Exercise-1

> Marked questions are recommended for Revision.

PART - I : SUBJECTIVE QUESTIONS

Section (A) : Classical Concept of Equivalent weight / Mass, Equivalent weight, n-factor and Normality for Acid, Base and Precipitate

A-1. Determine the equivalent weight of the following ions : (a) Na⁺ (b) Al³⁺ (c) NO⁺ (e) CO_3^{2-} (f) SO_4^{2-} (g) PO_4^{3-}

(d) Cl⁻

- A-2. Determine the equivalent weights of the following salts : (a) NaCl (b) K₂SO₄ (c) Ca₃(PO₄)₂
- A-3. 1.12 litre dry chlorine gas at STP was passed over a heated metal when 5.56 g of chloride of the metal was formed. What is the equivalent weight of the metal?

Section (B) : Equivalent weight, n-factor and Normality for Oxidant and Reductant

- **B-1.** A mixture of CuS (molecular weight = M₁) and Cu₂S (molecular weight = M₂) is oxidised by KMnO₄ (molecular weight = M₃) in acidic medium, where the product obtained are Cu²⁺, Mn²⁺ and SO₂. Find the equivalent weight of CuS, Cu₂S and KMnO₄ respectively.
- B-2. Determine the equivalent weight of the following oxidising and reducing agents :
 - (a) KMnO₄ (reacting in acidic medium $MnO_4^- \longrightarrow Mn^{2+}$)
 - (b) KMnO₄ (reacting in neutral medium $MnO_4^- \longrightarrow MnO_2$)

Section (C) : Equivalent Concept for Acid Base Titration and Precipitation Reactions

- **C-1.** 0.98 g of the metal sulphate was dissolved in water and excess of barium chloride was added. The precipitated barium sulphate weighted 0.95 g. Calculate the equivalent weight of the metal.
- **C-2.** A dilute solution of H₂SO₄ is made by adding 5 mL of 3N H₂SO₄ to 245 mL of water. Find the normality and molarity of the diluted solution.
- **C-3.** What volume at NTP of gaseous ammonia will be required to be passed into 30 cm³ of 1 N H₂SO₄ solution to bring down the acid strength of the latter to 0.2 N ?

Section (D) : Equivalent Concept for Redox reactions, KMnO₄ / K₂Cr₂O₇ v/s Reducing Agents & their Redox Titration

- **D-1.** 1.60 g of a metal A and 0.96 g of a metal B when treated with excess of dilute acid, separately, produced the same amount of hydrogen. Calculate the equivalent weight of A if the equivalent weight of B is 12.
- **D-2.** It requires 40 mL of 1 M Ce⁴⁺ to titrate 20 mL of 1M Sn²⁺ to Sn⁴⁺. What is the oxidation state of the Cerium in the product ?
- **D-3.** 25 mL of a solution of Fe²⁺ ions was titrated with a solution of the oxidizing agent $Cr_2O_7^{2-}$. 50 mL of 0.01 M K₂Cr₂O₇ solution was required. What is the molarity of the Fe²⁺ solution ?
- D-4. ➤ How many mL of 0.3M K₂Cr₂O₇ (acidic) is required for complete oxidation of 5 mL of 0.2 M SnC₂O₄ solution.

Section (E) : lodometric/lodimetric Titration, Calculation of Available Chlorine from a sample of Bleaching Powder

- E-1. № 10 g sample of bleaching powder was dissolved into water to make the solution one litre. To this solution 35 mL of 1.0 M Mohr salt solution was added containing enough H₂SO₄. After the reaction was complete, the excess Mohr salt required 30 mL of 0.1 M KMnO₄ for oxidation. The % of available Cl₂ approximately is (mol wt = 71)
- **E-2.** A mixture containing As₂O₃ and As₂O₅ required 20 mL of 0.05 N iodine solution for titration. The resulting solution is then acidified and excess of KI was added. The liberated iodine required 1.116 g hypo (Na₂S₂O₃.5H₂O) for complete reaction. Calculate the mass of the mixture. The reactions are:

 $\begin{array}{l} As_2O_3 + 2I_2 + 2H_2O \longrightarrow As_2O_5 + 4H^+ + 4I^- \\ As_2O_5 + 4H^+ + 4I^- \longrightarrow As_2O_3 + 2I_2 + 2H_2O \end{array} \tag{Atomic}$

(Atomic weight : As = 75)

Section (F) : Volume strength of H₂O₂, Hardness of water

F-1. 20 ml of H₂O₂ after acidification with dil H₂SO₄ required 30 ml of $\frac{N}{12}$ KMnO₄ for complete oxidation.

Detemine the strength of H_2O_2 solution.

F-2. A 100 mL sample of water was treated to convert any iron present to Fe²⁺. Addition of 25 mL of 0.002 M $K_2Cr_2O_7$ resulted in the reaction :

 $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$

The excess $K_2Cr_2O_7$ was back-titrated with 7.5 mL of 0.01 M Fe²⁺ solution. Calculate the parts per million (ppm) of iron in the water sample.

- F-3. By which reason temporary and permanent hardness occur ?
- F-4. Define two method by which we can soften the water sample.

PART - II : ONLY ONE OPTION CORRECT TYPE

Section (A) : Classical Concept of Equivalent weight / Mass, Equivalent weight, n-factor and Normality for Acid, Base and Precipitate

A-1. x g of the metal gave y g of its oxide. Hence equivalent weight of the metal

(A)
$$\frac{y-x}{x} \times 8$$
 (B) $\frac{x}{(y-x)} \times 8$ (C) $\frac{x}{y} \times 8$ (D) $\frac{x+y}{x} \times 8$

A-2. Equivalent wt. of H_3PO_4 in each of the reaction will be respectively - $H_3PO_4 + OH^- \rightarrow H_2PO_4^- + H_2O$

 $\begin{array}{l} H_{3}PO_{4} + 2OH^{-} \rightarrow HPO_{4}^{2-} + 2H_{2}O \\ H_{3}PO_{4} + 3OH^{-} \rightarrow PO_{4}^{3-} + 3H_{2}O \\ (A) \ 98, \ 49, \ 32.67 \qquad (B) \ 49, \ 98, \ 32, \ 67 \qquad (C) \ 98, \ 32.67, \ 49 \qquad (D) \ 32.67, \ 49, \ 98 \end{array}$

A-3. 3 g of an oxide of a metal is converted to chloride completely and it yielded 5 g of chloride. Equivalent weidht of the metal is : (A) 33.25 (B) 3.325 (C) 12 (D) 20

Section (B) : Equivalent weight, n-factor and Normality for Oxidant and Reductant

- B-1. ▲ An ion is reduced to the element when it absorbs 6 × 10²⁰ electrons. The number of equivalents of the ion is:
 (A) 0.1
 (B) 0.01
 (C) 0.001
 (D) 0.0001
- **B-2.** When N₂ is converted into NH₃, the equivalent weight of nitrogen will be : (A) 1.67 (B) 2.67 (C) 3.67 (D) 4.67

Equiv	alent Concept & Titra	ation /				
В-3.	In the ionic equation will be: (A) M/5 (where M = molecular	2K ⁺ BrO ₃ ⁻ + 12H ⁺ + 10e ⁻ (B) M/2 weight of KBrO ₃)	→ Br ₂ + 6H ₂ O + 2K ⁺ , (C) M/6	the equivalent weight of KBrO ₃ (D) M/4		
Sectio	on (C) : Equivalent	Concept for Acid B	ase Titration and P	recipitation Reactions		
C-1.	If one mole of H ₂ SO ₄ r (A) 98	reacts with one mole of Na (B) 49	aOH, equivalent weight o (C) 96	f H ₂ SO ₄ will be : (D) 48		
C-2.	How many millilitres containing 0.125 g of p (A) 23.6 mL	of 0.1N H ₂ SO ₄ solution oure Na ₂ CO ₃ : (B) 25.6 mL	will be required for con (C) 26.3 mL	nplete reaction with a solution (D) 32.6 mL		
C-3.হ	One litre of a solution In what volume ratio m (A) 3 : 8	contains 18.9 g of HNO ₃ a nust these solution be mix (B) 8 : 3	and one litre of another s ed to obtain a neutral sol (C) 15 : 4	olution contains 3.2 g of NaOH. lution? (D) 4 : 15		
Sectio	on (D) : Equivalen Agents & their Re	t Concept for Redo edox Titration	x reactions, KMnO	4 / K2Cr2O7 v/s Reducing		
D-1.	If equal volumes of 0. acidic medium, then F (A) more by KMnO ₄ (C) equal in both case	.1 M KMnO₄ and 0.1 M k e²+ oxidised will be : s	$K_2Cr_2O_7$ solutions are allowed to oxidise Fe ²⁺ to Fe ³⁺ in (B) more by $K_2Cr_2O_7$ (D) cannot be determined.			
D-2.১	Which of the following (A) 25 mL of 0.1 M KM (C) 25 mL of 0.6 M KM	solutions will exactly oxid InO₄ InO₄	ize 25 mL of an acid solution of 0.1 M iron (II) oxalate: (B) 25 mL of 0.2 M KMnO ₄ (D) 15 mL of 0.1 M KMnO ₄			
D-3.১	An element A in a contract the experiment, 1.68 oxidation number of A	npound ABD has oxidation \times 10 ⁻³ moles of K ₂ Cr ₂ O after oxidation is :	n number –n. It is oxidised by $Cr_2O_7^{2-}$ in acid medium. In by were used for 3.36 × 10 ⁻³ moles of ABD. The new			
D-4.	The number of moles	of oxalate ions oxidized by	y one mole of MnO_4^- ion	in acidic medium is :		
	(A) 5/2	(B) 2/5	(C) 3/5	(D) 5/3		
Section Samp	on (E) : lodometrie le of Bleaching Po	c/lodimetric Titration	n, Calculation of A	vailable Chlorine from a		
E-1.	What can be the ma sample (Take formula (Δ) 52.9%	ximum percentage of av of bleaching powder as C (B) 55.9 %	ailable chlorine possible aOCl ₂) ? (C) 58%	e in a given bleaching powder		
E-2.	A 0.2 g sample conta copper (I) by iodide ion If 20 mL of 0.1 M Na ₂ S copper in the sample v (A) 31.75 %	 (B) 53.9 % aining copper (II) was an s. 2Cu²⁺ + 4I⁻ → 2 S₂O₃ solution is required for will be : (B) 63.5 % 	nalysed iodometrically, v CuI + I ₂ or titration of the liberated (C) 53 %	 (D) 00 % where copper(II) is reduced to d iodine, then the percentage of (D) 37 % 		
Sectio	on (F) : Volume str	ength of H ₂ O ₂ , Hard	ness of water			
F-1.	A substance which pa (A) $Na_2 CO_3$	rticipates readily in both a (B) KOH	cid-base and oxidation-ro (C) KMnO4	eduction reactions is : (D) $H_2 C_2 O_4$		

Equiv	alent Concept & Titra	ution					
F-2	A fresh H ₂ O ₂ solution i (A) 3.4	is labeled as 11.2 (B) 6.8	V. Calci	ulate its concer (C) 1.7	ntration in v	wt/vol percent. (D) 13.6	
F-3.2a	The amount of lime, mg of calcium bicarbo (A) 4.44 g	Ca(OH) ₂ required nate per 100 ml c (B) 0.222 g	d to remo of water,	ove the hardne will be : (C) 2.22 g	ess in 60 L	of pond water co (D) 0.444 g	ontaining 1.62
F-4.	What will the concent soda 10 g insoluable ((A) 0.2 M	ration of [Ca ⁺²] ir CaCO₃ is precipita (B) 0.1 M	n a samp ated.	ole of 1 litre ha	ard water	if after treatment (D) 0.4 M	with washing
			ΜΔΤΟ				
4	Column I						
	Column I (A) 4.1 g H ₂ SO ₃ (B) 4.9 g H ₃ PO ₄ (C) 4.5 g oxalic acid (H ₂ C ₂ O ₄) (D) 5.3 g Na ₂ CO ₃			 (p) 200 mL of 0.5 N base is used for complete neutralization (q) 200 millimoles of oxygen atoms (r) Central atom is in its highest oxidation number (s) May react with an oxidising agent 			
🏾 Mar	Exercise ked questions are reco	-2	Revision				
	PART	- I : ONLY C	NE O	PTION CO	RREC	ΓΤΥΡΕ	
1.๖	The equivalent weight greater than weight of	t of a metal is do the metal?	uble tha	t of oxygen. He	ow many f	imes is the weig	ht of its oxide
2.	Oxalic acid, H ₂ C ₂ O ₄ , H 2MnO ₄ ⁻ (aq) \rightleftharpoons 2 M required to react with 2 (A) 13.6	(-) - reacts with paran In ²⁺ (aq) + 10 CC 25.0 mL of 0.022 (B) 18.5	nagnet io 02 (g) + 8 M H2C2C	on according to H ₂ O (l). The v A solution is : (C) 33.8	o the balai olume in n	(-) 0 nced equation 5⊦ hL of 0.0162 M KI (D) 84.4	$H_2C_2O_4$ (aq) + MnO ₄ solution
3.2	x mmol of KMnO4 rea quantitatively. Then :	act completely wi	th y mm	ol of MnSO₄ ir	n presence	e of fluoride ions	to give MnF ₄
4.2	 (A) X = y 1 mol each of H₃PO₂, and z mol of Al(OH)₃ ((A) 3 : 1.5 : 1 	(B) 4x = y H ₃ PO ₃ and H ₃ P(assuming all as s (B) 1 : 2 : 3	D₄ will ne trong ele	(C) x > y eutralise resperence ectrolytes). x, y, (C) 3 : 2 : 1	ctively x m , z are in th	(D) x < y nol of NaOH, y m ne ratio of : (D) 1 : 1 : 1	ol of Ca(OH) ₂
5.	The amount of wet Na (A) 1.65 kg	OH containing 15 (B) 1.4 kg	5% water	required to pre (C) 16.5 kg	epare 70 lit	tres of 0.5 N solut (D) 140 kg	tion is :
6.24	28 NO ₃ ⁻ + 3As ₂ S ₃ + 4 What will be the equiv. (A) $\frac{M}{2}$	$H_2O \longrightarrow 6AsO_4^{3-}$ alent mass of As ₂ (B) $\frac{M}{4}$	⁻ + 28NC ₂S₃ in abo	9 + 9SO₄ ^{2−} + 8H ove reaction : ((C) <u>M</u> 24	l⁺. Molecular	mass of As ₂ S ₃ = 1 (D) $\frac{M}{28}$	M)
7.	If 25 mL of a H ₂ SO ₄ so acid solution : (A) 1 N	olution reacts con (B) 0.5 N	npletely	with 1.06 g of p (C) 1.8 N	oure Na ₂ C0	O₃, what is the nc (D) 0.8 N	ormality of this
8.	125 mL of 63% (w/v) H The resulting solution (A) neutral	H2C2O4.2H2O solu is: (ignoring hydro (B) acidic	ution is m olysis of	ade to react w ons) (C) strongly a	ith 125 mL cidic	. of a 40%(w/v) N (D) alkaline	aOH solution.

9.24	25 mL of a 0.1 M so 0.04 M acidified KMn0 oxidation state of Z corr	olution of a stable catio D4 solution. Which of th rectly :	n of transition metal Z ne following is most like	reacts exactly with 25 mL of by to represent the change in				
	(A) $Z^+ \rightarrow Z^{2+}$	(B) $Z^{2+} \rightarrow Z^{3+}$	(C) $Z^{3+} \rightarrow Z^{4+}$	(D) $Z^{2+} \rightarrow Z^{4+}$				
10.	How many litres of Cla medium: (Atomic weigh	2 at STP will be liberate at : Mn = 55 and K = 39)	d by the oxidation of Na	aCI with 10 g KMnO4 in acidic				
	(A) 3.54	(B) 7.08	(C) 1.77	(D) None of these				
11.24	One gram of Na ₃ AsO ₄ is boiled with excess of solid KI in presence of strong HCI. The iodine evolved is absorbed in KI solution and titrated against 0.2 N hypo solution. Assuming the reaction to be $AsO_4^{3-} + 2H^+ + 2I^- \longrightarrow AsO_3^{3-} + H_2O + I_2$ calculate the volume of hypo consumed. [Atomic weight of As = 75]							
	(A) 48.1 mL	(B) 38.4 mL	(C) 24.7 mL	(D) 30.3 mL				
12.	If 10 g of V ₂ O ₅ is disso reduced by the resulting [Assume no change in	lved in acid and is reduce g solution, if it is further c state of Zn ²⁺ ionsl (Atomic	ced to V^{2+} by zinc metal, oxidised to VO^{2+} ions : c masses : V = 51. O = 1	how many mole of I_2 could be 6. I = 127)				
	(A) 0.11	(B) 0.22	(C) 0.055	(D) 0.44				
13.	During the disproportic formed in alkaline medi	pnation of lodine to iodio	de and iodate ions, the	ratio of iodate and iodide ions				
	(A) 1 : 5	(B) 5 : 1	(C) 3 : 1	(D) 1 : 3				
14.১	If 1 mL of a KMnO ₄ sol 0.1mL of previous KMn	lution react with 0.140 g O₄ solution, how many n	Fe ²⁺ and if 1 mL of KHC nillilitres of 0.20 M NaOH	² O ₄ . H ₂ C ₂ O ₄ solution react with will react with 1 mL of previous				

0.1mL of previous KMnO₄ solution react with 0.140 g r e⁻⁻ and if r mL of KnO₂O₄. H₂C₂O₄ solution react with 0.1mL of previous KMnO₄ solution, how many millilitres of 0.20 M NaOH will react with 1 mL of previous KHC₂O₄. H₂C₂O₄ solution in which all the protons (H⁺) are ionisable ? (A)15/16 mL (B) 13/16 (C) 11/14 (D) None of these

PART - II : SINGLE AND DOUBLE VALUE INTEGER TYPE

- **1.** How many equivalents of Mg would have to react in order to liberate 4 N_A electrons? (Mg–2e⁻ \rightarrow Mg²⁺)
- 2. A certain weight of pure $CaCO_3$ is made to react completely with 20 mL of a HCl solution to give 224 mL of CO_2 gas at STP. The normality of the HCl solution is:
- **3.** The volume of 3 M Ba(OH)₂ solution required to neutralize completly 120 mL of $1.5M H_3PO_4$ solution is:
- 4. In an experiment, 50 mL of 0.1 M solution of a salt reacted with 25 mL of 0.1 M solution of sodium sulphite. The half equation for the oxidation of sulphite ion is : SO_3^{2-} (aq) + H₂O \longrightarrow SO₄²⁻ (aq) + 2H⁺ + 2e⁻

If the oxidation number of metal in the salt was 3, what would be the new oxidation number of metal :

- 5.★ When tetracarbonylnickel(0) is heated, it dissociates into its components. If 5 moles of this compound is heated and the resulting gaseous component is absorbed by sufficient amount of I₂O₅, liberating I₂. What volume of 4M Hypo solution will be required to react with this I₂ : Ni(CO)₄ → Ni + 4CO
- 6. 1 mole of OH⁻ ions is obtained from 85 g of hydroxide of a metal. What is the equivalent weight of the metal?
- 7. An oxide of a metal contains 40% oxygen, by weight. What is the equivalent weight of the metal?
- 8. In the following reaction, $3Fe + 4H_2O \longrightarrow Fe_3O_4 + 4H_2$, if the atomic weight of iron is 56, then its equivalent weight will be :
- **9.** What volume of 0.05 M Ca(OH)₂ solution is needed for complete conversion of 10 mL of 0.1 M H₃PO₄ into Ca(H₂PO₄)₂?

- **10.** ► Potassium acid oxalate K₂C₂O₄.3H₂C₂O₄.4H₂O can be oxidized by MnO₄⁻ in acid medium. Calculate the volume of (in mL) 1 M KMnO₄ reacting in acid solution with 5.08 gram of the acid oxalate.
- 11. In the following reaction, SO₂ acts as a reducing agent : $SO_2 + Cl_2 + 2H_2O \longrightarrow H_2SO_4 + 2HCI$ Find the equivalent weight of SO₂.

PART - III : ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

- 1. In the titration of K₂Cr₂O₇ and ferrous sulphate, following data is obtained : V₁ mL of K₂Cr₂O₇ solution of molarity M₁ requires V₂ mL of FeSO₄ solution of molarity M₂. Which of the following relations is/are true for the above titration : (A) 6 M₁V₁ = M₂V₂ (B) M₁V₁ = 6 M₂V₂ (C) N₁V₁ = N₂V₂ (D) M₁V₁ = M₂V₂
- 2. Choose the correct statement(s) :
 - (A) 1 mole of $MnO_{4^{-}}$ ion can oxidise 5 moles of Fe^{2+} ion in acidic medium.
 - (B) 1 mole of $Cr_2 O_7^{2-}$ ion can oxidise 6 moles of Fe^{2+} ion in acidic medium.
 - (C) 1 mole of Cu_2S can be oxidised by 1.6 moles of MnO_4^- ion in acidic medium.
 - (D) 1 mole of Cu_2S can be oxidised by 1.33 moles of $Cr_2O_7^{2-}$ ion in acidic medium.
- 3. Which of the following samples of reducing agents is /are chemically equivalent to 25 mL of 0.2 N $KMnO_4$ to be reduced to Mn^{2+} and water :
 - (A) 25 mL of 0.2 M FeSO₄ to be oxidized to Fe^{3+}
 - (B) 50 mL of 0.1 M H₃AsO₃ to be oxidized to H₃AsO₄
 - (C) 25 mL of 0.1 M H_2O_2 to be oxidized to H^+ and O_2
 - (D) 25 mL of 0.1 M SnCl₂ to be oxidized to Sn⁴⁺
- **4.** To a 25 ml H₂O₂ solution excess acidified solution of KI was added. The iodine liberated 20 ml of 0.3 N sodium thiosulphate solution. Use these data to choose the correct statements from the following :
 - (A) The weight of H_2O_2 present in 25 ml solution is 0.102 g
 - (B) The molarity of H_2O_2 solution is 0.12 M
 - (C) The weight of H_2O_2 present in 1 L of the solution is 0.816 g
 - (D) The volume strength of $H_2O_2\ \text{is}\ 1.344\ \text{L}$
- There are two sample of HCl having molarity 1N and 0.25 N. Find volume of these sample taken in order to prepare 0.75 N HCl solution. (Assume no water is used) :
 (A) 20 ml = 10 ml = (C) 40 ml = 20 ml = (D) 50 ml = 25 ml
 - (A) 20 mL, 10 mL (B) 100 mL, 50 mL (C) 40 mL, 20 mL (D) 50 mL, 25 mL
- 6. If mass of KHC₂O₄ (potassium acid oxalate) required to reduce 100 mL of 0.02 M KMnO₄ in acidic medium is x g and to neutralise 100 mL of 0.05 M Ca(OH)₂ is y g, then which of the following options may be correct :

(A) If x is 1 g then y is 2 g (C) If x is 2 g then y is 1 g (B) If x is 5.5g then y is 11 g (D) If x is 11 g then y is 5.5 g

PART - IV : COMPREHENSION

Read the following passage carefully and answer the questions.

Comprehension # 1

Equivalent Mass :

The equivalent mass of a substance is defined as the number of parts by mass of it which combine with or displace 1.0078 parts by mass of hydrogen, 8 parts by mass of oxygen and 35.5 parts by mass of chlorine.

The equivalent mass of a substance expressed in grams is called gram equivalent mass.

The equivalent mass of a substance is not constant. It depends upon the reaction in which the substance is participating. A compound may have different equivalent mass in different chemical reactions and under different experimental conditions.

	(A) Equivalent mass of an acid : It is the mass of an acid in grams which contains 1.0078 g of replaceable H ⁺ ions or it is the mass of acid which contains one mole of replaceable H ⁺ ions. It may be calculated as :						
	Equivalent mass of acid	$d = \frac{\text{Molecular mass of a}}{\text{Basicity of acid}}$	cid				
	Basicity of acid = numb (B) Equivalent mass of OH⁻ ions in molecule.	er of replaceable hydrog of a base : It is the mas	en atoms present in one ss of the base which cc	molecule of acid ntains one mole of replaceable			
	Equivalent mass of bas	$e = \frac{\text{Molecular mass of } k}{\text{Aciditiy of base}}$	base				
	Acidity of base = Numb	er of replaceable OH⁻ io	ns present in one molec	ule of the base			
	Equivalent mass of ar	n oxidising agent :					
(a) Eleo	ctron concept : Equival	ent mass of oxidising age	ent = $\frac{\text{Molecular mathematication}}{\text{Number of electron}}$	ass of oxidising agent ns gained by one molecule			
(b) Oxi	dation number concep	t : Equivalent mass of ox	kidising agent = Total c per mo	lar mass of oxidising agent hange in oxidation number lecule of oxidising agent			
1.	Equivalent mass of Ba((A) M/5	MnO ₄) ₂ in acidic medium (B) M/6	n is : (where M stands for (C) M/10	r molar mass) (D) M/2			
2.	Equivalent mass of Fe ₀ (A) 7 M/10	.9O in reaction with acidic (B) 10 M/7	c K ₂ Cr ₂ O ₇ is : (M = Molar (C) 7 M/9	- mass) (D) 9 M/7			
3.	Equivalent weight of ox $H_2C_2O_4 + Ca(OH)_2$	alic acid salt in following → CaC ₂ O ₄ + H ₂ O	reaction is : (Atomic ma	sses : O = 16, C = 12, K = 39)			
	(A) 90	(B) 45	(C) 64	(D) 128			
Compr	ehension # 2 Some amount of "20V" required 200 mL of 0.1	' H_2O_2 is mixed with exc N Na ₂ S ₂ O ₃ for titration.	cess of acidified solution	n of KI. The iodine so liberated			
4.	The volume of H ₂ O ₂ so (A) 11.2 mL	lution is : (B) 37.2 mL	(C) 5.6 mL	(D) 22.4 mL			
5.	The mass of $K_2Cr_2O_7$ n (A) 3.6 g	eeded to oxidise the abo (B) 0.8 g	ve volume of H ₂ O ₂ solut (C) 4.2 g	ion is : (D) 0.98 g			
6.	The volume of O ₂ at ST (A) 56 mL	P that would be liberated (B) 112 mL	d by above H ₂ O ₂ solutior (C) 168 mL	n on disproportionation is : (D) 224 mL			

Comprehension # 3

Answer Q.7, Q.8 and Q.9 by appropriately matching the information given in the three columns of the following table.

Equivalent weight = $\frac{\text{Molecular weight / Atomic weight}}{\text{Molecular weight / Atomic weight}}$ n-factor is very important in redox as well as nonn-factor redox reactions.

In general n-factor of acid/base is number of moles of H+/OH- furnished per mole of acid/base. n-factor of reactions is number of moles of electrons lost or gained per mole of reactant columns 1, 2, 3 contain reactions, n-factor & equivalent weight respectively.

Column-1			Column-2	Column-3		
(I)	$MnO_4^- + 2H_2O \longrightarrow MnO_2 + 4OH^-$	(i)	1	(P)	158	
(II)	$MnO_4^- \longrightarrow MnO_4^{-2}$	(ii)	<u>10</u> 6	(Q)	96	
(III)	$Br_2 + OH^- \longrightarrow BrO_3^- + Br^-$	(iii)	3	(R)	34	
(IV)	$H_2O_2 \longrightarrow O_2 + H_2O$	(iv)	2	(S)	52.6	

(D) (III) (ii) (Q)

7.	For KMnO ₄ in stro	For KMnO ₄ in strong basic medium correct combination is -								
	(A) (I) (ii) (R)	(B) (II) (i) (P)	(C) (II) (iii) (S)	(D) (I) (iv) (Q)						
8.	For KMnO4 in neut	For KMnO ₄ in neutral medium correct combination is -								
	(A) (I) (iii) (Q)	(B) (II) (i) (R)	(C) (I) (iii) (S)	(D) (II) (iii) (R)						

- (A) (I) (iii) (Q) (B) (II) (i) (R) (C) (I) (iii) (S)
- 9. For a disproportionation reaction the only correct combination is -(A) (I) (ii) (R) (B) (II) (ii) (Q) (C) (IV) (i) (S)

Exercise-3

* Marked Questions may have more than one correct option.

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

1.	In basic medium, I^- is o (A) IO_3^-	xidised by MnO₄⁻. In this (B) I₂	process, I⁻ changes to (C) IO4⁻	o : [JEE 2004, 3/144] (D) IO ⁻			
2.	Consider a titration of diphenylamine as indicated	of potassium dichromat ator. The number of mole	e solution with acid s of Mohr's salt requir	ified Mohr's salt solution using ed per mole of dichromate is : [JEE 2007, 3/162]			
	(A) 3	(B) 4	(C) 5	(D) 6			
3.	3. 25 mL of household bleach solution was mixed with 30 mL of 0.50 M KI and 10 mL of 4N acetic aci the titration of the liberated iodine, 48 mL of 0.25 N Na ₂ S ₂ O ₃ was used to reach the end point. IJEF 2012 3/136						
	(A) 0.48 M	(B) 0.96 M	(C) 0.24 M	(D) 0.024 M			
4.*	For the reaction : I ⁻ + 0 The correct statement(s (A) Stoichiometric coeff (C) Sulphur is reduced.	$CIO_3^- + H_2SO_4 \longrightarrow CI^- + H_2SO_4 \longrightarrow CI^- + H_2SO_4 \longrightarrow CI^- + H_2SO_4$ in the balanced equation in the balanced equation is formula to the set of HSO_4^- is formula	+ HSO₄ ⁻ + I₂ on is/are : (B) lodide is oxidized (D) H₂O is one of the	[JEE (Advanced) 2014, 3/120] products.			

5. To measure the quantity of MnCl₂ dissolved in an aqueous solution, it was completely converted to KMnO₄ using the reaction.

 $MnCl_2 + K_2S_2O_8 + H_2O \square KMnO_4 + H_2SO_4 + HCl$ (equation not balanced).

Few drops of concentrated HCl were added to this solution and gently warmed. Further, oxalic acid (225 mg) was added in portions till the colour of the permanganate ion disappeared. The quantity of MnCl₂ (in mg) present in the initial solution is _____.

(Atomic weights in g mol⁻¹ : Mn = 55, Cl = 35.5)

[JEE (Advanced) 2018, 3/120]

PART - II : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

JEE(MAIN) OFFLINE PROBLEMS

When KMnO₄ acts as an oxidising agent and ultimately forms MnO₄²⁻, MnO₂, Mn₂O₃ and Mn²⁺, then the 1. number of electrons transferred in each case is : [AIEEE 2002, 3/225] (3) 1, 3, 4, 5 (1) 4, 3, 1, 5 (2) 1, 5, 3, 7 (4) 3, 5, 7, 1 2. What will happen if the solution of potassium chromate reacts with excess amount of nitric acid [AIEEE 2003, 3/225] (1) Cr reduces in the oxidation state +3 from CrO_4^{2-} . (2) Cr oxidises in the oxidation state +7 from CrO_4^{2-} . (3) Cr^{+3} and $Cr_2O_7^{2-}$ will be formed. (4) $Cr_2O_7^{2-}$ and H_2O will be formed. 3. The oxidation state of chromium in the final product formed by the reaction between KI and acidified [AIEEE 2005, 3/225] potassium dichromate solution is : (3) + 2(4) + 3(1) + 4(2) + 64. Amount of oxalic acid present in a solution can be determined by its titration with KMnO4 solution in the presence of H₂SO₄. The titration gives unsatisfactory result when carried out in the presence of HCl, [AIEEE 2008, 3/105] because HCI: (1) furnishes H⁺ ions in addition to those from oxalic acid. (2) reduces permanganate to Mn²⁺. (3) oxidises oxalic acid to carbon dioxide and water. (4) gets oxidised by oxalic acid to chlorine. 5. 29.5 mg of an organic compound containing nitrogen was digested according to Kjeldahl's method and the evolved ammonia was absorbed in 20 mL of 0.1 M HCl solution. The excess of the acid required 15 mL of 0.1 M NaOH solution for complete neutralization. The percentage of nitrogen in the compound is : [AIEEE 2010, 4/144] (3) 23.7 (4) 29.5 (1) 59.0 (2) 47.4 Consider the following reaction : $xMnO_4^- + yC_2O_4^{2-} + zH^+ \longrightarrow xMn^{2+} + 2yCO_2 + \frac{z}{2}H_2O_4^{2-}$ 6. The values of x, y and z in the reaction are, respectively : [JEE(Main) 2013, 4/120] (4) 5, 2 and 8 (1) 5, 2 and 16 (2) 2, 5 and 8 (3) 2, 5 and 16 7. For the estimation of nitrogen, 1.4 g of an organic compound was digested by Kjeldahl method and the evolved ammonia was absorbed in 60 mL of $\frac{M}{10}$ sulphuric acid. The unreacted acid required 20 mL of $\frac{M}{10}$ sodium hydroxide for complete neutralization. The percentage of nitrogen in the compound is : [JEE(Main) 2014, 4/120] (1) 6% (2) 10% (3) 3% (4) 5%

Equiv	alent Concept & Titrat	ion					
		JEE(MAIN) ONL	INE PI	ROBLEMS			
1.	Hydorgen peroxide acts both as an oxidising and as a reducing agent depending upon the nature of reacting species. In which of the following cases H_2O_2 acts as a reducing agent in acid medium ? [JEE(Main) 2014 Online (12-04-14), 4/120]						
	(1) MnO₄⁻	(2) Cr ₂ O ₇ ^{2–}	(3) SO	32-	(4) KI		
2.	Permanent hardness in (1) Treatment with wash (3) Ion exchange metho	water cannot be cured b ning soda od	oy : (2) Boi (4) Ca	[JEE(Main) 2015 Iling Igon's method	Online (10-04-15), 4/120]		
3.	1.4 g of an organic compound was digested according to Kjeldahl's method and the ammonia evo was absorbed in 60 mL of M/10 H ₂ SO ₄ solution. The excess sulphuric acid required 20 mL of M NaOH solution for neutralization. The percentage of nitrogen in the compound is : [JEE(Main) 2015 Online (10-04-15), 4/1						
	(1) 24	(2) 5	(3) 10		(4) 3		
4.	The volume of 0.1 N dia aqueous solution is : (1) 400 mL	oasic acid sufficient to ne (2) 600 mL	eutralize (3) 200	1 g of a base tha [JEE(Main) 20) mL	at furnishes 0.04 mole of OH ⁻ in 1 6 Online (10-04-16), 4/120] (4) 80 mL		
5.	For standardizing NaOH (1) Sodium tetraborate (3) Oxalic acid	H solution, which of the fo	ollowing (2) Fer (4) dil.	is used as a prin [JEE(Main) 20 rrous Ammonium HCI	nary standard ? 1 8 Online (16-04-18), 4/120] Sulfate		
6.	The temporary hardnes (1) CaCl ₂	s of water is due to : (2) Ca(HCO ₃) ₂	(3) Na	[JEE(Main) 20 Cl	1 9 Online (09-01-19), 4/120] (4) Na ₂ SO ₄		
7.	In the reaction of oxala producing one molecule (1) 5	ate with permanganate e of CO ₂ is : (2) 1	in acidi (3) 2	c medium, the n [JEE(Main) 20′	umber of electrons involved in 19 Online (10-01-19), 4/120] (4) 10		
8.	25 ml of the given HCl solution requ	solution requires 30 mL of 0	of 0.1 N 0.2 M aq	l sodium carbona queous NaOH sc [JEE(Main) 20	ate solution. What is the volume blution? 19 Online (11-01-19), 4/120]		
	(1) 12.5 mL	(2) 75 mL	(3) 50	mL	(4) 25 mL		
9.	The hardness of water s (molar mass of CaSO ₄ = (1) 10 ppm	sample (in terms of equiv = 136 g mol ⁻¹) (2) 50 ppm	valents ((3) 90	of CaCO₃) contai [JEE(Main) 20 ppm	ning 10 ^{–3} M CaSO₄ is : 1 9 Online (12-01-19), 4/120] (4) 100 ppm		
10.	The volume strength of	1M H ₂ O ₂ is: (Molar mass	s of H ₂ C	0₂ = 34 g mol⁻¹) [JEE(Main) 20	19 Online (12-01-19), 4/120]		
	(1) 11.35	(2) 22.4	(3) 16.	8	(4) 5.6		

Equi	valent Concept	& Titra	tion										
	Answ	ers											
	٦				E	XER	CISE -	1					
						PA	RT - I	•					
A-1.	(a) 23 ; (b) E =	9 ; (c) E	Ξ = 30 ;	(d) E	= 3	5.5 1 ; (e	e) E = 30	; (f) E =	48 ; (g)	E = 31.	67		
A-2.	(a) E = 58.5 or	· E = 58	3.5 ;	(b)) E = 3	87 or	E = 87 ;	(c) E =	51.67	or E = {	51.67		
A-3.	20.1	B-1.	$\frac{M_1}{6}$,	$\frac{M_2}{8}$,	$\frac{M_3}{5}$		B-2.	(a) 31.0	6;(b)	52.67	C-1.	72.6	1
C-2.	0.06 N, 0.03 M	C-3.	537.6	6 mL			D-1.	20			D-2.	+3	
D-3.	0.12 M.	D-4.	2.22	mL.			E-1.	7.1%			E-2.	0.25	075 g
F-1.	2.12 g/L	F-2.	126 p	opm									
F-3.	Temporary har Permanent har	dness - dness -	due to due to	bicart chlori	bonat ides &	es of (& sulph	Ca & Mg ates of (Ca & Mg.					
F-4.	There are some method by which we can soften the water sample.(a)By boiling : $2HCO_3^- \longrightarrow H_2O + CO_2 + CO_3^{2-}$ orBy Slaked lime : $Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow CaCO_3 + 2H_2O$ (b)By Washing Soda : $CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 + 2NaCl$ (c)By ion exchange resins : $Na_2R + Ca^{2+} \longrightarrow CaR + 2Na^+$												
		U	Ū	0		PAF	RT - II						
A-1.	(B)	A-2.	(A)			A-3.	(A)		B-1.	(C)		B-2.	(D)
B-3.	(A)	C-1.	(A)			C-2.	(A)		C-3.	(D)		D-1.	(B)
D-2.	(D)	D-3.	(B)			D-4.	(A)		E-1.	(B)		E-2.	(B)
F-1.	(D)	F-2.	(A)			F-3.	(D)		F-4.	(B)			
1.	(A – p,s) ; (B –	q,r) ; ((C – p,q	,s) ; (C	O − r)	PAF	RT - III						
					E	XER	CISE -	2					
						PA	RT - I						
1.	(A)	2.	(A)			3.	(D)		4.	(D)		5.	(A)
6.	(D)	7.	(D)			8.	(A)		9.	(D)		10.	(A)
11.	(A)	12.	(A)			13.	(A)		14.	(A)			
						PAF	RT - II						
1.	4	2.	1			3.	90		4.	2		5.	2
6.	68	7.	12			8.	21		9.	10 mL	-	10.	16
11.	32												
						PAF	RT - III						
1.	(AC)	2.	(ABC	D)		3.	(ACD)		4.	(ABD))	5.	(ABCD)

Equ	vivalent Conc	ept & Titr	ation /						
6.	(AB)								
				PAI	RT - IV				
1.	(C)	2.	(B)	3.	(C)	4.	(C)	5.	(D)
6.	(B)	7.	(B)	8.	(C)	9.	(D)		
				EXER	CISE - 3				
				РА	RT - I				
1.	(A)	2.	(D)	3.	(C)	4.*	(ABD)	5.	126 mg
				РА	RT - II				
			JEE(N	/IAIN) OFF		OBLEMS			
1.	(3)	2.	(4)	3.	(4)	4.	(2)	5.	(3)
0.	(3)	7.	(2)						
			JEE(MAIN) ON	LINE PRO	DBLEMS			
1.	(4)	2.	(2)	3.	(3)	4.	(3)	5.	(3)
6.	(2)	7.	(2)	8.	(4)	9.	(4)	10.	(1)