CLASS 11

SEQUENCES AND SERIES

ARITHMETIC PROGRESSION

EXERCISE

- **Q.1** Which statement among the ones provided above is/are correct?
- 1. If (a_n) represents the nth term of an arithmetic progression (AP), then

$$a_n = \frac{a_{n+k}+a_{n-k}}{3}$$
2. In an arithmetic progression (AP), if the sum of m terms is equal to the sum of n terms, then the sum of (m + n) terms is always zero.
3. The sum to infinity of the series $\frac{1}{3} + \frac{1}{15} + \frac{1}{35} + \cdots$ is $\frac{1}{2}$.
(a) (1) and (2)
(b) (2) and (3)
(b) (3) and (1)
(c) (d) All (1), (2) and (3)
Q.2 If x, y, z are in arithmetic progression (AP), then the terms $1 \frac{1}{\sqrt{x}+\sqrt{y}}, \frac{1}{\sqrt{z}+\sqrt{x}}, \frac{1}{\sqrt{y}+\sqrt{z}}$ are also in

(a) AP (b) GP (c) HP (d) AP and HP
Q.3 If
$$1, \log_3 \sqrt{(3^{1-x}+2)}, \log_3(4.3^x - 1)$$
 are in AP, then x equals
(a) $\log_3 4$ (b) $1 - \log_3 4$
(c) $1 - \log_4 3$ (d) $\log_4 3$
Q.4 If $a_1, a_2, ..., a_n$ are in AP with common difference d, then the sum of the series

Sin d (cosec a_1 cosec a_2 + cosec a_2 cosec a_3 + … + cosec a_{n-1} cosec a_n) is (a) sec a_1 - sec a_n (b) cot a_1 - cot a_n (c) tan a_1 - tan a_n (d) cosec a_1 = cosec a_n

Q.5 If (S₁), (S₂), and (S₃) represent the sums of the first (n₁), (n₂), and (n₃) terms, respectively, of an arithmetic progression (A.P.), then

(a)0
$$\frac{S_1}{n_1}(n_2 - n_3) + \frac{S_2}{n_2}(n_3 - n_1) + \frac{S_3}{n_3}(n_1 - n_2) = (b)1$$

(c)
$$1 - \left(\frac{1}{10}\right)^{106}$$
 (d)None of these

MATHS

CLASS 11

MATHS

Q.6	If $a_1, a_2, a_3, \dots, a_{24}$	are in arithmetic prog	ression and							
	$a_1 + a_5 + a_{10} + a_1$	$a_{25} + a_{20} + a_{24} = 225$,	then $a_1 + a_2 + a_3 + \cdot$	$ + a_{23} + a_{24}$ is						
	equal to									
	(a)909	(b)75	(c)750	(d)900						
Q.7	Let the sequence, a	a ₁ , a ₂ , a ₃ , , a _{2n} form a	an AP, then							
	$a_1^2 - a_2^2 + a_3^2 - \dots + a_{2n-1}^2 - a_{2n}^2$ is equal to									
	(a) $\frac{n}{2n-1} (a_1^2 - a_{2n}^2)$		(b) $\frac{2n}{n-1} (a_{2n}^2 - a_1^2)$							
	(c) $\frac{n}{n+1} (a_1^2 + a_{2n}^2)$		(d)None of these							
Q.8	How many terms of the A.P. -6 , $-\frac{11}{2}$, -5 are needed to give the sum -25?									
	(a) n=5		(b)n=20							
	(c)Both (a) and (b)	(d)None of these							
Q.9	In an A.P., if p^{th} term is $\frac{1}{q}$ and q^{th} term is $\frac{1}{p}$, the sum of first pq terms is									
	$(a)\frac{1}{2}(pq+1)$		(b) $\frac{1}{3}(pq + 1)$							
	$(c)\frac{2}{3}(pq+1)$		$(d)\frac{2}{3}(pq+1)$							
Q.10	If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the A	A.M. between a and b,	then find the value of	'n.						
	(a)n = 1	(b)n = 5	(c)n = 6	(d)n = 5						
Q.11	Between 1 and 31, (m) numbers have been inserted in such a manner that the									
	resulting sequence forms an arithmetic progression (A.P.), and the ratio of the $7^{ m th}$									
	and $(m-1)^{th}$ numbers is 5:9. Determine the value of (m) .									
	(a)m = 14	(b) m = 21	(c) m = 10	(d) m = 29						
Q.12	Determine the sum of all natural numbers between 100 and 1000 that are multiples									
	of 5.									
	(a)98450	(b)10454	(c)95412	(d)56523						
1	ANSWER									
1.	(d)									

- **2.** (a)
- **3.** (b)

CLASS 11					
4.	(b)				
5.	(a)				
6.	(d)				
7.	(a)				
8.	(c)				
9.	(a)				
10.	(a)				
11.	(a)				
12.	(a)				