CLASS 12

RELATIONS AND FUNCTIONS

TYPES OF RELATION

EXERCISE

Let R be the relation on the set of natural numbers N, defined as follows: Q.1 $R: \{(x, y)\}: x + 3y = 12 \ x \in N, y \in N\}$ Determine (i) R (ii) Domain of R (iii) Range of R Q.2 If $X = \{x_1, x_2, x_3\}$ and $y = (x_1, x_2, x_3, x_4, x_5)$ identify which of the following is a reflexive relation. (a) R_1 : {(x_1, x_1), (x_2, x_2) (b) R_1 : {(x_1, x_1), (x_2, x_2), (x_3, x_3) (c) $R_2 : \{(x_1, x_1), (x_2, x_2), (x_2, x_3), (x_1, x_2), (x_2, x_4)\}$ (d) $R_3: \{(x_1, x_1), (x_2, x_2), (x_3, x_3), (x_4, x_4)\}$ Q.3 If $x = \{a, b, c\}$ and $y = \{a, b, c, d, e, f\}$ determine which of the following relations is symmetric. R₁: { } i.e. void relation R_2 : {(a, b)} R_3 : {(a, b), (b, a)(a, c)(c, a)(a, a)} If $x = \{a, b, c\}$ and $y = (a, b, c, d, e\}$ identify the transitive relations among the Q.4 following.

(a) $R_1 = \{\}$

(b) $R_2 = \{(a, a)\}$

(c) $R_3 = \{(a, a\}, (c, d)\}$

(d) $R_4 = \{(a, b), (b, c) (a, c), (a, a), (c, a)\}$

- **Q.5** Consider the relation R on the set N of natural numbers defined by x R y if and only if x divides y for all $x, y \in N$.
- **Q.6** Demonstrate that the relation R on the set Z of all integer numbers, defined by $(x, y) \in R$ if and only if x-y is divisible by n, is an equivalence relation on Z.
- **Q.7** Let R_1 be a relation on the set R of real numbers, defined as $(a, b) \in R_1$ if and only if 1+ab>0 for all $a, b \in R$. Show that R_1 is reflexive and symmetric but not transitive.
- **Q.8** Consider the set A comprising the first ten natural numbers. Let R be a relation on A defined as $(x, y) \in R$ if and only if x+2y=10, expressed as $R = \{(x, y): x \in A, y \in A and x + 2y = 10\}$. Represent R and R^{-1} both as sets of ordered pairs. Additionally, determine:
 - (i) Domains of R and R^{-1}
 - (ii) Range of R and R⁻¹

ANSWER KEY

1. (i) $R = \{(9, 1), (6, 2), (3, 3)\}$

- (ii) Domain of $R = \{9, 6, 3\}$
- (iii) Range of $R = \{1, 2, 3\}$
- **2.** (b) Reflexive $R_1 : \{(x_1, x_1), (x_2, x_2), (x_3, x_3)\}$
- **3.** R₁ exhibits symmetry as it contains no elements.

 R_2 lacks symmetry due to the presence of (b, a) $\in R_2$,

While, R₃ is symmetric.

CLASS 12

- **4.** (a) R₁ qualifies as a transitive relation since it is a null relation.
 - (b) R₂ is transitive because all singleton relations are inherently transitive.
 - (c) R₃ demonstrates transitive behavior.
 - (d) R₄ also satisfies the conditions of transitivity.
- **5.** we find that for any non zero integer a a R (a) and (-a) R a, but $a \neq -a$.
- 8. Thus $R = \{(2, 4), (4, 3), (6, 2), (8, 1)\}$

 $R^{-1} = \{(4, 2), (3, 4), (2, 6), (1, 8)\}$

Clearly, Dom (R) = $\{2, 4, 6, 8\}$ = Range (R⁻¹)

and Range $(R) = \{4, 3, 2, 1\} = Dom (R^{-1})$