Introduction to Chemistry

Exercise

Marked questions are recommended for Revision.

PART - I : SUBJECTIVE QUESTIONS

- 1. How much time (in years) would it take to distribute one Avogadro number of wheat grains if 10¹⁰ grains are distributed each second ?
- 2. The weight of one atom of Uranium is 238 amu. Its actual weight is g.
- **3.** Calculate the weight of 12.044×10^{23} atoms of carbon.
- 4. How many grams of silicon is present in 35 gram atoms of silicon (Given at. wt. of Si = 28).
- 5. Find the total number of nucleons present in 12 g of ¹²C atoms.
- **6.** Find (i) the total number of neutrons, and (ii) the total mass of neutrons in 7 mg of ¹⁴C. (Assume that the mass of a neutron = mass of a hydrogen atom)
- 7.a. Calculate the number of electrons, protons and neutrons in 1 mole of ¹⁶O⁻² ions.
- 8. How many atoms are there in 100 amu of He?
- **9.** The density of liquid mercury is 13.6 g/cm³. How many moles of mercury are there in 1 litre of the metal? (Atomic mass of Hg = 200.)
- **10.** Calculate the atomic mass (average) of chlorine using the following data:

	% Natural Abundance	Molar Mass
³⁵ Cl	75	35.0 g
³⁷ Cl	25	37.0 g

- **11.** Average atomic mass of Magnesium is 24.31 amu. This magnesium is composed of 79 mole % of ²⁴Mg and remaining 21 mole % of ²⁵Mg and ²⁶Mg. Calculate mole % of ²⁶Mg.
- 12. The number of molecules in 16 g of methane is :
- **13.** Calculate the number of molecules in a drop of water weighing 0.09 g.
- 14. A sample of ethane has the same mass as 10.0 million molecules of methane. How many C_2H_6 molecules does the sample contain ?
- **15.** The number of neutrons in 5 g of D_2O (D is ${}_1^2H$) are :
- **16.** Calculate the weight of 6.022×10^{23} formula units of CaCO₃.
- 17. From 200 mg of CO₂, 10²¹ molecules are removed. How many moles of CO₂ are left ?
- **18.**Find the total number of H, S and 'O' atoms in the following :
(a) 196 g H_2SO_4 (b) 196 amu H_2SO_4 (c) 5 mole $H_2S_2O_8$ (d) 3 molecules $H_2S_2O_6$.
- **19.** If from 10 moles NH₃ and 5 moles of H₂SO₄, all the H-atoms are removed in order to form H₂ gas, then find the number of H₂ molecules formed.
- **20.** If from 3 moles MgSO₄.7H₂O, all the 'O' atoms are taken out and converted into ozone find the number of O₃ molecules formed.
- **21.** If the components of air are N₂ 78%; O₂ 21%; Ar 0.9% and CO₂ 0.1% by volume (or mole), what would be the molecular weight of air ?

```
Introduction to Chemistry
```

- 22. Find the expression of Universal Gas Constant R in SI system in terms of the given properties of oxygen gas. Pressure = p (kPa) Volume = V (mL) Temperature = t (°C) Mass of oxygen = w (g)
- **23.** The volume of a gas at 0°C and 700 mm pressure is 760 cc. The number of molecules present in this volume is :
- 24. The weight of 350 mL of a diatomic gas at 0°C and 2 atm pressure is 1 g. The weight of one atom is :
- **25.** Solve a constraint of the second seco
- 26. Fill in the blanks :

(i) 1µm = nm (iv) 1dm = mm

- (ii) 10 MJ = J (v) 10 pm = cm
- (iii) 100 Pa = kPa

PART - II : OBJECTIVE QUESTIONS

Single Correct Questions (SCQ)

1. Which is not a basic postulate of Dalton's atomic theory ? (A) Atoms are neither created nor destroyed in a chemical reaction. (B) Different elements have different types of atoms. (C) Atoms of an element may be different due to presence of isotopes. (D) Each element is composed of extermely small particles called atoms. 2. The modern atomic weight scale is based on : (B) ¹⁶O (A) ¹²C (C) ¹H (D) 18O 1 amu is equal to 3.2 (A) $\frac{1}{12}$ of C–12 (B) $\frac{1}{14}$ of O–16 (C) 1 g of H₂ (D) 1.66 × 10⁻²³ kg If the atomic mass of sodium is 23, the number of moles in 46 g of sodium is : 4. (A) 1 (B) 2 (D) 4.6 (C) 2.3 5. How many grams are contained in 1 gram-atom of Na? (D) $\frac{1}{23}$ g (A) 13 g (B) 23 g (C) 1 g 1.0 g of hydrogen contains 6 × 10²³ atoms. The atomic weight of helium is 4. It follows that the number 6. of atoms in 1 g of He is : (A) $\frac{1}{4} \times 6 \times 10^{23}$ (B) $4 \times 6 \times 10^{23}$ (C) 6×10^{23} (D) 12 × 10²³ The atomic weights of two elements A and B are 40u and 80u respectively. If x g of A contains y atoms, 7.2 how many atoms are present in 2x g of B? (A) $\frac{y}{2}$ (B) $\frac{y}{4}$ (C) y (D) 2y 8. A sample of aluminium has a mass of 54.0 g. What is the mass of the same number of magnesium atoms? (At. wt. AI = 27, Mg = 24) (B) 24 g (C) 48 g (D) 96 g. (A) 12 g

Intro	oduction to Chemistry	/			
9.2	The number of atoms in 558.5 g of Fe (at wt.= 5 (A) Twice that in 60 g carbon (C) Half in 8 g He		55.85) is : (B) 6.022 × 10 ²² (D) 558.5 × 6.023 × 10 ²³		
10.	Which of the following	has the Maximum mass	?		
	(A) 1 g-atom of C		(B) $\frac{1}{2}$ mole of CH ₄		
	(C) 10 mL of water		(D) 3.011 × 10 ²³ atoms	s of oxygen	
11.	The total number of protons, electrons and neut (A) 1.084×10^{25} (B) 6.022×10^{23}		trons in 12 g of ${}_{6}^{12}$ C is : (C) 6.022×10 ²² (D) 18		
12.	1 mole of element X has mass, 3/10 times the mass of 1 mole of element Y. One average atom of element X has mass, 2 times the mass of one atom of ¹² C. What is the atomic weight of Y? (A) 80 (B) 15.77 (C) 46.67 (D) 40.0				
13.১	The charge on 1 gram	ions of AI^{3+} is : (N _A = Ave	ogadro number, e = char	ge on one electron)	
	(A) $\frac{1}{27}$ N _A e coulomb	(B) $\frac{1}{3} \times N_{A}e$ coulomb	(C) $\frac{1}{9} \times N_A e$ coulomb	(D) $3 \times N_{Ae}$ coulomb	
14.	14. It is known that an atom contains protons, neutrons and electrons. If the mass of neutron half of its original value whereas that of proton is assumed to be twice of its original				
	atomic mass of $^{14}_{6}$ C w				
	(A) same	(B) 114.28 % less	(C) 14.28 % more	(D) 28.56 % less	
15.		ce of C–12 and C–14 is be in 12 g carbon sample (B) 3.01×10 ²³		(D) 6.02×10 ²³	
16.	In chemical scale, the relative mass of the isotopic mixture of X atoms (X^{20} , X^{21} , X^{22}) is approximately equal to : (X^{20} has 99 percent abundance)				
47.	(A) 20.002	(B) 21.00	(C) 22.00	(D) 20.00	
17.১		,		the predominant one form has sotopic weights is the most likely	
	(A) 111	(B) 112	(C) 113	(D) 114	
18.	The number of molecules of CO ₂ present in 44 (A) 6.0×10^{23} (B) 3×10^{23}		g of CO ₂ is : (C) 12×10^{23}	(D) 3×10 ¹⁰	
19.	The number of mole of ammonia in 4.25 g of ammonia is :(A) 0.425(B) 0.25(C) 0.236(D) 0.2125				
20.	Which one of the following pairs of gases contains the same number of molecules :(A) 16 g of O_2 and 14 g of N_2 (B) 8 g of O_2 and 22 g of CO_2 (C) 28 g of N_2 and 22 g of CO_2 (D) 32 g of O_2 and 32 g of N_2				
21.2	The weight of a molect (A) 1.09 × 10 ⁻²¹ g	ule of the compound C ₆₀ ł (B) 1.24 × 10 ⁻²¹ g	H ₂₂ is : (C) 5.025 × 10 ⁻²³ g	(D) 16.023 × 10 ⁻²³ g	
22.		1.8 mL of H₂O(□) is abc (B) 3.011 × 10 ²³	out : (C) 0.6022 × 10 ²¹	(D) 60.22 × 10 ²⁰	
	(A) 6.02 × 10 ²³	(D) 5.011 × 10	(0) 0.0022 x 10	(D) 00.22 × 10	

23.	One mole of P ₄ molecules contain :					
	(A) 1 molecule		(B) 4 molecules			
	(C) $\frac{1}{4} \times 6.022 \times 10^{23}$ atoms		(D) 24.088 × 10 ²³ ator	ns		
24.24	A sample of ammonium phosphate $(NH_4)_3PO_4$ atoms in the sample is : (A) 0.265 (B) 0.795		4 contains 3.18 mole of H (C) 1.06	atoms. The number of mole of C (D) 3.18		
25.	Torr is unit of : (A) Temperature (B) Pressure		(C) Volume	(D) Density		
26.	The atmospheric press (A) 0.63	sure on Mars is 0.61 kF (B) 4.6	a. What is the pressure ir (C) 6.3	. What is the pressure in mm Hg ?		
27.	Centiorade and Fahre	nheit scales are related	as :			
	Centigrade and Fahrenheit scales are related as (A) $\frac{C}{5} = \frac{F - 32}{9}$ (B) $\frac{C}{9} = \frac{F - 32}{5}$			(D) None of these		
28.	At what temperature, both Celsius and Fahrenh (A) 100° (B) 130°		nheit scale read the same (C) 60º	value : (D) -40°		
29.	The value of universal gas constant R depends on :(A) temperature of gas(B) volume of gas(C) number of moles of gas(D) units of volume and pressure					
30.	The value of gas cons (A) 1 cal	tant in calorie per degre (B) 2 cal	e temperature per mol is approximately : (C) 3 cal (D) 4 cal			
31.	The value of R in SI unit is : (A) 8.314 × 10^{-7} erg K ⁻¹ mol ⁻¹ (C) 0.082 litre atm K ⁻¹ mol ⁻¹		(B) 8.314 JK ^{−1} mol ^{−1} (D) 2 cal K ^{−1} mol ^{−1}			
32.	The pressure of sodiu container?	im vapour in a 1.0 L c	ontainer is 9.5 torr at 927	°C. How many atoms are in the		
	(A) 9.7 × 10 ⁷	(B) 7.5 × 10 ¹⁹	(C) 4.2 × 10 ¹⁷	(D) 9.7 × 10 ¹⁹		
33.	The pressure of a gas having 2 mole in 44.8 lite (A) 1 atm (B) 2 atm		tre vessel at 546 K is : (C) 3 atm (D) 4 atm			
84.2	According to the ideal gas laws, the molar volume of a gas is given by : (A) 22.4 litre (B) RT / P (C) 8RT / PV (D) RT / PV					
35.	Equal volumes of oxygen gas and a second gas weigh 1.00 and 19/8 grams respectively under th same experimental conditions. Which of the following is the unknown gas? (A) NO (B) SO ₂ (C) CS ₂ (D) CO					
36.2	A high altitude balloon contains 6.0 g of helium in 10^4 L at 240 K. Assuming ideal gas behaviour, he many grams of helium would have to be added to increase the pressure to 4.0×10^{-3} atm? (A) 1 (B) 1.2 (C) 1.5 (D) 2.0					
87.2	Four 1-1 litre flasks are separately filled with the gases H ₂ , He, O ₂ and O ₃ at the same temperature and pressure. The ratio of total number of atoms of these gases present in different flask would be : (A) $1:1:1:1$ (B) $1:2:2:3$ (C) $2:1:2:3$ (D) $3:2:2:1$					
38.	 (A) 1:1:1:1 (B) 1:2:2:3 (C) 2:1:2:3 (D) 3:2:2:1 Under the same conditions, two gases have the same number of molecules. They must (A) be noble gases (B) have equal volumes (C) have a volume of 22.4 dm³ each (D) have an equal number of atoms 					

Intro	oduction to Chemistry					
39.	16 g of an ideal gas S0 (A) x = 3	i g of an ideal gas SO _x occupies 5.6 L. at STF) x = 3		(D) none of these		
40.	The ratio of the weight of one litre of a gas to the weight of 1.0 L oxygen gas both measured at S.T.F2.22. The molecular weight of the gas would be :(A) 14.002(B) 35.52(C) 71.04(D) 55.56					
41.	Avogadro number is : (A) Number of atoms in one gram of the element (B) Number of mililitre which one mole of a gaseous substance occupies at NTP (1 atm & 0°C) (C) Number of molecules present in one gram molecular mass of a substance. (D) All are correct					
42.	The weight of 1×10^{22} molecules of CuSO ₄ .5H ₂ O is : (A) 41.59 g (B) 415.9 g (C) 4.159 g		(D) None of these			
43.2		ectron weigh one kilograi				
	(A) 6.023 × 10 ²³	(B) $\frac{1}{9.108} \times 10^{31}$	(C) $\frac{6.023}{9.108} \times 10^{54}$ (D) $\frac{1}{9.108 \times 6.023} \times 10^8$		
44.	Number of atoms in 560 g of Fe (atomic mass 56 $gmol^{-1}$) is : (A) Twice that in 70 g N (B) Half that in 20 g H (C) Both (A) and (B) (D) None of these					
45.	Which has maximum number of atoms : (A) 24 g of C (12) (B) 56 g of Fe (56) (C) 27 g of Al (27) (D) 108 g Ag (108)					
46.24	If we consider that 1/6, in place of 1/12 mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will : (A) decrease twice (B) increase two fold (C) remain unchanged (D) be a function of the molecular mass of the substance					
47.	How many moles of magnesium phosphate, Mg ₃ (PO ₄) ₂ will contain 0.25 mole of oxygen atoms ? (A) 0.02 (B) 3.125×10^{-2} (C) 1.25×10^{-2} (D) 2.5×10^{-2}					
48.2	48. Given that the abundances of isotopes ⁵⁴ Fe, ⁵⁶ Fe and ⁵⁷ Fe are 5%, 90% and atomic mass of Fe is :					
	(A) 55.85	(B) 55.95	(C) 55.75	(D) 56.05		
Multij 49.	ple Correct Questio Which property of an e (A) Atomic weight	ons (MCQ) lement may have non-int (B) Atomic number	tegral value. (C) Atomic volume	(D) None of these		
50.			(D) 16 g of methane			
51.	Which of the following (A) 1 g Hydrogen	will have the same numb (B) 2 g Oxygen	er of electrons : (C) 2 g Carbon	(D) 2 g Nitrogen		
F0 .	Which the following is equal to 10^{-2} atm :(C) 0.076 dm of Hg(D) 0.0076 torr(A) 0.76 cm of Hg(B) 7.6 torr(C) 0.076 dm of Hg(D) 0.0076 torr					
52.2	(A) 0.76 cm of Hg	(B) 7.6 torr	(C) 0.076 dm of Hg	(D) 0.0076 torr		

Introduction to Chemistry

Assertion / Reasoning (A/R)

Each question has 5 choices (A), (B), (C), (D) and (E) out of which ONLY ONE is correct.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

- (B) Statement-1 is true, statement-2 is true and statement-2 is not correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.
- (E) Both statements are false.
- 54. Statement-1 : Gram molecular weight of O₂ is 32 g.Statement-2 : Relative atomic weight of oxygen is 32.
- 55. Statement-1 : 1 mole of all ideal gases exert same pressure in same volume at same temperature. Statement-2 : Behaviour of ideal gases is independent of their nature.
- 56. Statement-1 : Value of the universal gas constant depends upon the choice of sytem of units. Statement-2 : Values of universal gas constant are 8.314 J/molK, 0.0821 L.atm/molK, 2 cal/molK.

Comprehension

A vessel of 25 L contains 20 g of ideal gas X at 300K. The pressure exerted by the gas is 1 atm. 20 g of ideal gas Y is added to the vessel keeping the same temperature. Total pressure became 3 atm. Upon further addition of 20 g ideal gas Z the pressure became 7 atm. Answer the following questions. (Hint: Ideal gas equation is applicable on mixture of ideal gases) [Take, R = 1/12 L.atm / mol K]

57.	Find the molar mass of gas X.					
	(A) 20 g	(B) 10 g	(C) 30 g	(D) 5 g		
58.		ect statement(s) :				
	I. Gas Y is lighter than gas X. II. Gas Z is lighter than gas Y					
	•	•				
	(A) I only	(B) II only	(C) Both I and II	(D) None of the statements		
59.	Find the average molar mass of the mixture of gases X, Y and Z.					
	(A) 40/7	(B) 50/7	(C) 20	(D) 60/7		

60. Match the column:

	Column-I				Column-II
	(Atomic mass (M))			(% composition of heavier isotope)	
	Isotope-I	Isotope-II	Average		(% composition of neavier isotope)
(A)	(z – 1)	(z + 3)	Z	(p)	25% by moles
(B)	(z + 1)	(z + 3)	(z + 2)	(q)	50% by moles
(C)	Z	3z	2z	(r)	% by mass dependent on z
(D)	(z – 1)	(z + 1)	z	(s)	75% by mass

Introduction to Chemistry Answers PART-I 3.95 × 10⁻²² 1. 1.9×10^6 years (approx.) 2. 3. 24 g 4. 980 g of Si 5. $12 \times 6.022 \times 10^{23}$ 6. 24.088 × 10²⁰, 0.004 g. $10 \times 6.022 \times 10^{23}$, $8 \times 6.022 \times 10^{23}$, $8 \times 6.022 \times 10^{23}$. 7. 8. 25 9. 10 68 mole 10. 35.5 11. 6.02×10^{23} 3.01×10^{21} molecules of H₂O 12. 13. 14. 5.33×10^{6} 15. 16. 2.5 NA 100 g 17. 0.00288 18. (a) $H = 4N_A$, $S = 2N_A$, $O = 8N_A$ atoms (b) H = 4 atoms, S = 2 atoms, O = 8 atoms. (c) $H = 10N_A$, $S = 10N_A$, $O = 40 N_A$ atoms (d) H = 6 atoms, S = 6 atoms, O = 18 atoms. 19. 20 NA 20. 11 NA 21. 28.964 u 32pV $\mathsf{R} = \frac{1}{1000 \times \mathsf{w} \times (\mathsf{t} + 273)}$ 23. 1.88×10^{22} 24. 16 amu 22. 25. 2.647×10^{10} 26. (i) 1000 (ii) 10⁷ (iii) 0.1 (iv) 100 (v) 10⁻⁹ PART – II 1. (C) 2. (A) 3. (A) 4. (B) 5. (B) 6. (A) 7. (C) 8. (C) 9. (A) 10. (A) 11. (A) 12. (A) 13. (D) 14. (C) 15. (A) 16. 17. (A) 18. 20. (A) (A) (A) 19. (B) 22. 25. 21. (B) (A) 23. (D) 24. (C) (B) 26. 27. 29. 30. (B) (A) 28. (D) (D) (B) 31. (B) 32. (B) 33. (B) 34. (B) 35. (C) 38. 40. 36. (D) 37. (C) (B) 39. (B) (C) 41. (C) 42. (C) 43. (D) 44. 45. (A) (C) 46. (C) 47. (B) 48. (B) 49. (AC) 50. (BD) 51. (ABCD) (ABC) (ABD) 55. (A) 52. 53. 54. (C) 56. (B) 57. (A) 58. (C) 59. (D)

60. (A) - (p,r) ; (B) - (q,r) ; (C) - (q,s) ; (D) - (q,r)