CLASS 12

MATHS

DETERMINANTS

ADJOINT AND INVERSE OF A MATRIX

EXERCISE

Which of the following represents the adjoint of the matrix $A = \begin{bmatrix} 1 & 5 \\ 3 & 4 \end{bmatrix}$? Q.1

$$(a) \begin{bmatrix} 4 & -5 \\ -3 & -1 \end{bmatrix}$$

$$(b) \begin{bmatrix} -4 & 5 \\ -3 & 1 \end{bmatrix}$$

$$(c) \begin{bmatrix} 4 & -5 \\ -3 & 1 \end{bmatrix}$$

$$(d) \begin{bmatrix} 4 & 5 \\ -3 & 1 \end{bmatrix}$$

$$(b) \begin{bmatrix} -4 & 5 \\ -3 & 1 \end{bmatrix}$$

$$(c) \begin{bmatrix} 4 & -5 \\ -3 & 1 \end{bmatrix}$$

$$(d) \begin{bmatrix} 4 & 5 \\ -3 & 1 \end{bmatrix}$$

Q.2 If $A = \begin{bmatrix} 5 & -8 \\ 2 & 6 \end{bmatrix}$ determine A (adj A).

$$(a) \begin{bmatrix} 41 & 0 \\ 0 & 46 \end{bmatrix}$$

$$(b)\begin{bmatrix} 46 & 0 \\ 1 & 46 \end{bmatrix}$$

$$(c) \begin{bmatrix} 46 & 1 \\ 0 & 46 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 41 & 0 \\ 0 & 46 \end{bmatrix}$$
 (b) $\begin{bmatrix} 46 & 0 \\ 1 & 46 \end{bmatrix}$ (c) $\begin{bmatrix} 46 & 1 \\ 0 & 46 \end{bmatrix}$ (d) $\begin{bmatrix} 46 & 0 \\ 0 & 46 \end{bmatrix}$

Q.3 If $A = \begin{bmatrix} 1 & 0 \\ 9 & 4 \end{bmatrix}$ then (adj A) A is

$$(a) \begin{bmatrix} -4 & 0 \\ 0 & -4 \end{bmatrix}$$

$$(b) \begin{bmatrix} 4 & 0 \\ 1 & 4 \end{bmatrix}$$

$$(c) \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$

$$(d) \begin{bmatrix} 4 & 0 \\ 0 & -4 \end{bmatrix}$$

$$(b)\begin{bmatrix} 4 & 0 \\ 1 & 4 \end{bmatrix}$$

$$(c) \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$

$$(d) \begin{bmatrix} 4 & 0 \\ 0 & -4 \end{bmatrix}$$

Q.4 What is the formula used to compute the inverse of the matrix among the following options?

1

(a)
$$\frac{2}{|A|}$$
 adj A

(b)
$$\frac{1}{|A|}$$
 adjA

(c)
$$\frac{-1}{|A|}$$
 adjA

(a)
$$\frac{2}{|A|}$$
 adjA (b) $\frac{1}{|A|}$ adjA (c) $\frac{-1}{|A|}$ adjA (d) $\frac{1}{|2A|}$ adjA

Determine the inverse of the matrix $A = \begin{bmatrix} 8 & 5 \\ 4 & 1 \end{bmatrix}$ Q.5

CLASS 12

MATHS

(a)
$$\begin{bmatrix} -\frac{1}{12} & \frac{5}{12} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix}$$

(b)
$$\begin{bmatrix} \frac{1}{12} & \frac{5}{12} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix}$$

(c)
$$\begin{bmatrix} -\frac{1}{12} & \frac{5}{12} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

(d)
$$\begin{bmatrix} -\frac{1}{12} & \frac{5}{12} \\ -\frac{1}{3} & -\frac{2}{3} \end{bmatrix}$$

- Q.6 Which of the following conditions is not accurate for the inverse of matrix A?
 - (a) The matrix A must be a square matrix
 - (b) A must be singular matrix
 - (c) A must be a non-singular matrix
 - (d) adj A≠0
- Among the provided matrices, which one possesses an inverse $\frac{1}{-6} \begin{vmatrix} 2 & 1 \\ 0 & -3 \end{vmatrix}$? Q.7

$$(a)\begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix}$$

$$(b) \begin{bmatrix} -3 & -1 \\ 0 & 2 \end{bmatrix}$$

$$(c) \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$$

$$(a) \begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix}$$

$$(b) \begin{bmatrix} -3 & -1 \\ 0 & 2 \end{bmatrix}$$

$$(c) \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$$

$$(d) \begin{bmatrix} -3 & -1 \\ 0 & -2 \end{bmatrix}$$

If the matrices $A = \begin{bmatrix} -8 & 2 \\ 6 & -3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \\ 1 & 7 \end{bmatrix}$ given then find the $(AB)^{-1}$ Q.8

(a)
$$-\frac{1}{432}\begin{bmatrix} -27 & 6\\ 9 & 14 \end{bmatrix}$$

$$(b) \frac{1}{432} \begin{bmatrix} 27 & 6 \\ 9 & 14 \end{bmatrix}$$

$$(c) \frac{1}{432} \begin{bmatrix} -27 & 6 \\ 9 & 14 \end{bmatrix}$$

$$(d) \frac{-1}{432} \begin{bmatrix} 27 & 6\\ 9 & 14 \end{bmatrix}$$

2

- Q.9 Which of the following formula is not accurate?
 - (a) A(adj A) = |A|I
 - (b) $|adj(A)| = |A|^{n-1}$, for an nth order matrix
 - (c) $A^{-1} = \frac{1}{|A|} adj A$
 - (d) $A(adj A) = |A|^{n-1}$

Q.10 A square matrix A is considered non-singular if the determinant $|A| \neq 0$

(a) True

(b) False

ANSWER KEY

1. (C)

2. (D)

3. (C)

4. (B)

5. (A)

6. (B)

7. (B)

8. (C)

9. (D)

10. (A)