MATRICES

ELEMENTARY OPERATION OF A MATRIX

EXERCISE

Q.1 What is the total number of elementary operations that can be performed on matrices?

(a) 3

(b) 2

(c) 6

(d) 5

Q.2 After applying the operation $R_1 \rightarrow R_1 + R_2$ to the matrix $A = \begin{bmatrix} 2 & 3 \\ 6 & 4 \end{bmatrix}$, which of the following matrices will be the resulting new matrix?

 $(a)\begin{bmatrix} 8 & 7 \\ 6 & -4 \end{bmatrix}$

 $(b)\begin{bmatrix} 8 & 7 \\ 6 & 4 \end{bmatrix}$

 $(c) \begin{bmatrix} 8 & 7 \\ 6 & 5 \end{bmatrix}$

 $(d) \begin{bmatrix} 8 & 7 \\ 6 & 2 \end{bmatrix}$

Q.3 If the elementary operation $R_1 \rightarrow 2R_1 + 3R_2$ is applied to the matrix, which of the following matrices will remain unchanged?

 $(a)\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 1 \end{bmatrix}$

 $(b) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

 $(c) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

 $(d) \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 0 \end{bmatrix}$

Q.4 Which one of the following does not qualify as a valid elementary operation?

(a) $R_i \leftrightarrow R_i$

(b) $R_i \rightarrow R_j + kR_i$

(c) $R_i \rightarrow kR_i$

(d) $R_i \rightarrow 1 + kR_i$

Q.5 Which elementary operation has been performed on the matrix $A = \begin{bmatrix} 8 & 5 \\ 2 & 8 \end{bmatrix}$ to

transform it into $\begin{bmatrix} 12 & 21 \\ 2 & 8 \end{bmatrix}$

(a) $R_1 \rightarrow R_1 - 2R_2$

(b) $R_1 \rightarrow 2R_1 + R_2$

(c) $R_1 \rightarrow R_2 + R_1$

- (d) $R_1 \rightarrow R_1 + 2R_2$
- **Q.6** After implementing the following elementary operations on the matrix

$$A = \begin{bmatrix} 4 & 5 & 2 \\ 6 & 7 & 1 \\ 3 & 9 & 5 \end{bmatrix}, R_1 \rightarrow 2R_1 + 3R_2, R_2 \rightarrow 3R_2 - 2R_3$$

Which of the following matrices will be the resulting new matrix?

 $(a) \begin{bmatrix}
 24 & 31 & 7 \\
 12 & 3 & 7 \\
 3 & 9 & 5
 \end{bmatrix}$

(b) $\begin{bmatrix} 24 & 31 & 7 \\ 12 & 3 & -7 \\ 3 & 9 & 5 \end{bmatrix}$

- **Q.7** The matrix resulting from the elementary operation $R_2 \rightarrow 2R_2 + 3R_1$ applied to the

original matrix $A = \begin{bmatrix} 2 & 5 & 4 \\ 5 & 2 & 6 \\ 7 & 2 & 1 \end{bmatrix}$ is

(a) $\begin{bmatrix} 2 & 5 & 4 \\ 16 & 19 & 24 \\ 7 & 2 & 1 \end{bmatrix}$

(b) $\begin{bmatrix} 2 & 5 & 4 \\ 19 & 19 & 24 \\ 7 & 2 & 1 \end{bmatrix}$

 $(c) \begin{bmatrix} 2 & -5 & 4 \\ 16 & 19 & 24 \\ 7 & 2 & 1 \end{bmatrix}$

 $(d) \begin{bmatrix} 1 & 5 & 4 \\ 16 & 19 & 24 \\ 7 & 2 & 1 \end{bmatrix}$

Q.8 What is the new matrix after applying the elementary operation $C_1 \rightarrow 4C_1$ to the

$$matrix A = \begin{bmatrix} 5 & 8 \\ -1 & 2 \\ 3 & -4 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 5 & 8 \\ -1 & 2 \\ 3 & -4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 20 & 8 \\ -4 & 2 \\ 12 & -4 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 20 & 8 \\ 4 & 2 \\ 12 & -4 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 20 & 8 \\ -4 & 2 \\ 12 & 4 \end{bmatrix}$$

Q.9 After applying the following column matrix operations:

$$A = \begin{bmatrix} -7 & 2 & 6 \\ -2 & 3 & -5 \\ 2 & 1 & 3 \end{bmatrix}, C_2 \rightarrow 2C_1 + C_2, C_3 \rightarrow 3C_1 + 2C_3$$

Which of the following matrices will be the resulting new matrix?

(a)
$$\begin{bmatrix} -7 & -12 & 6 \\ 2 & -1 & -5 \\ 2 & -5 & 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -7 & -12 & 6 \\ -2 & -1 & -5 \\ 2 & 5 & 3 \end{bmatrix}$$

$$\begin{array}{c|cccc}
-7 & 2 & 6 \\
-2 & 3 & -5 \\
2 & 1 & 3
\end{array}$$

 ${f Q.10}$ Which one of the following column operations is not accurate for the given matrix

$$A = \begin{bmatrix} 1 & 2 & 5 \\ 6 & 3 & 8 \end{bmatrix}$$

(a)
$$C_1 \rightarrow 3C_1$$

(b)
$$C_2 \rightarrow C_1 + C_2$$

(c)
$$C_2 \rightarrow 2 + 2C_2$$

(d)
$$C_2 \rightarrow 2C_1 + 2C_2 - C_3$$

ANSWER KEY

2. (b)
$$\begin{bmatrix} 8 & 7 \\ 6 & 4 \end{bmatrix}$$

3. (b)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

4. (d)
$$R_i \rightarrow 1 + kR_i$$

5. (d)
$$R_1 \rightarrow R_1 + 2R_2$$

6. (b)
$$\begin{bmatrix} 24 & 31 & 7 \\ 12 & 3 & -7 \\ 3 & 9 & 5 \end{bmatrix}$$

7. (a)
$$\begin{bmatrix} 2 & 5 & 4 \\ 16 & 19 & 24 \\ 7 & 2 & 1 \end{bmatrix}$$

8. (b)
$$\begin{bmatrix} 20 & 8 \\ -4 & 2 \\ 12 & -4 \end{bmatrix}$$

9.
$$(d) \begin{bmatrix} -7 & -12 & -9 \\ -2 & -1 & -16 \\ 2 & 5 & 12 \end{bmatrix}$$

10. (c)
$$C_2 \rightarrow 2 + 2C_2$$