APPLICATIONS OF DERIVATIVES

INCREASING & DECREASING FUNCTIONS

EXERCISE

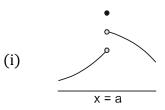
Q.1 Determine the intervals of monotonic behavior for the given functions.

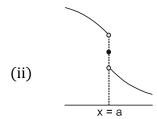
(i)
$$f(x) = -x^3 + 6x^2 - 9x - 2$$

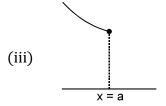
$$f(x) = -x^3 + 6x^2 - 9x - 2$$
 (ii) $f(x) = x + \frac{1}{x+1}$

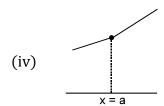
(iii)
$$f(x) = x \cdot e^{x-x^2}$$

(iv)
$$f(x) = x - \cos x$$


Consider the function $f(x) = x - \tan^{-1}x$. Demonstrate that f(x) is monotonically Q.2 increasing for all x in the set of real numbers.


If $f(x) = 2e^x - ae^{-x} + (2a + 1)x - 3$ monotonically increases for all x in the set of real Q.3 numbers, determine the range of values for a.


Consider $f(x) = e^{2x} - ae^{x} + 1$. Show that f(x) cannot be monotonically decreasing for Q.4 all x in the set of real numbers for any value of 'a'.


Determine the values of 'a' for which the function $f(x) = (a + 2) x^3 - 3ax^2 + 9ax - 1$ is Q.5 monotonically decreasing for all x in the set of real numbers.

Provide comments on the monotonicity of f(x) at x = a. for each of the following Q.6 graphs.

ANSWER KEY

1. (i) I in [1, 3]; D in $(-\infty, 1] \cup (3, \infty)$

(ii) I in
$$(-\infty, -2] \cup [0, \infty)$$
; D in $[-2, -1) \cup (-1, 0]$

(iii) I in
$$\left[-\frac{1}{2}, 1\right]$$
; D in $\left(-\infty, -\frac{1}{2}\right] \cup \left[1, \infty\right)$

- (iv) I for $x \in R$
- 3. $a \ge 0$
- 5. $-\infty < a \le -3$
- **6.** (i) neither M.I. nor M.D. (ii) M.D.
 - (iii) M.D

- (iv) M.I.
- 7. M.I. both at x = 0 and x = 1.
- **8.** M.I. at x = 0, 2; neither M.I. nor M.D. at x = 1. No, f(x) is not M.I. for $x \in [0, 2]$.