DETERMINANTS

APPLICATION OF DETERMINANTS AND MATRICES

EXERCISE

Q.1	The system of equations $x + 2y + 3z = 1$, $2x + y + 3z = 2$ and $5x + 5y + 9z = 4$ has.						
	(A) unique solution		(B) many solutions				
	(C) inconsistent		(D) None of these				
Q.2	The presence of unique solution in the system $x + y + z = b$, $2x + 3y - z = 6$, $5x - y + az = 10$ relies on.						
	(A) b only	(B) a only	(C) a and b	(D) neither a nor b			
Q.3	for what value of p does this system have no solution $px + y + z = 1$, $x + py + z = 1$						
	$x + y + pz = p^2$, have no solution.						
	(A) -2	(B) –1	(C) 1	(D) 0			
Q.4	The value of k for which the system of equations $3x + ky - 2z = 0$, $x + ky + 3z = 0$ and $2x + 3y - 4z = 0$ has a non – trivial solution is-						
	(A) 15	(B) 16	(C) $\frac{31}{2}$	(D) $\frac{33}{2}$			
Q.5	The determinant	$ \begin{array}{rcl} \cos(\theta + \phi) & -\sin(\theta + \phi) \\ \sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{array} $	$ \begin{array}{c c} \cos 2\phi \\ \sin \phi \\ \cos \phi \end{array} is- $				
	(A) 0		(B) independent of θ				
	(C) independent of ϕ (D) independent of both θ and ϕ						
Q.6	The system of linear equations $x + y + z = 2$, $2x + y - z = 3$, $3x + 2y + kz = 4$ has a unique solution if-						

CLASS 12

MATHS

	(A) $\mathbf{k} \neq 0$	(B) $-1 < k > 1$	(C) $-2 < k < 2$	(D) $k = 0$		
Q.7	If the system of equations, $x + 2y - 3z = 1$, $(k + 3)z = 3$, $(2k + 1)x + z = 0$ is inconsistent, then what is the value of k.					
	(A) -3	(B) $\frac{1}{2}$	(C) 0	(D) 2		
Q.8	The system of equation $x + 2y + 3z = 1$, $2x + y + 3z = 2$, $5x + 5y + 9z = 4$ posse					
	(A) unique solution		(B) infinitely many solutions			
	(C) inconsistent		(D) None of these			

ANSWER KEY

- **1.** A
- **2.** B
- **3.** A
- **4.** D
- **5.** B
- **6.** A
- **7.** A
- **8.** A