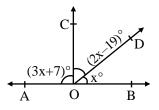
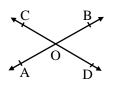
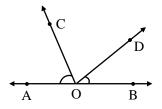

LINES AND ANGLES


ADJACENT ANGLE, LINEAR PAIR, VERTICALLY OPPOSITE ANGLES

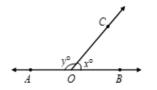
EXERCISE


Q.1 Two lines AB and CD intersect at 0. If $\angle AOC = 50^{\circ}$, find $\angle AOD$, $\angle BOD$ and $\angle BOC$.

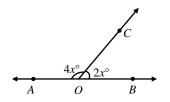

- ?
- **Q.2** In the adjoining figure, AOB is a straight line. Find the value of x. Hence, find AOC, \angle COD and \angle BOD.

Q.3 Two lines AB and CD intersect at a point O such that $\angle BOC + \angle AOD = 280^\circ$, as shown in the figure. Find all the four angles.

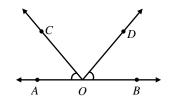
Q.4 In figure, OA, OB are opposite rays and $\angle AOC + \angle BOD = 90^\circ$. Find $\angle COD$.

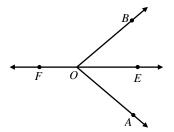

Q.5 In figure, OP bisects \angle BOC and OQ, \angle AOC. Show that \angle POQ = 90°.

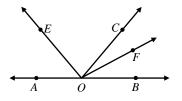
CLASS 9


Q.6 In figure OA and OB are opposite rays :

(i) If x = 75, what is the value of y?


(ii) If y = 110, what is the value of x?


Q.7 In figure $\angle AOC$ and $\angle BOC$ form a linear pair. Determine the value of x.


Q.8 In figure OA, OB are opposite rays and $\angle AOC + \angle BOD = 90^{\circ}$. Find $\angle COD$.

Q.9 In figure ray OE bisects angle $\angle AOB$ and OF is a ray opposite to OE. Show that $\angle FOB = \angle FOA$.

Q.10 In figure OE bisects \angle AOC, OF bisects \angle COB and OE \perp OF. Show that A, O, B are collinear.

ANSWER KEY

- **1.** $\angle AOD = 130^{\circ}, \angle BOC = 130^{\circ}, \angle BOD = 50^{\circ}$
- **2.** $\angle AOC = 103^{\circ}, \angle COD = 45^{\circ}, \angle BOD = 32^{\circ}.$
- **3.** $\angle AOC = \angle BOD = 40^{\circ}, \angle BOC = \angle AOD = 140^{\circ}.$
- 4. $\angle \text{COD} = 90^{\circ}$
- 6. (i) $y = 105^{\circ}$. (ii)x = 70
- 7. $x = 30^{\circ}$
- 8. $\angle \text{COD} = 90^{\circ}$