SEQUENCES AND SERIES

GEOMETRIC PROGRESSION

EXERCISE

Q1.	If p^{th} , q^{th} and r^{th} terms of G.P. are x, y, z respectively, the $x^{q-r}y^{r-p}z^{p-q}$ is equal to					
	(a) 0	(b)1	(c)-1	(d)None of these		
Q2.	Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a & b.					
	6	-	(c) n = $\frac{-1}{5}$	5		
Q3.	The determinant Δ	$= \begin{vmatrix} a & b \\ b & c \\ a\alpha + b & b\alpha + c \end{vmatrix}$	$\begin{vmatrix} a\alpha + b \\ b\alpha + c \\ 0 \end{vmatrix}$ is equal to zero, if			
	(a) a, b, c are in A.P		(b) a, b, c are in G.P			
	(c) a, b, c are in H.P	c) a, b, c are in H.P. (d) a is a root of $ax^2 + bx + c =$				
Q4.	Consider an infinite geometric series with the first term a and common ratio r. If its					
	sum is 4 and the second term is $\frac{3}{4}$, then					
	(a) $a = \frac{4}{7}, r = \frac{3}{7}$ (c) $a = \frac{3}{2}, r = \frac{1}{2}$		(b) $a = 2, r = \frac{3}{8}$			
			(d) $a = 3, r = \frac{1}{4}$			
Q5.	If the fifth term of a geometric progression (G.P.) is 2, then the product of its first 9					
	terms is					
	(a) 256	(b)512	(c)1024	(d)None of these		
Q6.	Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the					
	third term					
	$(a)\frac{-4}{3},\frac{-8}{3},\frac{-16}{3},\dots$		(b) 4, -8,16, -32			
	(c) Both (a) & (b)		(d)None of these	d)None of these		
Q7.	Find the sum of the sequence 7, 77, 777, 7777, to n terms.					
	(a) $\frac{7}{9} \left[\frac{10(10^{n} - 1)}{9} - n \right]$		(b) $\frac{2}{3} \left[\frac{10(10^{n} - 1)}{9} - n \right]$			
	$(c)\frac{2}{3}\left[\frac{4(4^n-1)}{9}-n\right]$		$(d)\frac{2}{3}\left[\frac{1(1^{n-1})}{9}-n\right]$			

CLASS 11

MATHS

Q8.	How many terms of G.P. 2, 4, 8, 16, are required to give sum 254?					
	(a) 4	(b) 5	(c) 6	(d)7		
Q9.	$i^2 + i^4 + i^6 + \cdots$ upto (2k + 1) terms, k \in N is					
	(a) 0	(b) 1	(c) -1	(d) k		
Q10.	If $1 + \cos a + \cos^2 a + \dots \infty = 2 - \sqrt{2}$, then a, $(0 < a < \pi)$ is					
	$(a)\frac{\pi}{8}$	$(b)\frac{\pi}{6}$	$(C)\frac{\pi}{4}$	$(d)\frac{3\pi}{4}$		

ANSWER

- **1.** (b)
- **2.** (b)
- **3.** (b)
- **4.** (d)
- **5**. (b)
- **6.** (c)
- **7.** (a)
- **8.** (d)
- **9.** (c)
- **10.** (d)