
QUADRILATERALS

THEOREM RELATED TO QUADRILATERAL

EXERCISE

- **Q.1** Prove that the line segments joining the mid-point of the sides of a quadrilateral forms a parallelogram.
- **Q.2** In figure ABCD is a parallelogram and X, Y are the mid-points of sides AB and DC respectively. Show that AXCY is a parallelogram.
- **Q.3** Prove that the line segments joining the mid-points of the sides of a rectangle forms a rhombus.
- **Q.4** In figure ABCD is a parallelogram and X and Y are points on the diagonal BD such that DX = BY. Prove that
 - (i) AXCY is a parallelogram
 - (ii) AX = CY, AY = CX
 - (iii) $\Delta AYB \cong \Delta CXD$
- **Q.5** In fig. ABC is an isosceles triangle in which AB = AC. CP || AB and AP is the bisector of exterior \angle CAD of \triangle ABC. Prove that \angle PAC = \angle BCA and ABCP is a parallelogram
- **Q.6** In the given figure, ABCD is a square and $\angle PQR = 90^{\circ}$. If PB = QC = DR, prove that
 - (i) QB = RC,
 - (ii) PQ = QR,
 - (iii) $\angle QPR = 45^{\circ}$.

CLASS 9

- **Q.7** Prove that in a parallelogram
 - (i) opposite sides are equal
 - (ii) opposite angles are equal
 - (iii) each diagonal bisects the parallelogram
- **Q.8** Prove that area of rhombus = $\frac{1}{2}$ × product of the diagonals.
- **Q.9** Show that each angle of a rectangle is a right angle.

Q.10 ABCD is a rhombus with $\angle ABC = 58^{\circ}$. Find $\angle ACD$.