CLASS 12

RELATIONS AND FUNCTIONS

BINARY OPERATIONS

EXERCISE

- **Q.1.** Determine whether the following operation define a binary operation on the given set or not:
- (i) The operation '*' on N defined by $a * b = a^b$ for all $a, b \in N$.
- (ii) The operation '0' on Z defined by a 0 b = a^b for all a, b \in Z.
- (iii) The operation '*' on N defined by a * b = a + b 2 for all $a, b \in N$
- (iv) The operation ' \times 6' on S = {1, 2, 3, 4, 5} defined by a \times 6b = Remainder when ab is divided by 6.
- (v) The operation '+6' on S = {0, 1, 2, 3, 4, 5} defined by a +6b = $\begin{cases} a+b, & \text{if } a+b<6\\ a+b-6, & \text{if } a+b \ge 6 \end{cases}$
- (vi) The operation ' \odot ' on N defined by a \odot b = a^b + b^a for all a, b \in N
- (vii) The operation '*' on Q defined by $a * b = \frac{(a-1)}{(b+1)}$) for all $a, b \in Q$
- **Q.2.** Determine whether the given definition of * provides a binary operation. If * does not constitute a binary operation, provide a justification for this.
- (i) On Z^+ , defined * by a * b = a b
- (ii) On Z^+ , define * by $a^*b = ab$
- (iii) On R, define * by $a*b = ab^2$
- (iv) On Z^+ define * by a * b = |a b|
- (v) On Z^+ define * by a * b = a

CLASS 12

(i)

(i)

(vi) On R, define * by a * $b = a + 4b^2$ Here, Z⁺ denotes the set of all non-negative integers. Consider the binary operation * on the set I of integers, defined by a * b = 2a + b - 3Q.3. Determine the value of 3 * 4. For the binary operation * defined on the set {1, 2, 3, 4, 5} by LCM of a * b=LCM of a Q.4. and b, is it a binary operation? Provide justification for your answer. Let '*' be a binary operation on N defined by a * b = l.c.m. (a, b) for all a, $b \in N$ Q.5. Find 2 * 4, 3 * 5, 1 * 6. (i) Verify the commutativity and associativity of '*' on N. (ii) Identify the binary operations from the following list that are associative and Q.6. commutative: * on N defined by a * b = 1 for all a, $b \in N$ * on Q defined by $a * b = \frac{(a+b)}{2}$ for all $a, b \in Q$ (ii) Consider any set A with more than one element. Let '*' be a binary operation on A Q.7 defined by a * b = b for all a, b \in A. Determine if '*' is commutative or associative on A. Verify the commutativity and associativity of each of the following binary Q.8. operations: '*' on Z defined by a * b = a + b + ab for all $a, b \in Z$

(ii) '*' on N defined by a * b =
$$2^{ab}$$
 for all a, b \in N

- '*' on Q defined by a * b = a b for all a, $b \in Q$ (iii)
- (iv) 'O' on Q defined by a \bigcirc b = a² + b² for all a, b \in Q

(v) 'o' on Q defined by a o
$$b = \frac{ab}{2}$$
 for all $a, b \in Q$

CLASS 12

MATHS

- (vi) '*' on Q defined by a * b = ab^2 for all a, b \in Q
- (vii) '*' on Q defined by a * b = a + a b for all a, $b \in Q$
- (viii) '*' on R defined by a * b = a + b 7 for all $a, b \in R$
- (ix) '*' on Q defined by a * b = $(a b)^2$ for all a, b \in Q
- (x) '*' on Q defined by a * b = ab + 1 for all a, $b \in Q$
- (xi) '*' on N defined by a * b = a^b for all a, b \in N
- (xii) '*' on Z defined by a * b = a b for all a, $b \in Z$
- (xiii) '*' on Q defined by a * b = $\frac{ab}{4}$ for all a, b \in Q
- (xiv) '*' on Z defined by a * b = a + b ab for all $a, b \in Z$
- (xv) '*' on Q defined by a * b = g c d (a, b) for all a, $b \in Q$
- **Q.9.** Show that the binary operation, denoted as o, defined by a o b = a + b ab for all rational numbers in the set Q {-1} (excluding 1), is commutative on Q {1}.
- **Q.10.** Demonstrate that the binary operation *, defined on the set of integers Z by a * b = 3a + 7b, is non-commutative.
- **Q.11.** For the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a, $b \in Z$. Establish that * is not associative on Z.

ANSWER KEY

- **1.** (i) Thus, * is a binary operation on N.
 - (ii) Thus, * is not a binary operation on Z
 - (iii) Thus, there exist a = 1 and b = 1 such that $a * b \notin N$
 - (iv) Thus, \times_6 is not a binary operation on S.
 - (v)Thus \times_6 is not a binary operation on S.

(vi) Thus, \odot is a binary operation on N.

(vii)So, * is not a binary operation in Q.

- **2.** (i) Thus, * is not a binary operation on Z⁺.
 - (ii) Thus, * is a binary operation on R.
 - (iii) Thus, * is a binary operation on R.
 - (iv) Thus, * is a binary operation on Z⁺.
 - (v) Thus, * is a binary operation on Z⁺.
 - (vi) Thus, * is a binary operation on R.
- **3.** 7
- **4.** Thus, * is not a binary operation on {1, 2, 3, 4, 5}.
- 5. (i) 2 * 4 = l.c.m. (2, 4) = 4

3 * 5 = l.c.m. (3, 5) = 15

- 1 * 6 = l.c.m. (1, 6) = 6
- (ii) Thus, * is associative on N.
- **6.** (i) Thus, * is associative on N.
 - (ii) Thus, * is not associative on N
- **7.** Thus, * is associative on A
- **8.** (i) Thus, * is associative on Z.
 - (ii) Thus, * is not associative on N
 - (iii) Thus, * is not associative on Q
 - (iv) Thus, \odot is not associative on Q.
 - (v) Thus, o is associative on Q.

- (vi) Thus, * is not associative on Q.
- (vii) Thus, * is not associative on Q
- (viii) Thus, * is associative on R.
- (ix) Thus, * is not associative on Q.
- (x) Thus, * is not associative on Q.
- (xi) Thus, * is not associative on N
- (xii) Thus, * is not associative on Z
- (xiii) Thus, * is associative on Q
- (xiv) Thus, * is associative on Z
- (xv) Thus, * is associative on N
- **9.** Thus, o is commutative on $Q \{-1\}$
- **10.** Thus, * is not commutative on Z.