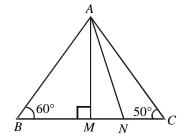
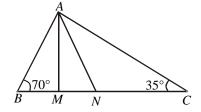
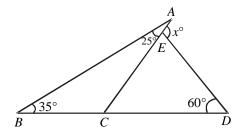

TRIANGLES

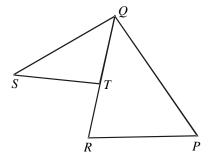
SOME PROPERTIES OF TRIANGLE

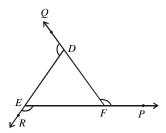

EXERCISE

Q.1 In the Fig. PS is the bisector of the $\angle P$ and $PT \perp QR$, then show that

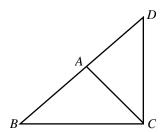

$$\angle TPS = \frac{1}{2} (\angle Q - \angle R)$$


Q.2 In the Fig. AM \perp BC and AN is th angle bisector of \angle A if \angle B = 60° and \angle C = 50°, find \angle MAN.


Q.3 In the given figure, AM \perp BC and AN is the bisector of \angle BAC. If \angle B = 70° and \angle C = 35°, find \angle MAN.


Q.4 In the figure find the value of x^{o} .

- **Q.5** Prove that the sum of the three altitudes of a triangle is less than the sum of the three sides of the triangle.
- **Q.6** Prove that the medians of an equilateral triangle are equal.
- Q.7 ABCD is a square, X and Y are points on sides AD and BC respectively such that AY = BX. Prove that BY = AX and $\angle BAY = \angle ABX$.
- **Q.8** In the given Fig. T is a point on side QR of \triangle PQR and S is a point such that TR = TS. Prove that PQ + PR > QS.


Q.9 In Fig. \angle DFP, \angle EDQ and \angle FER are exterior angles of \triangle DEF. Prove that \angle DFP + \angle EDQ + \angle FER = 360°

CLASS 9

MATHS

Q.10 In figure, AB = AC = AD. Prove that $\angle BCD = 90^{\circ}$.

ANSWER KEY

- **2.** 5º
- **3.** 17.5^o
- **4.** 120º