APPLICATION OF INTEGRALS

INTRODUCTION, AREA UNDER SIMPLE CURVES **EXERCISE**

			_		_		_	_		
0.1	The region	anclosed h	₩ tha	narahola v	– v2 an	d tha line	2 w — 2 v (in cauara	unite	ic.
U.1	THETERION	ciicioscu b	v uic	uarabula v	$-\Lambda$ and	iu uie iiii	- v — 4a i	III Suuai c	umisi	15.

- (a) $\frac{2}{3}$
- (b) $\frac{4}{3}$ (c) $\frac{8}{3}$
- (d) 4

Q.2 The area enclosed by the curve
$$y = \cos x$$
, from $x = 0$ to $x = \pi$, is:

- (a) 2 sq units
- (b) 4 sq units
- (c) 3 sq units
- (d) 1 sq units

Q.3 The area enclosed by the curve
$$y = \sqrt{16 - x^2}$$
 and the x-axis is:

- (a) $8 \pi \text{ sq units}$
- (b) 20π sq units
- (c) $16 \text{ sq } \pi \text{ units}$
- (d) $256 \pi \text{ sq units}$

Q.4 The area enclosed by the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 is equivalent to:

- (a) π^2 ab
- (b) π ab
- (c) π a²b
- (d) π ab²

Q.5 Determine the area of the region (in square units) enclosed by the curve
$$y^2=2y-x$$
 & y-axis and the y-axis.

- (a) $\frac{8}{3}$
- (b) $\frac{4}{3}$ (c) $\frac{5}{3}$
- (d) $\frac{2}{3}$

Q.6 What is the area enclosed by the parabola
$$x^2 = y$$
 and the line $y = 1$?

- (a) $\frac{1}{3}$ sq units
- (b) $\frac{2}{3}$ sq units (c) $\frac{4}{3}$ sq units
- (d) 2 sq units

Q.7 The area enclosed by the curve
$$y = x^2$$
 and the line $y = 16$ is:

- (a) $\frac{32}{3}$
- (b) $\frac{265}{3}$ (c) $\frac{64}{3}$
- (d) $\frac{128}{3}$

Determine the area enclosed by the curve $y = 4x^3$ within the interval x = [-2, 3]. **Q.8**

- (a) 97
- (b) 70
- (c) 65
- (d) 77

The area beneath the curve $y = x^2$ and the lines x = -1, x = 2, and the x-axis is: Q.9

- (a) 3 sq units
- (b) 5 sq units
- (c) 7 sq units
- (d) 9 sq units

The area beneath the curve $y = x^4$ and the lines x = 1, x = 5, and the x-axis is: Q.10

- (a) $\frac{3124}{3}$ sq units (b) $\frac{3124}{7}$ sq units (c) $\frac{3124}{5}$ sq units (d) $\frac{3124}{9}$ sq units

The integral to determine the area of a circle with radius 'a' is given by: Q.11

(a) $\int_{a}^{b} (a^2 + x^2) dx$

(b) $\int_{0}^{2\pi} \sqrt{(a^2 - x^2)} dx$

(c) $4 \times \int_{0}^{a} \sqrt{(a^2 - x^2)} dx$

(d) $\int_{0}^{a} \sqrt{(a^2 - x^2)} dx$

Determine the area enclosed by the curve $y = x^3$, the line x = 2, x = 5, and the x-axis. Q.12

- (a) 173.50
- (b) 230.25
- (c) 175.35
- (d) 152.25

The region enclosed by the parabola $x = 4 - y^2$ and the y-axis, measured in square Q.13 units, is:

- (a) $\frac{2}{32}$ sq units (b) $\frac{32}{3}$ sq units (c) $\frac{33}{2}$ sq units (d) None of these

ANSWER KEY

- 1. (b)
- 2. (a)
- 3. (a)
- 4. (b)
- 5. (b)
- 6. (c)
- 7. (b)

CLASS 12 MATHS

- **8.** (a)
- **9.** (a)
- **10.** (c)
- **11.** (c)
- **12** (d)
- **13.** (b)