CLASS 11

PERMUTATIONS AND COMBINATIONS

PERMUTATIONS

EXERCISE

Q1.	If ${}^{2n+1}P_{n-1}$: ${}^{2n-1}P_n$: 3: 5 , the value of n is equivalent to			
	(a)4	(b)3	(c)2	(d)1
Q2.	If ¹² P _r then r is equal to			
	(a)5	(b)4	(c)3	(d)2
Q3.	If a, b, $c \in N$, find the number of points with position vectors in the form			
	ai + bj + ck such that $6 \le a + b + c \le 10$, is			
	(a)110	(b)116	(c)120	(d)127
Q4.	If ${}^{56}P_{r+6}: {}^{54}P_{r+3} = 30800:1$, then the value of r is			
	(a) 40	(b)51	(c) 41	(d)510
Q5.	20 persons are invited to a party. Determine the number of different ways they the host can be seated at a circular table, given that the two particular persons a			
	be seated on either side of the host.			
	(a) 20!	(b) 2!×18!	(c) 18!	(d)None of these
Q6.	There are 9 balls to be placed in 9 boxes, and 5 of the balls cannot fit into 3 sr			
	boxes. Determine the number of ways to arrange one ball in each of the boxes.			

(a)18720 (b)18270 (c)17280 (d)12780

CLASS 11

- Q7. A father with 8 children takes them to the zoological garden in groups of 3, as frequently as possible without having the same set of 3 children together more than once. The number of times he will visit the garden is:
 - (a) 112 (b) 56 (c) 336 (d) None of these
- **Q8.** An n-digit number is a positive number with precisely n digits. To form nine hundred distinct n-digit numbers, only the digits 2, 5, and 7 are to be used. Determine the smallest value of n for which this is possible.
 - (a)6 (b)7 (c)8 (d)9
- **Q9.** Eight chairs are numbered from 1 to 8. Two women and three men want to occupy one chair each. First, the women choose chairs from among those marked 1 to 4, and then the men select chairs from the remaining ones. Determine the number of possible arrangements.

```
(a) {}^{6}C_{3} \times {}^{4}C_{2} (b) {}^{4}P_{2} \times {}^{6}P_{3} (c) {}^{4}C_{2} + {}^{4}P_{3} (d) None of these
```

ANSWER

- **1.** (a)
- **2.** (c)
- **3.** (a)
- **4.** (c)
- **5.** (b)
- **6.** (c)
- **7.** (b)
- **8.** (b)
- **9.** (b)