble) :

$$\frac{K_{sp}(A_{x}B_{y})}{K_{sp}(A_{x}C_{y})} = \frac{[B^{x-}]^{y}}{[C^{x-}]^{y}} = \frac{(ys_{1})^{y}}{(ys_{2})^{y}} = \left(\frac{s_{1}}{s_{2}}\right)$$

Further, $(xs_1 + xs_2)^x (ys_1)^y = K_{sp}(A_xB_y) \& (xs_2 + xs_1)^x (ys_2)^y = K_{sp}(A_xC_y)$. Put s₁ in terms of s₂ from eq.1 in eq.2 or

eq.3 to obtain s_2 & then obtain s_1 .

Complex formation : Upon mixing M^{n+} & L and analyzing the reaction $M^{n+} + xL \iff [ML_x]^{n+}$ through chemical equilibrium (assuming M^{n+} to be completely consumed), concentrations of L and $[ML_x]^{n+}$ can be obtained. When they are put in expression of K_c, $[M^{n+}]_{eq}$ can be obtained.

- B-1. Simultaneous solubility of two sparingly soluble salts A & B having some common ion :
 - (A) is greater than their respective solubilities in separate solutions.
 - (B) lies in between their solubilities in separate solutions.

(C) is less than its solubility in separate solutions for more soluble salt, but is greater than its solubility in separate solution for less soluble salt.

(D) is less than their respective solubilities in separate solutions.

- B-2. The solubility product values of AgCI and AgCNS are 1.8 x 10⁻¹⁰ and 1.6 x 10⁻¹¹ respectively. When a solution is saturated with both solids, calculate the ratio [Cl-]/[CNS-] and also [Ag+] in the solution : Assume no reaction of cation/anion. (B) 11.25, 1.4 × 10⁻⁵ M (C) 1.25, 4 ×10⁻⁵ M (D) 1.25, 4 × 10⁻⁶ M (A) 1.125, 4 × 10^{−6} M
- B-3. Which of the following options is true for a solution saturated with AgCI and AgBr, if their solubilities in mole per litre in separate water samples are x and y respectively? Given : x > y. Assume no hydrolysis of Ag⁺ ion. (C) [Br⁻] > y (D) $[Ag^+] = x + y$
 - (A) $[Ag^+] < [Br^-] + [CI^-]$ (B) $x > [CI^-] > [Br^-]$
- B-4. Upon mixing equal volumes of 0.02 M AgNO₃ & 0.16 M KCN solutions : (Assume no hydrolysis of any ion). Given : Ag⁺ (aq.) + 2CN⁻ (aq) \implies [Ag(CN)₂]⁻ (aq) ; $K_{\rm C} = 10^{18}$

(A) [NO ₃ ⁻] = 0.01 M ; [K ⁺] = 0.08 M	(B) [CN⁻] = 0.06 M
(C) $[Ag(CN)_2^-] = 0.01 \text{ M}$	(D) All of these
In the above question (B-4), [Ag ⁺] is about : (A) 2.78 ×10 ⁻¹⁸ M (C) No free Ag ⁺ ions will be left in the solution	(B) 1.67 × 10 ^{−19} M (D) Cannot be determined

Section (C) : Selective Precipitation, Solubility exchange

Commit to memory :

B-5.

Selective Precipitation : On gradually adding A B, (s ; readily soluble) to a solution containing C, M X^{w-} & C, M Y^{z-}

$$[A^{q+}] \text{ req. for } A_w X_q \text{ pptn} = w \sqrt{\frac{K_{sp}(A_w X_q)}{(C_1)^q}}; [A^{q+}] \text{ req. for } A_z Y_q \text{ pptn} = v \sqrt{\frac{K_{sp}(A_z Y_q)}{(C_2)^q}}$$

Minimum value of [A^{q+}] req. will tell which salt will precipitate first. Solubility exchange : Upon treating a solution of C D (s) (readily soluble) with A B (s) / saturated solution of A_xB_y (sparingly soluble) such that some A_xB_y gets converted to A_xD_y(sparingly soluble), then :

$$\sqrt[x]{\frac{\mathsf{K}_{sp}(\mathsf{A}_{x}\mathsf{B}_{y})}{[\mathsf{B}^{x-}]_{\mathsf{f}}^{y}}} = \sqrt[p]{\frac{\mathsf{K}_{sp}(\mathsf{A}_{p}\mathsf{D}_{y})}{[\mathsf{D}^{p-}]_{\mathsf{f}}^{y}}}$$

C-1. In a solution containing equal concentrations of X-, Y- & Z-, MCI(s) (a readily soluble salt) is gradually added. If $K_{sp}(MX) > K_{sp}(MY) > K_{sp}(MZ)$, then : (Assume no hydrolysis of any ion).

(A) MX will precipitate first.

(B) MY will precipitate first.

(C) MZ will precipitate first.

- (D) Nothing can be said about which salt will precipitate first, as numerical data is not given.
- **C-2.** In above question, If $[X^-]_i : [Y^-]_i : [Z^-]_i = 100 : 10 : 1 & K_{sp}[MX] : K_{sp}[MZ] : K_{sp}[MZ] = 10 : 0.1 : 1, order of the set of the s$ precipitation will be :
 - (A) MZ, then MX & MY at last
 - (C) MX, then MY & MZ at last
- (B) MY, then MX & MZ at last (D) MY, then MZ & MX at last

Exercise-2

A Marked questions are recommended for Revision.

PART - I : ONLY ONE OPTION CORRECT TYPE

- 1. A solution contains [NaCl] = [Na₂CO₃] = C M. Upon gradually adding AgNO₃(s) : (Assume no hydrolysis of any ion).
 - (A) Out of AgCl & Ag_2CO_3, one having lesser K_{sp} will start precipitating first.
 - (B) Out of AgCl & Ag₂CO₃, one having greater K_{sp} will start precipitating first.

(C) If,
$$\sqrt{\frac{K_{sp}(Ag_2CO_3)}{C}} < \frac{K_{sp}(AgCI)}{C}$$
 then Ag₂CO₃ will start precipitating first.

(D) If, $\sqrt{\frac{K_{sp}(Ag_2CO_3)}{C}} < \frac{K_{sp}(AgCI)}{C}$ then AgCI will start precipitating first.

- 2. For the reaction : $[Ag(CN)_2]^-(aq) \rightleftharpoons Ag^+(aq) + 2CN^-(aq), K_C \text{ at } 25^{\circ}C \text{ is } 4 \times 10^{-19}.$ Calculate $[Ag^+]$ in solution which was originally 0.1 M in KCN and 0.03 M in AgNO₃. (A) 1.5×10^{-17} M (B) 7.5×10^{-18} M (C) 4.6875×10^{-19} M (D) Value cannot be determined due to mathematical complications.
- **3.** A solution of Na₂CO₃ is added drop by drop to one litre of a solution containing 10^{-4} mole of Ba²⁺ and 10^{-5} mole of Ag⁺. If K_{sp} for BaCO₃ is 8.1 × 10^{-9} and K_{sp} for Ag₂CO₃ is 6.9 × 10^{-12} , then which is not true? Assume no hydrolysis of CO₃²⁻ ion.

(A) No precipitate of BaCO₃ will appear until [CO_3^{2-}] reaches 8.1 × 10⁻⁵ mol per litre.

- (B) A precipitate of Ag₂CO₃ will appear when [CO₃²⁻] reaches 6.9×10^{-5} mol per litre.
- (C) No precipitate of Ag₂CO₃ will appear until [CO₃²⁻] reaches 6.9 × 10⁻² mole per litre.

(D) BaCO₃ will be precipitated first.

PART - II : SINGLE AND DOUBLE VALUE INTEGER TYPE

- **1.** When pure water is saturated with both CaCO₃ and CaC₂O₄, the concentration of calcium ion in the solution under equilibrium is 8×10^{-5} M. If the ratio of the solubility product of CaCO₃ to that of CaC₂O₄ is 3, what is the solubility product of CaCO₃ in pure water ? Report your answer after multiplying by 10^9 and rounding it off to nearest whole number.
- 2. On mixing equal volumes of 0.1 M AgNO₃ & 0.8 M KCN solutions, what % of original Ag⁺ is in the form of free Ag⁺ ions ? Given : K_d of $[Ag(CN)_2]^- = 10^{-18}$. Report your answer after multiplying it by 4.5×10^{16} . (Assume no hydrolysis of any ion)

PART - III : COMPREHENSION

Comprehension # 1

0.2 mole of $MgCl_2(s)$ are added in 1 litre volume of a solution (S), already containing 0.2 mole of NaOH(s). Now answer the following questions :

- 1.Calculate pH of obtained solution. K_{sp} of Mg(OH)₂ is 1.6×10^{-12} .
(A) 8.6(B) 8.5(C) 8.65(D) 8.56
- 2.What would be the new pH when 0.04 mole of NaOH(s) are added in the solution (S) ?
(A) 8.6(B) 8.5(C) 8.65(D) 8.56
- 3.2Find the pH of the solution obtained after adding 0.04 mole of HCl(g) to the solution .
(A) 8.6(B) 8.5(C) 8.65(D) 8.56

Comprehension # 2

Q.4, Q.5 and Q.6 by appropriately matching the information given in the three columns of the following table.

Following 3 columns contain informations regarding water solubility of some sparingly soluble salts and its relation with their solubility product constants (K_{sp}). Take temperature as 25%

(I) S				Column-3		
(.)	Solubility > $\sqrt{K_{sp}}$	(i)	Solubility increases because of presence of common anion in solution	(P)	Solubility increases in acidic solution as pH decreases below 3	
(II) S	Solubility < $\left(\frac{K_{sp}}{27}\right)^{1/4}$	(ii)	Solubility decreases because of presence of common cation in solution	(Q)	Solubility increases in basic solution as pH increases above 11	
(111) S	Solubility = $\left(\frac{K_{sp}}{27}\right)^{1/4}$	(iii)	Solubility decreases because of presence of common anion in solution	(R)	Solubility is unaffected by pH of solution	
(IV) S	Solubility = $\sqrt{K_{sp}}$	(iv)	Solubility increases because of presence of common cation in solution	(S)	Anionic hydrolysis will make solubility in water greater than expected	

4.	(A) (IV) (ii) (R)	(B) (I) (iii) (S)	(C) (I) (i) (P)	(D) (I) (iii) (P)
5.	For Al(OH) ₃ , the only o (A) (II) (iii) (S)	correct combination is : (B) (II) (iv) (Q)	(C) (III) (i) (P)	(D) (II) (ii) (Q)
6.	For PbS, the only corr (A) (I) (iii) (P)	ect combination is : (B) (IV) (iii) (S)	(C) (I) (ii) (R)	(D) (IV) (ii) (P)

Exercise-3

* Marked questions may have more than one correct option.

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

- 1. For a sparingly soluble salt A_pB_q , the relationship of its solubility product (L_s) with its solubility (S) is : [JEE-2001(S), 1/35]
 - $(A) L_{S} = S^{p+q} \cdot p^{p} \cdot q^{q} \qquad (B) L_{S} = S^{p+q} \cdot p^{q} \cdot q^{p} \qquad (C) L_{S} = S^{pq} \cdot p^{p} \cdot q^{q} \qquad (D) L_{S} = S^{pq} \cdot (pq)^{p+q}$
- A solution which is 10⁻³ M each in Mn²⁺, Fe²⁺, Zn²⁺ and Hg²⁺ is treated with 10⁻¹⁶ M sulphide ion. If K_{sp} values of MnS, FeS, ZnS and HgS are 10⁻¹⁵, 10⁻²³, 10⁻²⁰ and 10⁻⁵⁴ respectively, which one will precipitate first ?
 [JEE-2003, 3/84]
 (A) FeS
 (B) MgS
 (C) HgS
 (D) ZnS
- 3. Solubility product constant (K_{sp}) of salts of types MX, MX₂ and M₃X at temperature T are 4.0 × 10⁻⁸, 3.2×10^{-14} and 2.7×10^{-15} , respectively. Solubilities (in mol dm⁻³) of the salts at temperature T are in the order : [JEE-2008, 3/163] (A) MX > MX₂ > M₃X (B) M₃X > MX₂ > MX (C) MX₂ > M₃X > MX (D) MX > M₃X > MX₂
- 4. In 1 L saturated solution of AgCl [K_{sp}(AgCl) = 1.6×10^{-10}], 0.1 mole of CuCl [K_{sp}(CuCl) = 1.0×10^{-6}] is added. The resultant concentation of Ag⁺ in the solution is 1.6×10^{-x} . The value of "x" is :

[JEE-2011, 4/180]

5. The solubility of a salt of weak acid (AB) at pH 3 is $Y \times 10^{-3}$ mol L⁻¹. The value of Y is _____. (Given that the value of solubility product of AB (K_{sp}) = 2×10^{-10} and the value of ionization constant of HB (K_a) = 1×10^{-8} . [JEE(Advanced)-2018, 3/120]

PART - II : JEE (MAIN) (PREVIOUS YEARS)

JEE(MAIN) ONLINE PROBLEMS

1. Zirconium phosphate [Zr₃(PO₄)₄] dissociates into three zirconium cations of charge +4 and four phosphate anions of charge -3. If molar solubility of ziroconium phosphate is denoted by S and its solubility product by K_{sp} then which of the following relationship between S and K_{sp} is correct ?

(1) S = {K^{sp}/(6912)^{1/7}} (3) S = {K^{sp}/6912}^{1/7}

- [JEE(Main) 2016 Online (19-04-14), 4/120]
- (2) $S = {\overline{K^{sp}/144}}^{1/7}$ (4) $S = {\overline{K^{sp}/6912}}^{7}$

Answers

A-1. B-1. C-1. D-1.	(a) 1.5 × 10 5 × 10 ⁻⁹ M 10 ⁻⁵ M Ag0 PbSO4, 0.0		(b) 3.78 × 7	PA 10 ^{_3} mg	RT - I					
B-1. C-1.	5 × 10 ⁻⁹ M 10 ⁻⁵ M AgC		(b) 3.78 × ′	10 ^{–3} mg	$(c) 3 \times 10^{6}$	2 1				
C-1.	10 ^{–₅} M AgC				(c) 3 × 10 ⁸ mL		A-2. 1.97 × 10 ^{−7} m			J
	Ū			B-2. (a)		(a) 4.19 × 10 ⁻⁴ mg/mL		(b) 4.19 × 10 ⁻¹⁶ mg/mL		
D-1.	PbSO4, 0.0	, ס.ס x 10	² M AgI.				C-2.	6.25 × 10 ⁻¹² N		i
		02 M		D-2.	2.25 × 10⁻	⁻⁴ M				
				PAI	RT - II					
A-1.	(C)	B-1.	(D)	B-2.	(B)	B-3.	(B)		B-4.	(D)
B-5.	(A)	C-1.	(C)	C-2.	(B).					
				EXER	CISE - 2	2				
				PA	RT - I					
1.	(C)	2.	(B)	3.	(B)					
				PAF	RT – II					
1.	5 (actual a	nswer = 4.8	× 10 ⁻⁹)	2.	50					
				PAF	RT - III					
1.	(A)	2.	(C)	3.	(D)	4.	(C)		5.	(D)
6.	(A)									
				EXER	CISE - 3	3				
				PA	RT - I					
1.	(A)	2.	(C)	3.	(D)	4.	7		5.	4.47
				PAI	२ Т - II					
			JEE	(MAIN) ON		LEMS				
1.	(2)									