IONIC EQUILIBRIUM-I

Exercise-1

marked questions are recommended for Revision.

PART - I: SUBJECTIVE QUESTIONS

Section (A): pH calculation: Solutions of polyprotic weak acids, Solutions of Polyacidic weak bases

Commit to memory:

Solution of a polyprotic weak acid (H_xA): $pH = \frac{1}{2} (pK_{a_1} - log C)$ [if $\alpha_1 \le 0.1$ or 10%]; $[H_{x-2}A^{2-}] = K_{a2}$

Solution of a polyprotic weak base (B) : pOH = $\frac{1}{2}$ (p K_{b1} - log C)[if $\alpha_1 \le 0.1$ or 10%]; [BH₂²⁺] = K_{b2}

- **A-1.** What is the pH of 0.01 M H₂S solution ? Also determine [HS⁻] & [S²⁻]. Given: For H₂S, $K_{a_1} = 9 \times 10^{-8}$, $K_{a_2} = 1.2 \times 10^{-13}$.
- **A-2.** Calculate the pH of 0.74 g/L aqueous solution of propane-1,2-diamine. Given : $pK_{b_1} \& pK_{b_2}$ for base is 4.18 & 7.39 respectively.
- Section (B): pH calculation: Solutions containing mixture of weak monoprotic acid and strong acid, Solutions containing mixture of weak monoacidic base and strong base

Commit to memory:

Mixture of weak acid (monoprotic) and a strong acid: $[H^+]_f = C_1$ (just not considering the H^+ ions from WA).

Mixture of weak base (monoacidic) and a strong base: $[OH^-]_f = C_1$ (just not considering the H⁺ ions from WB).

- **B-1.** Upon passing 0.01 mole HCl gas through 100 mL of 0.05 M Formic acid solution ($K_a = 1.8 \times 10^{-4}$), determine change in pH of solution and [HCOO⁻] in resulting solution.
- **B-2.^** Determine pH & [NH₄+] in a solution obtained by mixing equal volumes of 0.02 M KOH solution and 0.2 M NH₃.H₂O solution ($K_b = 2 \times 10^{-5}$). Also calculate % dissociation of NH₃.H₂O in the final solution.
- Section (C): pH calculation: Solutions containing mixture of weak acids, Solutions containing mixture of weak bases

Commit to memory:

Mixture of two weak acids (both monoprotic) : [H+] = $C_1\alpha_1 + C_2\alpha_2 = \sqrt{C_1K_{a_1} + C_2K_{a_2}}$

Mixture of two weak bases (both monoacidic) : $[OH^-] = C_1\alpha_1 + C_2\alpha_2 = \sqrt{C_1K_{b_1} + C_2K_{b_2}}$

- **C-1.** Calculate [H⁺], [HCOO⁻] and [OCN⁻] in a solution that contains 0.1 M HCOOH ($K_a = 2.4 \times 10^{-4}$) and 0.1 M HOCN ($K_a = 4 \times 10^{-4}$).
- Section (D): pH calculation: Solutions containing mixture of weak polyprotic acid and strong acid, Solutions containing mixture of weak Polyacidic base and strong base

Commit to memory:

Mixture of a polyprotic weak acid and a strong acid : $[H^+] = [H^+]$ from SA Mixture of a polyprotic weak base and a strong base : $[OH^-] = [OH^-]$ from SB

D-1. What is [HS⁻] & [S²⁻] in solution of 0.01 M HCl and 0.1 M H₂S ? (Given that for H₂S : K_{a_1} =10⁻⁷ and K_{a_2} = 10⁻¹⁴)

Section (E): pH calculation: Solutions of salt of weak polyprotic acid and strong base, Solutions of salt of weak Polyacidic base and strong acid, Solutions of amphiprotic species.

Commit to memory:

Solution containing polyvalent anion (Ax-) of weak polyprotic acid (H,A):

$$K_{h_1} = \frac{K_w}{K_a}$$
; $h = \sqrt{\frac{K_{h_1}}{C}}$; $pH = \frac{1}{2}[pK_w + pK_{a_x} + logC]$

Solution containing polyvalent cation (BH, y+) of weak polyprotic base (B):

$$K_{h_1} = \frac{K_w}{K_{b_{..}}}$$
; $h = \sqrt{\frac{K_{h_1}}{C}}$; $pH = \frac{1}{2}[pK_w - pK_{b_y} - logC]$

Solution containing amphiprotic anion of acid H_xA : $pH(H_{x-1}A^-) = \left(\frac{pK_{a_1} + pK_{a_2}}{2}\right)$; $pH(H_{x-2}A^{2-}) = \left(\frac{pK_{a_2} + pK_{a_3}}{2}\right)$

- E-1. Calculate the pH of 0.1 M Na₃A of solution (salt of a tribasic acid H₃A). Assume only first step hydrolysis to be significant. Given: K_{a_3} , K_{a_3} & K_{a_3} for H_3A are 10^{-4} , 10^{-7} & 10^{-9} respectively.
- E-2. What is the pH of M/20 KHC₈H₄O₄ solution ? Given : H₂C₈H₄O₄ is a dibasic acid with pK_a. & pK_a as 2.94 & 5.44 respectively.

PART - II: ONLY ONE OPTION CORRECT TYPE

Section (A): pH calculation: Solutions of polyprotic weak acids, Solutions of Polyacidic weak bases

Commit to memory:

Solution of a polyprotic weak acid (H_xA): $pH = \frac{1}{2} (pK_{a_1} - log C)$ [if $\alpha_1 \le 0.1$ or 10%]; $[H_{x-2}A^{2-}] = K_{a_2}$

Solution of a polyprotic weak base (B): $pOH = \frac{1}{2} (p K_{b_1} - log C)$ [if $\alpha_1 \le 0.1$ or 10%]; $[BH_2^{2+}] = K_{b_2}$

- **A-1.** $K_{b.}$ of N_2H_4 is 4×10^{-6} . Then, what is the acid dissociation constant of $N_2H_5^+$ and $N_2H_6^{2+}$ respectively ?
 - (A) data insufficient, 4×10^{-6}

- (B) data insufficient, 2.5×10^{-8}
- (C) 2.5×10^{-9} , data insufficient
- (D) 2.5×10^{-9} , 4×10^{-6}

For ortho phosphoric acid, A-2.

$$H_3PO_4$$
 (aq) + H_2O (aq) \longrightarrow H_3O^+ (aq) + $H_2PO_4^-$ (aq) ;

$$H_2PO_4^-$$
 (aq) + H_2O (aq) \longrightarrow H_3O^+ (aq) + HPO_4^{2-} (aq);

$$HPO_4^{2-}(aq) + H_2O(aq) \longrightarrow H_3O^+(aq) + PO_4^{3-}(aq);$$

$$\mathsf{K}_{\mathsf{a}_{\mathsf{a}}}$$

The correct order of Ka values is:

(A)
$$K_{a_1} > K_{a_2} < K_{a_3}$$

(B)
$$K_{a_1} < K_{a_2} < K_{a_3}$$

(B)
$$K_{a_1} < K_{a_2} < K_{a_3}$$
 (C) $K_{a_1} > K_{a_2} > K_{a_3}$

(D)
$$K_{a_1} < K_{a_2} > K_{a_3}$$

- In a solution of 0.1 M H_3PO_4 acid : (Given $K_{a_1} = 10^{-3}$, $K_{a_2} = 10^{-7}$, $K_{a_3} = 10^{-12}$) A-3.🖎
- Concentration of H₃PO₄ is: (i)
 - (A) 0.01 M
- (B) 0.09 M
- (C) 0.05 M
- (D) 0.1 M

- Concentration of H₂PO₄⁻ is : (ii)
 - (A) 0.01 M
- (B) 0.09 M
- (C) 0.02 M
- (D) 0.04 M

- Concentration of HPO₄²⁻ is: (iii)
 - (A) 10^{-7} M
- (C) 10^{-3} M
- (D) 10⁻⁴ M

- Concentration of PO₄³⁻ is: (iv)
 - (A) 10⁻²⁰ M
- (B) 10⁻¹⁷ M
- (C) 10^{-15} M
- (D) 10^{-12} M

Ioni	ic Equilibrium (Advan	ced)							
(v)	pH of solution is : (A) 1	(B) 2	(C) 4	(D) 5					
A-4.2s	Generally, in aqueous negligible because of : (A) $K_{b_2} \ll K_{b_1}$		k polyacidic bases, O	H⁻ ions produced fron 2 nd ionisatio	on are				
	(B) Common ion effect (C) Both (A) & (B) (D) None of these	exerted by OH-ic	ons produced from 1 st i	onisation.					
Section	• • •			xture of weak monoprotic of weak monoacidic base					
Comr	WA).		·	C_1 (just not considering the H ⁺ ions $I_1 = C_1$ (just not considering the H					
B-1.2s	The dissociation constant of acetic acid at a given temperature is 1.69×10^{-5} . The degree of dissociation of 0.01 M acetic acid in the presence of 0.01 M HCl is : (A) 1.69×10^{-7} (B) 1.69×10^{-5} (C) 1.69×10^{-3} (D) 2.9×10^{-2}								
B-2.5s.				nL of 0.01 M Triethyl amine so ylamine solution will be : (D) – 1.1	olution				
B-3.≿	In above question, con (A) 100 K _b	centration of Triet (B) 200 K _b	hyl ammonium ion ([C∉ (C) 10 K₅	$(NH_{16}^{+}])$ in resulting solution will be (D) (D)	:				
		(2) 200 145	(O) 10 Nb	(2) 115					
Section	on (C) : pH calcul containing mixtur	ation : Solutio	ons containing m	ixture of weak acids, Solut	tions				
	containing mixtur	ation : Solution re of weak bas	ons containing m es	ixture of weak acids, Solut	tions				
	containing mixtur	ation : Solution re of weak bas	ons containing m es	ixture of weak acids, Solut	tions				
	containing mixtur	ation: Solution re of weak bas	ons containing mes otic): $[H^+] = C_1 \alpha_1 + C_2 \alpha_3$	exture of weak acids, Solution $V_2 = \sqrt{C_1 K_{a_1} + C_2 K_{a_2}}$	tions				
Comr	containing mixtur nit to memory: Mixture of two weak ac Mixture of two weak ba	ation : Solution : Sol	ons containing mes otic): $[H^+] = C_1\alpha_1 + C_2\alpha_2$ otic): $[OH^-] = C_1\alpha_1 + C_2\alpha_2$	exture of weak acids, Solution $V_2 = \sqrt{C_1 K_{a_1} + C_2 K_{a_2}}$					
Comr	containing mixtur nit to memory: Mixture of two weak ac Mixture of two weak ba	ation: Solution re of weak basecids (both monopropases (both monoaction) solution, 0.1 M eactions	ons containing mes otic): $[H^+] = C_1\alpha_1 + C_2\alpha_2$ otic): $[OH^-] = C_1\alpha_1 + C_2\alpha_2$ ach in HOCN, HCOO	ixture of weak acids, Solut $C_2 = \sqrt{C_1 K_{a_1} + C_2 K_{a_2}}$ $C_2 \alpha_2 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$					
Comr	containing mixtur mit to memory: Mixture of two weak ac Mixture of two weak ba Consider an aqueous	eation: Solution is colution in Solution is ease. Solution is colution, on the solution, on the solution, on the solution is colution, on the solution is colution. The solution is colution in Solution is colution in Solution is colution in Solution in Solution in Solution in Solution is colution in Solution in Solut	ons containing mes otic): $[H^+] = C_1\alpha_1 + C_2\alpha_2$ otic): $[OH^-] = C_1\alpha_1 + C_2\alpha_2$ ach in HOCN, HCOO or in this equation is: protic acids t dissociation of all the	ixture of weak acids, Solut $C_2 = \sqrt{C_1 K_{a_1} + C_2 K_{a_2}}$ $C_2 \alpha_2 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ H, (COOH) ₂ and H ₃ PO ₄ . For HOC					
Comr	containing mixtur nit to memory: Mixture of two weak ac Mixture of two weak ba Consider an aqueous can write: Ka(HOCN): (A) H+ ions released by (B) Sum of H+ ions rele (C) Sum of H+ ions rele (D) Overall H+ ion cond	ation: Solution is easily solution. Solution is easily solution. Solution is easily solution. Solution: $\frac{[H^+][OCN^-]}{[HOCN]}$. $\frac{[H^+][OCN]}{[HOCN]}$ is easily solution in the solution in the solution is $\frac{[H^-]}{[HOCN]}$ in a solution is $\frac{[H^-]}{[HOCN]}$.	ons containing mes otic): $[H^+] = C_1\alpha_1 + C_2\alpha_2$ otic): $[OH^-] = C_1\alpha_1 + C_2\alpha_2$ ach in HOCN, HCOO or in this equation is: protic acids t dissociation of all the oblution.	ixture of weak acids, Solution $C_2 = \sqrt{C_1 K_{a_1} + C_2 K_{a_2}}$ $C_2 \alpha_2 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ $C_3 \alpha_4 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ $C_4 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ $C_5 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_5 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ $C_6 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$	N, we				
C-1.3x	containing mixture of two weak as Mixture of two weak as Mixture of two weak base Consider an aqueous can write: Ka(HOCN): (A) H+ ions released by (B) Sum of H+ ions released by (C) Sum of H+ ions released by (D) Overall H+ ion conduction what are [H+], [A-] and 3.0 × 10 ⁻⁴ and 1.0 × 10 (A) [H+] = 3 × 10 ⁻³ M (C) [B-] = 3.33 × 10 ⁻⁹ M	ation: Solution re of weak bases (both monoact solution, 0.1 M example asset (both monoact solution, 0.1 M example asset (both monoact solution, 0.1 M example asset only the first contration in the solution of the solution	ons containing mes onic): $[H^+] = C_1\alpha_1 + C_2\alpha_2$ oricidic): $[OH^-] = C_1\alpha_1 + C_2\alpha_2$ ach in HOCN, HCOO original in this equation is: protic acids t dissociation of all the original original in the contains 0.03 M H (B) $[A^-] = 3 \times (D)$ All of thes	ixture of weak acids, Soluting $a_2 = \sqrt{C_1 K_{a_1} + C_2 K_{a_2}}$ $C_2 \alpha_2 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ H, (COOH) ₂ and H ₃ PO ₄ . For HOC acids. A and 0.1 M HB. K _a for HA and HB 10 ⁻³ M acids.	N, we				
C-1.3x	containing mixture of two weak as Mixture of two weak as Mixture of two weak base Consider an aqueous can write: Ka(HOCN): (A) H+ ions released by (B) Sum of H+ ions released by (C) Sum of H+ ions released by (D) Overall H+ ion conduction what are [H+], [A-] and 3.0 × 10 ⁻⁴ and 1.0 × 10 (A) [H+] = 3 × 10 ⁻³ M (C) [B-] = 3.33 × 10 ⁻⁹ M	ation: Solution is entered by mixing equation in the solution	ons containing mes onic): $[H^+] = C_1\alpha_1 + C_2\alpha_2$ oricidic): $[OH^-] = C_1\alpha_1 + C_2\alpha_2$ ach in HOCN, HCOO original in this equation is: protic acids t dissociation of all the original original in the contains 0.03 M H (B) $[A^-] = 3 \times (D)$ All of thes	ixture of weak acids, Solution $C_2 = \sqrt{C_1 K_{a_1} + C_2 K_{a_2}}$ $C_2 \alpha_2 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ $C_3 \alpha_4 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ $C_4 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ $C_5 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_5 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ $C_6 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$ acids. $C_7 \alpha_5 = \sqrt{C_1 K_{b_1} + C_2 K_{b_2}}$	N, we				

Section (D): pH calculation: Solutions containing mixture of weak polyprotic acid and strong acid, Solutions containing mixture of weak Polyacidic base and strong base

Commit to memory:

Mixture of a polyprotic weak acid and a strong acid: $[H^+] = [H^+]$ from SA Mixture of a polyprotic weak base and a strong base : [OH-] = [OH-] from SB

D-1.> For a solution obtained by mixing equal volumes of 0.02 M KOH solution & 0.2 M B (weak diacidic base; $K_{b_1} = 10^{-7} \& K_{b_2} = 10^{-14}$) solution :

(A) pH = 12

- (B) $[BH^+] = 10^{-6} M$
- (C) $[BH_2^{2+}] = 10^{-18} M$
- (D) All of these

Section (E): Salt hydrolysis, pH calculation: Solutions of salt of monoprotic acid and monoacidic base.

Commit to memory:

Salt of strong acid and weak base : $K_h \times K_b = K_w$; $h = \sqrt{\frac{K_h}{c}}$; $pH = \frac{1}{2}$ [pK_w-pK_b-log c] (valid if h < 0.1 or 10%)

Salt of strong base and weak acid: $K_h \times K_a = K_w$; $h = \sqrt{\frac{K_h}{c}}$; $pH = \frac{1}{2} [pK_w + pK_a + \log c]$ (valid if h < 0.1 or 10%)

Salt of weak acid and weak base : $K_h \times K_a \times K_b = K_w$; $\left(\frac{h}{1-h}\right) = \sqrt{K_h}$; $pH = \frac{1}{2} [pK_w + pK_a - pK_b]$

E-1. The pH of a solution obtained by mixing 100 mL of 0.2 M CH₃COOH with 100 mL of 0.2 M NaOH would be : $(pK_a \text{ for } CH_3COOH = 4.74)$

(A) 4.74

- (B) 8.87
- (C) 9.10
- (D) 8.57

Section (F): pH calculation: Solutions of salt of weak polyprotic acid and strong base, Solutions of salt of weak Polyacidic base and strong acid, Solutions of amphiprotic species.

Commit to memory:

Solution containing polyvalent anion (A^{x-}) of weak polyprotic acid (H_xA):

$$K_{h_1} = \frac{K_w}{K_a}$$
; $h = \sqrt{\frac{K_{h_1}}{C}}$; $pH = \frac{1}{2}[pK_w + pK_{a_x} + logC]$

Solution containing polyvalent cation (BH_{ν}^{y+}) of weak polyprotic base (B) :

$$K_{h_1} = \frac{K_w}{K_{b_v}}$$
; $h = \sqrt{\frac{K_{h_1}}{C}}$; $pH = \frac{1}{2}[pK_w - pK_{b_y} - logC]$

Solution containing amphiprotic anion of acid H_A:

$$pH(H_{x-1}A^-) = \ \left(\frac{pK_{a_1} + pK_{a_2}}{2}\right); \ pH(H_{x-2}A^{2-}) = \left(\frac{pK_{a_2} + pK_{a_3}}{2}\right)$$

For a BH₂Cl₂ solution (chloride salt of a diacidic base B): (Dissociation constants of base are K_{b.} & K_{b.}) F-1.

(A) $K_{h_a} \ll K_{h_a}$

- (B) $K_{h_1} = \frac{K_w}{K_L}$ (C) $K_{h_1} = \frac{K_w}{K_L}$
- (D) $K_{h_2} = \frac{K_{b_1}}{\kappa}$
- F-2. Select the correct statement regarding above solution :
 - (A) Anion will undergo hydrolysis producing OH- & solution is expected to be basic.
 - (B) Anion will not undergo hydrolysis & solution is expected to be basic.
 - (C) Cation will undergo hydrolysis producing H₃O⁺ & solution is expected to be acidic.
 - (D) Cation will undergo hydrolysis producing OH- & solution is expected to be acidic.

Ionic Equilibrium (Advanced)

F-3.≥ pH of 0.1 M Na₂HPO₄ and 0.2 M NaH₂PO₄ are respectively: (pK_a for H₃PO₄ are 2.2, 7.2 and 12)

(A) 4.7, 9.6

- (B) 9.6, 4.7
- (C) 9.3, 4.4
- (D) 4.4, 9.3
- **F-4.** The pH of which salt solution is independent of its concentration?

1. (CH₃COO)C₅H₅NH

- 2. NaH₂PO₄
- 3. Na₂HPO₄
- 4. NH₄CN

- (A) 1, 2, 3, 4
- (B) 1, 4
- (C) 2, 3
- (D) 1, 2, 3

Exercise-2

> Marked questions are recommended for Revision.

PART - I: ONLY ONE OPTION CORRECT TYPE

1. In a solution obtained by mixing 100 mL of 0.25 M Triethylamine ($K_b = 6.4 \times 10^{-5}$) & 400 mL of $\frac{M}{18}$ NH₄

OH ($K_b = 1.8 \times 10^{-5}$):

(A) $[NH_4^+] = 4 \times 10^{-4} M$

(B) $[C_6NH_{16}^+] = 1.6 \times 10^{-3} M$

(C) Both (A) & (B)

- (D) None of these
- **2.** Ratio of [HA²⁻] in 1 L of 0.1 M H₃A solution ($K_{a_1} = 10^{-5}$; $K_{a_2} = 10^{-8}$ & $K_{a_3} = 10^{-11}$) & upon addition of 0.1 mole HCl to it will be :
 - (A) 10
- (B) 100
- (C) 1000
- (D) 10,000
- 3. Calculate the degree of hydrolysis and pH of 0.005 M K_2CrO_4 . $K_{a_2} = 5 \times 10^{-7}$ for H_2CrO_4 . (It is essentially strong for first ionization)
 - (A) $h = 2 \times 10^{-3}$
- (B) h = 0.01
- (C) pH = 5
- (D) pH = 9.7

PART - II: SINGLE AND DOUBLE VALUE INTEGER TYPE

- 1. For a solution of weak triprotic acid H_3A ($K_{a_1} >> K_{a_2}$, K_{a_3} ; $K_{a_2} = 10^{-8}$; $K_{a_3} = 10^{-13}$), [A³⁻] = 10^{-17} M. Determine pH of solution. Report your answer as '0', if you find data insufficient.
- 2.\(\text{\text{\text{Calculate}}}\) Calculate [H+] in a 0.2 M solution of dichloroacetic acid ($K_a = 5 \times 10^{-2}$) that also contains 0.05 M H₂SO₄. Report your answer after multiplying it by 400.
- 3.3 Calculate the ratio of concentrations of HCOO⁻ & OCN⁻ ions in a solution containing 0.1 M HCOOH $(K_a = 1.8 \times 10^{-4})$ and 0.1 M HOCN $(K_a = 4 \times 10^{-4})$. If simplest ratio is a : b, report your answer as (a + b).
- 4. In a solution containing 0.01 M HCl and 0.1 M H₂CO₃, ratio of [H⁺] produced from strong acid & weak acid respectively is: 1. Report your answer as x/500. Given: K_{a_1} & K_{a_2} of H₂CO₃ are 4 × 10⁻⁷ & 4 × 10⁻¹¹ respectively.
- 5. Calculate the change in pH of 0.1 M Na₂HA solution after diluting it to ten times the original volume. (Given that for H₃A : $K_{a_4} = 10^{-4}$, $K_{a_2} = 10^{-7}$, $K_{a_3} = 10^{-11}$)
- 6. What is the pOH of a 0.5 M Na₃PO₄ solution ? Report your answer as 10 × pOH. $(K_{a_1} = 7.5 \times 10^{-3}, \ K_{a_2} = 6.2 \times 10^{-8}, \ K_{a_3} = 4 \times 10^{-13})$

PART - III : ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

- 1. If K_a and K_a of H_2SO_4 are 10^{-2} and 10^{-6} respectively at a certain temperature, then :
 - (A) $K_{a_1} > K_{a_2}$ because it is easy to abstract H⁺ from H₂SO₄ and less easy to abstract H⁺ from HSO₄⁻.
 - (B) K_{a_a} and K_{a_b} may be measured in acetic acid.
 - (C) K_{a_1} and K_{a_2} are measured in H_2O .
 - (D) the H⁺ ion conc. of 0.01 M H₂SO₄ will be less than 0.02 M.

Ionic Equilibrium (Advanced)

- 2. When 0.1 mole solid NaOH is added in 1 L of 0.1 M NH₃(ag) ($K_b = 2 \times 10^{-5}$), then select the correct statement(s):
 - (A) degree of dissociation of NH₃ approaches to zero.
 - (B) change in pH by adding NaOH would be 1.85.
 - (C) In solution, $[Na^+] = 0.1 \text{ M}$, $[NH_3] = 0.1 \text{ M}$, $[OH^-] = 0.2 \text{ M}$.
 - (D) on addition of OH-, Kb of NH3 does not changes.
- 3. Which of the following solutions when added to 1L of a 0.01 M CH₃COOH solution will cause no change in the degree of dissociation of CH₃COOH and pH of the solution? $K_a = 1.6 \times 10^{-5}$ for CH₃COOH?
 - (A) 0.6 mM HCOOH ($K_a = 8 \times 10^{-4}$)

(B) 0.1 M CH₃COONa

(C) 0.4 mM HCI

(D) 0.01 M CH₃COOH

Exercise-3

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

1. Will the pH of water be same at 4°C and 25°C? Explain.

[JEE-2003, 2/60]

- 2. A weak acid HX at 25°C has the dissociation constant 1 \times 10⁻⁵. It forms a salt NaX on reaction with caustic soda. The percentage hydrolysis of 0.1 M solution of NaX is : [JEE-2004(S), 3/84] (A) 0.0001% (B) 0.01 % (C) 0.1 % (D) 0.15 %
- The dissociation constant of a substituted benzoic acid at 25°C is 1.0 x 10⁻⁴. The pH of 0.01 M solution 3. of its sodium salt is: [JEE-2009, 4/160]
- 4. Amongst the following, the total number of compounds whose aqueous solution turns red litmus paper blue is: [JEE-2010, 3/163]

KCN

K₂SO₄ K₂CO₃ (NH₄)₂C₂O₄

NaCl

Zn(NO₃)₂

FeCl₃

NH₄NO₃

LiCN

PART - II : JEE (MAIN) (PREVIOUS YEARS)

JEE(MAIN) OFFLINE PROBLEMS

1. In aqueous solution, the ionization constants for carbonic acid are : [AIEEE-2010, 4/144]

 $K_1 = 4.2 \times 10^{-7}$ and $K_2 = 4.8 \times 10^{-11}$

Select the correct statement for a saturated 0.034 M solution of the carbonic acid.

- (1) The concentration of CO₃²⁻ is 0.034 M.
- (2) The concentration of CO₃²⁻ is greater than that of HCO₃⁻.
- (3) The concentration of H⁺ and HCO₃⁻ are approximately equal.
- (4) The concentration of H+ is double that of CO₃²⁻.
- An aqueous solution contains 0.10 M H₂S and 0.20 M HCl. If the equilibrium constant for the formation 2. of HS⁻ from H₂S is 1.0×10^{-7} and that of S²⁻ from HS⁻ ions is 1.2×10^{-13} then the concentration of S²⁻ [JEE(Main)-2018, 4/120] ions in aqueous solution is:

 $(1) 6 \times 10^{-21}$

(2) 5×10^{-19}

 $(3) 5 \times 10^{-8}$

 $(4) \ 3 \times 10^{-20}$

Answers

EXERCISE - 1

PART - I

A-1. pH = 4.52, 3×10^{-5} M, 1.2×10^{-13} M A-2. 10.91

B-1. -1.52, 9 × 10⁻⁵ M. B-2. 12, 2×10^{-4} M, 0.2 %

 $[H^+] = 8 \times 10^{-3} \,\mathrm{M}$, $[HCOO^-] = 3 \times 10^{-3} \,\mathrm{M}$, $[OCN^-] = 5 \times 10^{-3} \,\mathrm{M}$ C-1.

^{*} Marked questions may have more than one correct option.

D-1.	10 ⁻⁶ M, 10 ⁻	⁻¹⁸ M	E-1.	E-1. 11 E-2.						pH = 4.19			
				PAI	RT - II								
A-1.	(C)	A-2.	(C)	A-3.	(i) (B)	(ii)	(A)	(iii)	(A)	(iv)	(B)	(v)	(B)
A-4.	(C)	B-1.	(C)	B-2.	(B)		B-3	. ([)		C-1	. (D))
C-2.	(D)	C-3.	(A)	C-4.	(B)		D-1	. ([)		E-1	. (B)	ı
F-1.	(C)	F-2.	(C)	F-3.	(B)		F-4.	(4	A)				
				EXER	CISE -	2							
				РА	RT - I								
1.	(C)	2.	(D)	3.	(A)								
				PAI	RT - II								
1.	4	2.	60	3.	29 (actu	al ans	wer =	9:20))		4.	5	
5.	0	6.	10										
1.	(ABD)	2.	(ABD)	44 PAF	RT - III (ACD)								
	(100)		(188)										
				EXER	CISE -	3							
				PAI	RT – I								
1.	It will not be	e same at t	wo different te	emperature	S.	2.	(B)	3		8	4.	3	
				PAF	RT – II								
			JEE(MAIN) OFF	LINE PRO	BLEN	18						
	(3)	2.	(4)										