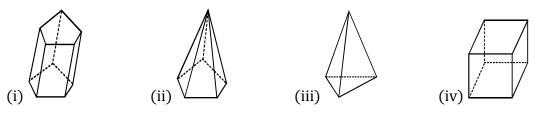
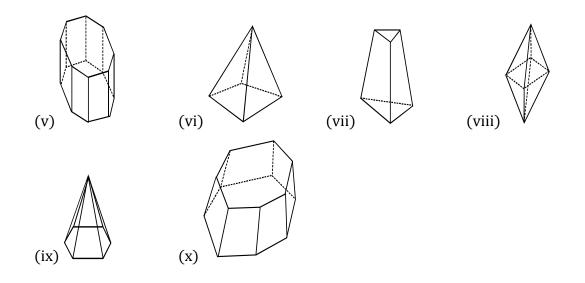
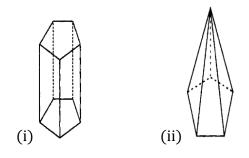
CLASS 8

## VISUALISING SOLID SHAPES


## **EULER'S FORMULA**


## EXERCISE

**Q.1** Fill the following table and verify Euler's Formula :


| Solid | f | v | е | f + v | e + 2 |
|-------|---|---|---|-------|-------|
|       |   |   |   |       |       |
| (ii)  |   |   |   |       |       |

- **Q.2** If a polyhedron has six faces and eight vertices, how many edges does it have ?
- **Q.3** How many faces a polyhedron will have if it has sixteen vertices and four edges.
- Q.4: Copy and complete the table by referring to the diagrams given below, where : F represents the number of faces of a solid, E represents the number of edges and V represents the number of vertices, In each case verify the Euler's formula : F + V = E+ 2





- Q.5: A polyhedron is having 8 vertices and 12 edges. How many faces of it are there ?
- **Q.6** An icosahedron is having 20 triangular faces and 12 vertices. Find the number of its edges.
- **Q.7** What is the least number of planes that can enclose a solid ? Name the simplest regular polyhedron and verify Euler's formula for it.
- **Q.8** Can a polyhedron have 12 faces, 22 edges and 17 vertices ?
- **Q.9** Can a polyhedron have 14 faces, 20 edges and 8 vertices ?
- **Q.10** Verify Euler's formula for the given figures.



## ANSWER KEY

- **2.** 12
- **3.** 10

| Solid  | F  | Е  | V  | <b>F</b> + <b>V</b> | E + 2 |
|--------|----|----|----|---------------------|-------|
| (i)    | 7  | 15 | 10 | 17                  | 17    |
| (ii)   | 6  | 10 | 6  | 12                  | 12    |
| (iii)  | 4  | 6  | 4  | 8                   | 8     |
| (iv)   | 6  | 12 | 8  | 14                  | 14    |
| (v)    | 10 | 24 | 16 | 26                  | 26    |
| (vi)   | 5  | 8  | 5  | 10                  | 10    |
| (vii)  | 5  | 9  | 6  | 11                  | 11    |
| (viii) | 8  | 12 | 6  | 14                  | 14    |
| (ix)   | 7  | 12 | 7  | 14                  | 14    |
| (X)    | 9  | 21 | 14 | 23                  | 23    |

- 4.
- **5.** 6
- **6.** 30

**8.** not be polyhedron of the given number of faces, edges and vertices.

**9.** there can be polyhedron of the given number of faces, edges and vertices.