IONIC EQUILIBRIUM-II

Exercise-1

> Marked questions are recommended for Revision.

PART - I : SUBJECTIVE QUESTIONS

Section (A) : pH calculation : Buffer solutions generated from Polybasic acid / Polyacidic base, Buffer capacity

Commit to memory :

pH calculation : Buffer solutions generated from Polybasic acid (H_nX) :

(i) $H_nX + H_{n-1}X^-$: $pH = pK_{a_1} + \log \frac{[H_{n-1}X^-]}{[H_nX]}$

(ii)
$$H_{n-1}X^{-} + H_{n-2}X^{2-}$$
: $pH = pK_{a_2} + log \frac{[H_{n-2}X^{2-}]}{[H_{n-1}X^{-}]}$

(iii) $HX^{(n-1)-} + X^{n-}$: $pH = pK_{a_n} + log \frac{[X^{n-}]}{[HX^{(n-1)-}]}$

Buffer capacity : Moles of a strong acid or strong base required to change the pH of 1 L of a buffer by one unit.

Let there be a buffer solution of volume 1 L with 'b' mole of anion (coming from salt) and 'a' mole of weak acid.

B.C. =
$$\frac{dx}{d\Delta pH}$$
 = 2.303 $\frac{(a+x)(b-x)}{a+b} \approx 2.303 \frac{ab}{a+b}$

Condition for maximum buffer capacity : [Acid] = [Anion of salt]

A-1. An environmental chemist needs a carbonate buffer of pH 10 to study the effects of the acidification of limestone–rich soils. How many grams of Na₂CO₃ must be added to 1.5 L of freshly prepared 0.2 M NaHCO₃ to make the buffer ? For H₂CO₃, K_a = 4.7 × 10⁻⁷; K_a = 4.7 × 10⁻¹¹.

Section (B) : pH calculation : Monobasic acid - Monoacidic base Titrations

Commit to memory :

pH calculation : Monobasic acid-Monoacidic base Titrations :

Carry out chemical reaction between the two components, apply mole concept, observe the final composition of the mixture and then calculate pH accordingly (using different cases dealt in Ionic Equilibrium-I).

In titration of WA by SB :

At half equivalence point : $pH = pK_a$; $pH_{x \ \% \ neutralisation} = pK_a + \frac{x}{100 - x}$

In titration of WB and SA :

At half equivalence point : $pOH = pK_b$; $pOH_x \otimes neutralisation = pK_b + \frac{x}{100 - x}$

- **B-1.** Calculate pH of the following mixtures. Given : K_a of CH₃COOH = 2 × 10⁻⁵ and K_b of NH₄OH = 2 × 10⁻⁵. (a) 50 mL of 0.10 M NaOH + 50 mL of 0.10 M HCl.
 - (b) 50 mL of 0.10 M NaOH + 50 mL of 0.05 M CH₃COOH.
 - (c) 50 mL of 0.05 M NaOH + 50 mL of 0.10 M CH₃COOH.
 - (d) 50 mL of 0.10 M NH₄OH + 50 mL of 0.05 M HCl.
 - (e) 50 mL of 0.10 M NH₄OH + 50 mL of 0.10 M HCI.
 - (f) 50 mL of 0.05 M NH₄OH + 50 mL of 0.05 M CH₃COOH.
- **B-2.** 0.1 M CH₃COOH solution is titrated against 0.05 M NaOH solution. Calculate pH at 1/4th and 3/4th stages of neutralization of acid. Given : pH of 0.1 M CH₃COOH solution is 3.

Section (C) : pH calculation : Titration of Salts, Polyprotic acid, Polyacidic base

Commit to memory : pH calculation : Titration of Polyprotic acid, Polyacidic base : Carry out chemical reaction between the two components, apply mole concept, observe the final composition of the mixture and then calculate pH accordingly (using different cases dealt in lonic Equilibrium-I). In titration of H_nX by strong base : At half equivalence point w.r.t 1st neutralisation : $pH = pK_{a_i}$; At equivalence point w.r.t 1st neutralisation : $pH = \frac{pK_{a_2} + pK_{a_1}}{2}$; At half equivalence point w.r.t 2^{nd} neutralisation : pH = pK_a; At equivalence point w.r.t 2nd neutralisation : pH = $\frac{pK_{a_3} + pK_{a_2}}{2}$; At equivalence point w.r.t last neutralisation : $pH = \frac{1}{2}(pK_w + pK_{a_n} + logC)$. In titration of Polyacidic base B by strong acid : At half equivalence point w.r.t 1^{st} neutralisation : pOH = pK_b; At equivalence point w.r.t 1st neutralisation : pOH = $\frac{pK_{b_2} + pK_{b_1}}{2}$; At half equivalence point w.r.t 2^{nd} neutralisation : pOH = pK_{ba}; At equivalence point w.r.t 2nd neutralisation : pH = $\frac{pK_{b_3} + pK_{b_2}}{2}$; At equivalence point w.r.t last neutralisation : $pH = \frac{1}{2}(pK_w - pK_{b_n} - logC)$.

- **C-2.** Determine the [H⁺] at half-equivalence point and pH at equivalence point during the titration of a 50 mL, 0.1 M NH₄Cl solution with 0.1 M NaOH solution at 25^oC. Given : K_b of NH₃ = 2 × 10⁻⁵.

PART - II : ONLY ONE OPTION CORRECT TYPE

Section (A) : pH calculation : Buffer solutions generated from Polybasic acid / Polyacidic base, Buffer capacity

Commit to memory : pH calculation : Buffer solutions generated from Polybasic acid (HnX) : (i) $H_nX + H_{n-1}X^-$: $pH = pK_{a_1} + \log \frac{[H_{n-1}X^-]}{[H_nX]}$ (ii) $H_{n-1}X^- + H_{n-2}X^{2-}$: $pH = pK_{a_2} + \log \frac{[H_{n-2}X^{2-}]}{[H_nX^-]}$ (iii) $HX^{(n-1)-} + X^{n-} : pH = pK_{a_n} + \log \frac{[X^{n-}]}{[HX^{(n-1)-}]}$ Buffer capacity : Moles of a strong acid or strong base required to change the pH of 1 L of a buffer by one unit Let there be a buffer solution of volume 1 L with 'b' mole of anion (coming from salt) and 'a' mole of weak acid. B.C. = $\frac{dx}{d\Delta pH}$ = 2.303 $\frac{(a+x)(b-x)}{a+b} \approx 2.303 \frac{ab}{a+b}$ Condition for maximum buffer capacity : [Acid] = [Anion of salt] A-1. The pH of a solution resulting from the addition of 12.5 ml of 0.1 M HCl to 50 ml of a solution containing 0.15 M CH₃COOH & 0.2 M CH₃COONa will be : (Given : pKa of CH₃COOH= 4.74) (A) 4.74 (B) < 4.74 (C) > 4.74(D) > 9.26 What % of the carbon in the $H_2CO_3 - HCO_3^-$ buffer should be in the form of HCO_3^- , so as to have a A-2. neutral solution ? (K_{a_1} of H₂CO₃= 4 × 10⁻⁷) (A) 20 % (B) 40 % (C) 60 % (D) 80% A-3. Buffer capacity of a buffer solution is x. The volume of 1 M NaOH solution added to 100 mL of this solution if change the pH by 1 is : (C) 100 x mL (A) 0.1 x mL (B) 10 x mL (D) x mLSection (B) : pH calculation : Monobasic acid - Monoacidic base Titrations Commit to memory : pH calculation : Monobasic acid - Monoacidic base Titrations : Carry out chemical reaction between the two components, apply mole concept, observe the final

composition of the mixture and then calculate pH accordingly (using different cases dealt in lonic Equilibrium-I).

In titration of WA by SB :

At half equivalence point : $pH = pK_a$; $pH_x \otimes_{neutralisation} = pK_a + \frac{x}{100 - x}$

In titration of WB and SA :

At half equivalence point : $pOH = pK_b$; $pOH_x \otimes_{neutralisation} = pK_b + \frac{x}{100 - x}$

- B-1. Upon titrating 50 mL of 1.96% (w/v) H₂SO₄ with a KOH solution (containing 11.2 g KOH per litre of solution), on adding 50 mL KOH solution :
 - (B) Equivalence point has been crossed.
 - (C) pH of resulting solution = 1

(A) Equivalence point has been just reached.

(D) pH of resulting solution = 7

Ionic Equilibrium (Advanced) B-2. 100 mL of 0.02 M benzoic acid (pKa = 4.2) is titrated using 0.02 M NaOH. pH after 50 mL and 100 mL of NaOH have been added are : (D) 4.2. 8.25 (A) 2.1.8.1 (B) 4.2.7 (C) 4.2, 8.1 B-3. In the above question, upon 75% neutralisation of Benzoic acid, select the INCORRECT statement : (A) Resulting solution will be a buffer solution. (B) $pH = 4.2 + \log 3$ (C) Both (A) & (B) (D) None of these Which of the following solutions have different pH ? B-4. (i) 100 mL of 0.2 M HCl + 100 mL of 0.4 M NH₃ (ii) 50 mL of 0.1 M HCl + 50 mL of 0.2 M NH₃ (iii) 100 mL of 0.3 M HCl + 100 mL of 0.6 M NH₃ (A) i & ii (B) ii & iii (C) i & iii (D) All will have same pH.

B-5. Upon titrating a solution of weak monoprotic acid with a weak monoacidic base solution, at equivalence point :

(A) pH in general would increase if both solutions are first diluted to 10 times the original volume & then titration is carried out.

(B) pH in general would decrease if both solutions are first diluted to 10 times the original volume & then titration is carried out.

(C) pH in general would remain same (= 7) if both solutions are first diluted to 10 times the original volume & then titration is carried out.

(D) pH in general could be less than, greater than or equal to 7 if both solutions are first diluted to 10 times the original volume & then titration is carried out.

Section (C) : pH calculation : Titration of Salts, Polyprotic acid, Polyacidic base

Commit to memory :

pH calculation : Titration of Polyprotic acid, Polyacidic base :

Carry out chemical reaction between the two components, apply mole concept, observe the final composition of the mixture and then calculate pH accordingly (using different cases dealt in Ionic Equilibrium-I).

In titration of H_nX by strong base :

At half equivalence point w.r.t 1st neutralisation : $pH = pK_{a_i}$;

At equivalence point w.r.t 1st neutralisation : $pH = \frac{pK_{a_2} + pK_{a_1}}{2}$;

At half equivalence point w.r.t 2^{nd} neutralisation : $pH = pK_{a_2}$;

At equivalence point w.r.t 2nd neutralisation : $pH = \frac{pK_{a_3} + pK_{a_2}}{2}$;

At equivalence point w.r.t last neutralisation : $pH = \frac{1}{2}(pK_w + pK_{a_n} + logC)$.

In titration of Polyacidic base B by strong acid:

At half equivalence point w.r.t 1st neutralisation : $pOH = pK_{b_1}$;

At equivalence point w.r.t 1st neutralisation : pOH = $\frac{pK_{b_2} + pK_{b_1}}{2}$;

At half equivalence point w.r.t 2^{nd} neutralisation : pOH = pK_{b₂};

At equivalence point w.r.t 2nd neutralisation : pH = $\frac{pK_{b_3} + pK_{b_2}}{2}$;

At equivalence point w.r.t last neutralisation : $pH = \frac{1}{2}(pK_w - pK_{b_n} - \log C)$.

C-1. The total number of different kind of buffers obtained during the titration of H₃PO₄ with NaOH are : (A) 3 (B) 1 (C) 2 (D) Zero

C-2 Upon titration a solution of Ethylene diamine $(K_{b_1} = 8 \times 10^{-5}; K_{b_2} = 2.7 \times 10^{-8})$ with HCl solution, pH value of solution at Ist equivalence point depends upon : (A) Initial concentration of weak base solution (C) Both (A) & (B) (D) None of these

C-3. What will be the pH at the equivalence point during the titration of a 100 mL 0.2 M solution of CH₃COONa with 0.2 M solution of HCl ? $K_a = 2 \times 10^{-5}$.

(A) $3 - \log \sqrt{2}$ (B) $3 + \log \sqrt{2}$ (C) $3 - \log 2$ (D) $3 + \log 2$

Exercise-2

> Marked questions are recommended for Revision.

PART - I : SINGLE AND DOUBLE VALUE INTEGER TYPE

- **1.** 15 mL sample of 0.15 M NH₃(aq) is titrated against 0.1M HCl(aq). What is the pH at the end point ? K_b of NH₃(aq) = 1.8 × 10⁻⁵. Report the answer rounding it off to the nearest whole number.
- 2. A 0.252 g sample of unknown organic base is dissolved in water and titrated with a 0.14 M HCl solution. After the addition of 20 mL of acid, a pH of 10.7 is recorded. The equivalence point is reached when a total of 40 mL of HCl is added. If the base and acid combine in a 1 : 1 molar ratio, then 'a' g is the molar mass of the organic base and 'b' is the ionisation constant of base. Report your answer as
 - $\left(\frac{a}{1000 b}\right)$.

PART - II : ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

- Aniline behaves as a weak base. When 0.1 M, 50 mL solution sample of aniline was mixed with 0.2 M, 12.5 mL solution of HCl, the pH of resulting solution was 8. Then :
 - (A) pH of 0.01 M solution of anilinium chloride is 5.
 - (B) pH of original solution of aniline is 3.5.
 - (C) Upon adding the same aniline sample to the above mixture, pH of resulting solution becomes 8.48.
 - (D) Upon adding the same HCl sample to the above mixture, pH of resulting solution becomes 4.59.
- 2. Which of the following mixtures will act as buffer ?
 - (A) H₂CO₃ + NaOH (1.5 : 1 molar ratio)
- (B) H₂CO₃ + NaOH (1.5 : 2 molar ratio)
- (C) NH₄OH + HCl (5 : 4 molar ratio) (D) NH₄OH + HCl (4 : 5 molar ratio)
- **3.** Titration curves for 0.1M solutions of three weak acids HA₁, HA₂ and HA₃ with ionization constants K₁, K₂ and K₃ respectively with a strong base are plotted as shown in the figure. Which of the following options is/are true ?

Ionic Equilibrium (Advanced) 12 10 8 pН 6 K 4 K, 2 Volume of strong base added (A) $K_2 = (K_1 + K_3)/2$ (B) $pK_1 < pK_3$ (C) $K_1 > K_2$ (D) $K_2 > K_3$ PART - III : COMPREHENSION Read the following passage carefully and answer the questions. Comprehension #1 The pH of basic buffer mixtures is given by : $pH = pK_a + log \frac{[Base]}{[Salt]}$, whereas pH of acidic buffer mixtures is given by : $pH = pK_a + log \frac{[Salt]}{[Acid]}$. Addition of little acid or base although shows no appreciable change in pH for all practical purposes, but since the ratio $\frac{[Base]}{[Salt]}$ for $\frac{[Salt]}{[Acid]}$ changes, a slight decrease or increase in pH results. A solution containing 0.2 mole of dichloroacetic acid ($K_a = 5 \times 10^{-2}$) and 0.1 mole sodium 1. dichloroacetate in one litre solution has [H⁺] : (C) 0.10 M (A) 0.05 M (B) 0.025 M (D) 0.005 M The volume of 0.2 M NaOH needed to prepare a buffer of pH 4.74 with 50 mL of 0.2 M acetic acid is : 2.2 $(pK_b \text{ of } CH_3COO^- = 9.26)$ (A) 50 mL (B) 25 mL (C) 20 mL (D) 10 mL 3. The ratio of pH of solution (I) containing 1 mole of CH₃COONa and 1 mole of HCI and solution (II) containing 1 mole of CH₃COONa and 1 mole of acetic acid in one litre is : (A) 1:2 (B) 2:1 (C) 1:3 (D) 3:1 Comprehension # 2 Phosphoric acid ionizes according to the following equations : $H_3PO_4(aq) \iff H^+(aq) + H_2PO_4^-(aq);$ $K_1 = 7 \times 10^{-3}$ $H_2PO_4^{-}(aq) \iff H^+(aq) + HPO_4^{2-}(aq);$ $K_2 = 6 \times 10^{-8}$ $HPO_4^{2-}(aq) \iff H^+(aq) + PO_4^{3-}(aq);$ $K_3 = 4.5 \times 10^{-13}$ If you are asked to prepare a buffer with a pH = 7.00, what may be the molar ratio of the species that 4. should be used in the solution ? (C) 2 (D) 4 (A) 0.6 (B) 0.8 Assume 50 mL of the buffer prepared in the previous part is available in which more abundant species 5. has a concentration of 0.1 M. If to this solution, 20 mL 0.1 M NaOH is added further, what will be the new pH? (A) 6.56 (B) 7.44 (C) 7.78 (D) Same as before as it's a buffer Exercise-3

* Marked questions may have more than one correct option.

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

<u> </u>	ART-T:JEE (ADVANCED) / IIT-JI	<u>EE PROBLEMS (</u>	PREVIOUS YEARS)						
1.	500 ml of 0.2 M aqueous solution of acetic acid is mixed with 500 mL of 0.2 M HCl at 25°C. (a) Calculate the degree of dissociation of acetic acid in the resulting solution and pH of the solution. (b) If 6 g of NaOH is added to the above solution, determine final pH. Assume there is no change in volume on mixing. K_a of acetic acid is 1.75 × 10 ⁻⁵ . [JEE-2002, 5/60]								
2.	0.1 M NaOH is titrated with 0.1 M HA till the end point. K_a for HA is 5.6 x 10 ⁻⁶ and degree of hydrolysis is less compared to 1. Calculate pH of the resulting solution at the end point. [JEE-2004, 2/60]								
3.	0.1 mole of CH ₃ NH ₂ (K _b = 5 × 10 ⁻⁴) is mixed w the H ⁺ concentration in the solution ? (A) 8×10^{-2} M (B) 8×10^{-11} M	(C) 1.6 × 10 ^{−11} M	[JEE-2005, 3/84] (D) 8 × 10 ⁻⁵ M						
4.	2.5 mL of $\frac{2}{5}$ M weak monoacidic base (K _b = $\frac{1}{5}$	5 mL of $\frac{2}{5}$ M weak monoacidic base (K _b = 1 × 10 ⁻¹² at 25°C) is titrated with $\frac{2}{15}$ M HCl in water at							
	25°C. The concentration of H ⁺ at equivalence p (A) 3.7×10^{-14} M (B) 3.2×10^{-7} M								
5.*	Aqueous solutions of HNO ₃ , KOH, CH ₃ COOH a The pair(s) of solutions which form a buffer upo (A) HNO ₃ and CH ₃ COOH (C) HNO ₃ and CH ₃ COONa		[JEE-2010 , 3/163] Na						
Comp	rehension # When 100 mL of 1.0 M HCl was mixed with 100 mL of 1.0 M NaOH in an insulated beaker at constant pressure, a temperature increase of 5.7°C was measured for the beaker and its contents (Expt. 1). Because the enthalpy of neutralization of a strong acid with a strong base is a constant (-57.0 kJ mol ⁻¹), this experiment could be used to measure the calorimeter constant. In a second experiment (Expt. 2), 100 mL of 2.0 M acetic acid ($K_a = 2.0 \times 10^{-5}$) was mixed with 100 mL of 1.0 M NaOH (under identical conditions to Expt. 1) where a temperature rise of 5.6°C was measured. (Consider heat capacity of all solutions as 4.2 J g ⁻¹ K ⁻¹ and density of all solutions as 1.0 g mL ⁻¹)								
6.	Enthalpy of dissociation (in kJ mol ⁻¹) of acetic acid obtained from the Expt. 2 is :								
•	(A) 1.0 (B) 10.0	(C) 24.5	[JEE (Advance)2015, 4/168] (D) 51.4						
7.	The pH of the solution after Expt. 2 is (A) 2.8 (B) 4.7	(C) 5.0	[JEE (Advance)2015, 4/168] (D) 7.0						
8.	Dilution processes of different aqueous solutions, with water, are given in LIST-I. The effects of dilution of the solution on [H ⁺] are given in LIST-II.								
	(Note : degree of dissociation (α) of weak acid [H ⁺] represents the concentration of H ⁺ ions) LIST-I	[JEE (Advance)2018, 3/120]							
	 (P) (10 mL of 0.1 M NaOH + 20 mL of 0.1 M acetic acid) diluted to 60 mL (Q) (20 mL of 0.1 M NaOH + 20 mL of 0.1 M acetic acid) diluted to 80 mL (R) (20 mL of 0.1 M HCI + 20 mL of 0.1 M ammonia solution) diluted to 80 mL 	 (1) the value of [H⁺] do on dilution (2) the value of [H⁺] chaits initial value on diluti (3) the value of [H⁺] chaitimes of its initial value 	changes to half of ution changes to two ue on dilution						
	(S) 10 mL saturated solution of Ni(OH) $_2$ in	(4) the value of [H+] ch							
	equilibrium with excess solid Ni(OH) ₂ is diluted to 20 mL (solid Ni(OH) ₂ is still present after dilution).	times of its initial value	-						
		(5) the value of [H+] ch times of its initial value							
	Match each process given in LIST-I with one or (A) $P \rightarrow 4$; $Q \rightarrow 2$; $R \rightarrow 3$; $S \rightarrow 1$ (C) $P \rightarrow 1$; $Q \rightarrow 4$; $R \rightarrow 5$; $S \rightarrow 3$		I. the correct option is $\rightarrow 2$; S $\rightarrow 3$						

		PAR	T - II : JEE (I) (PRE	VIOUS Y	EARS	5)		
			JEE(MA	IN) OFF	LINE PRO	BLEMS				
1.	An alkali is titra combination?	ated ag	-			as indictor, w		he following is a JEE(Main)-2018		
	Base		Acid	End p						
	(1) Weak(2) Strong	•			Yellow to pinkish red Pink to colourless					
	(2) Strong (3) Weak		Strong	Colourless to pink						
	(4) Strong		Strong		h red to ye					
	Answ	ers	;							
			E	XER	CISE -	1				
				ΡΑ	RT - I					
A-1.	К	A-2.	15 g Na₂CO₃	B-1.	(a) 7, ((b) 12.4, (c) 4	l.7, (d) 9	9.3, (e) 5.3, (f)	7	
B-2.	4.52, 5.48	C-1.	(a) 9.82	(b) 8.2	215	(c) 7.21	C-2.	5 × 10 ^{–10} M; 11		
				PAI	RT - II					
A-1.	(A)	A-2.	(D)	A-3.	(C)	B-1.	(C)	B-2.	(C)	
B-3.	(D)	B-4.	(D)	B-5.	(D)	C-1.	(A)	C-2	(D)	
C-3.	(A)									
			E	XER	CISE -	2				
					RT - I					
1.	5 (exact answer = 5.24) 2.				90 (a = 4	90 (a = 45 & b = 5 × 10 ⁻⁴)				
				PA	RT - II					
1.	(ACD)	2.	(ABC)	3.	(BCD)					
				PAF	RT - III					
1.	(A)	2.	(B)	3.	(A)	4.	(A)	5.	(B)	
			E	XER	CISE -	3				
				PA	RT - I					
1.	(a) 0.0175%, 1	(b) 4	.757	2.	8.98 ≈ 9	3.	(B)	4.	(D)	
5.*	(CD)	6.	(A)	7.	(B)	8.	(D)			
				PA	RT - II					
			JEE(MA	IN) OFF	LINE PRO	BLEMS				
1	(1)									

1. (1)