The d-and f-Block Elements

Practice Questions

1. Which of the following element does not have $(n-1) d^{10}ns^2$ electronic configuration?

(a) Zn	<i>(b)</i> Cd
(c) Hg	<i>(d)</i> Cu

2. The ground state electronic configuration of neutral titanium atom is

(a) [Ar] $4s^2 4 p^2$	(b) [Ar] $3d^2 4s^2$
(c) [Ar] $4s^2 p_x^1 p_y^1$	(d) [Ar] $3d^5$

- **3.** The third ionisation enthalpy is minimum form (a) Mn (b) Ni (c) Co (d) Fe
- **4.** Which element can have oxidation state from 4 to 6? (a) Fe (b) Mg (c) Co (*d*) Cr
- 5. Magnetic moment of a transition metal ion is found to be 3.87 BM. The number of unpaired electrons present in it is (a) 2*(b)* 3

<i>(c)</i> 4		(d) 5
XX71. : . 1.	- f 41 f - 11:	

6. Which of the following aqueous solutions will be coloured?

(a) $\operatorname{Zn}(\operatorname{NO}_3)_2$	(b) $LiNO_3$
(c) $CoNO_3$	(d) $HgCl_2$

- 7. Which of the following alloys contain Cu and Zn? (a) Brass (b) Bronze (d) All of these (c) Bell metal
- **8.** Acidified potassium dichromate oxidises (a) iodides to iodine (b) sulphides to sulphur (c) tin (IV) to tin (II) (d) Both (a) and (b)
- **9.** Which of the following can react with $K_2Cr_2O_7$?

(a) SO_3^{-2}	(b) CO_3^{-2}
(c) SO_4^{-2}	(<i>d</i>) NO_{3}^{-}

10. Dichromates are generally prepared by the fusion of chromite ore with (a) sodium carbonate (b) potassium carbonate

(c) Both (a) and	(b) <i>(a</i>	l) Neither (a	a) nor (b)

- **11.** Permanganate ion (MnO_{4}) is dark purple coloured though Mn is in + 7 oxidation state with d^0 configuration. This is due to (a) *d*-*d* transition (b) charge transfer from metal to ligand
 - (c) charge transfer from ligand to metal
 - (d) All of the above

12. Name the gas that can readily decolourise acidified KMnO₄ solution.

(a) CO ₂ (c) NO ₂		$\begin{array}{c} (b) \text{ SO}_2\\ (d) \text{ P}_2 \text{ O}_5 \end{array}$

13. The product of following reaction is

 $K_2CrO_4 + dil. HNO_3 (excess) \longrightarrow$ (a) $\operatorname{Cr}^{3+}_{2}$ and $\operatorname{Cr}_{2}O_{2}^{2-}$ (b) $\operatorname{Cr}_2\operatorname{O}_7^{2-}$, NO_3^- and $\operatorname{H}_2\operatorname{O}$ (c) Only Cr^{3+} (d) Only Cr^{7+}

- 14. The green manganate and purple permanganate are respectively (a) paramagnetic, diamagnetic
 - (b) diamagnetic, paramagnetic
 - (c) paramagnetic, paramagnetic
 - (d) diamagnetic, diamagnetic
- **15.** The most common lanthanoid among the following is (a) lanthanum (b) cerium (c) promethium (d) plutonium
- **16.** Which of the following pairs has the same size? (a) Zn^{2+} , Hf^{4+} (b) Fe^{2+} , Ni^{2+} (d) Zr^{4+} , Hf^{4+} (c) Zr^{4+} , Ti^{4+}
- 17. The correct order of ionic radii of Ce, Pm, Gd and Dy in +3 oxidation state is (a) $Ce^{3+} < Gd^{3+} < Pm^{3+} < Dy^{3+}$ (b) $Ce^{3+} < Pm^{3+} < Gd^{3+} < Dy^{3+}$ (c) $Dy^{3+} < Gd^{3+} < Pm^{3+} < Ce^{3+}$ (d) $Pm^{3+} < Ce^{3+} < Dv^{3+} < Gd^{3+}$
- **18.** A man made white silvery metal, radioactive in nature, has strong tendency to form oxocations and complexes. It is used as a nuclear fuel in atomic reactor. This metal is a
 - (a) actinide
 - (b) lanthanide
 - (c) representative element
 - (*d*) transition metal
- **19.** All the actinoids are believed to have the electronic configuration of

(a) $6s^2$	(b) $7s^2$
(c) $5f^{14}$	(d) $6d^{10}$

20. What will be the most common oxidation state shown by the actinoids?

(a) -3	<i>(b)</i> +3
<i>(c)</i> –4	<i>(d)</i> +4

21.	Which of the follow	ving elements shows maximum	
	number of different	oxidation states in its compounds	?
	(a) Eu	(b) I o	

(<i>a</i>) Eu	(<i>b</i>) La
(c) Gd	<i>(d)</i> Am

22.	The actinoids resemb	le the lanthanoids in having
	more compounds in	
	(a) +3 state	<i>(b)</i> +4 state
	A 1	

(c) +5 state	(d) +2 state

23. Compound(s) useful in the battery industries is/are(a) MnO₂(b) Zn

(c)	Ni/Cd	(d)	All of these

- **24.** Catalyst used in the oxidation of SO_2 in the manufacture of H_2SO_4 is
 - (a) $CuCl_2$
 - (b) V_2O_5
 - (c) MnO_2
 - (d) None of thesee
- **25.** Which of the following compounds form the basis, if Ziegler-Natta catalysts is used to manufacture of polythene?

(a) TiCl₄
(b) Al(CH₃)₃
(c) TiCl₄ with Al(CH₃)₃
(d) None of these

ANSWERS

1	. (d)	2.	(b)	3.	(d)	4.	(d)	5.	(b)	6.	(C)	7.	(a)	8.	(d)	9.	(a)	10.	(C)
11	. (c)	12.	(b)	13.	(b)	14.	(a)	15.	(b)	16.	(d)	17.	(C)	18.	(a)	19.	(b)	20.	(b)
21	. (d)	22.	(a)	23.	(d)	24.	(b)	25.	(C)										

Hints & Solutions

1. (*d*) The electronic configurations of Zn, Cd and Hg are represented by the general formula $(n - 1) d^{10}ns^2$. The orbitals in these elements are completely filled in the ground state as well as in their common oxidation states.

Cu has electronic configuration $3d^{10}4s^1$. Thus, Cu does not have $(n-1)d^{10}ns^2$ electronic configuration.

3. (*d*) Fe has minimum value of third ionisation enthalpy. Ground state electronic configuration of Fe is $[Ar]3d^{6}4s^{2}$.

 Fe^{2+} has [Ar]3 d^6 configuration, whereas Fe^{3+} has [Ar]3 d^5 . The latter is a stable configuration and easier to ionise Fe^{2+} to Fe^{3+} than expected.

Hence possess least value.

Ni has highest value of third ionisation enthalpy due to its greater nuclear charge and smaller size.

Due to the same reason, Co > Fe > Mn should be the order for the remaining elements, but the anomalous order is due to greater stability of Mn^{2+} having [Ar] $3d^5$ configuration than Mn^{3+} with [Ar] $3d^4$.

Whereas for Co^+ , the electronic configuration is [Ar] $3d^7$, Thus, ionisation enthalpy needed to remove third electron is less as compared to that of Mn²⁺.

4. (*d*) Oxidation state of alkaline earth metal (i.e. Mg) is fixed and equal to (+)2.

Oxidation state of *d*-block elements can vary,

i.e. for Fe and Co it is as follows :

Oxidation state of Co = (+) 2 to (+) 4 and oxidation state of Fe = (+) 2 to (+) 6, but (+) 6 is less stable.

Oxidation state of Cr = (+) 2 to (+) 6, where (+) 6 state is more stable.

2)

5. (b) Magnetic moment of a transition metal ion

$$(\mu) = \sqrt{n(n+1)}$$

 $3.87 = \sqrt{n(n+2)}$ (Given, $\mu = 3.87$)

On solving, n = 3

...

Thus, number of unpaired electrons are 3.

- **6.** (*c*) Only Co⁺, because of the presence of unpaired electrons in *d*-orbitals show *d*-*d* transition and, hence it is coloured.
- **8.** (*d*) Acidified potassium dichromate oxidises iodides to iodine, sulphides to sulphur, tin(II) to tin(IV), iron(II) salts to iron (III).
- **9.** (*a*) Oxidation state of central atoms are as follows :

Sulphur in $SO_3^{-2} = +4$ Carbon in $CO_3^{-2} = +4$ Sulphur in $SO_4^{-2} = +6$

Nitrogen in
$$NO_3^- = +5$$

Since, $K_2Cr_2O_7$ is a strong oxidising agent it can oxidise the species, which is not in its most possible positive oxidising state. Thus, SO_3^{-2} can react with $K_2Cr_2O_7$ as follows :

 $\operatorname{Cr}_2O_7^{-2}(aq) + 3\operatorname{SO}_3^{-2}(aq) + 8\operatorname{H}^+(aq) \longrightarrow 2\operatorname{Cr}^{3+}(aq)$

 $+ 3SO_4^{2-}(aq) + 4H_2O(l)$

10. (c) Dichromates are generally prepared from chromate which in turn are obtained by the fusion of chromite ore (FeCr₂O₄) with sodium or potassium carbonate in free access of air.

 $\begin{array}{l} 4FeCr_{2}O_{4}+8Na_{2}CO_{3}+7O_{2}\longrightarrow\\ \\ 8Na_{2}CrO_{4}+2Fe_{2}O_{3}+8CO_{2}\\ \\ 2Na_{2}CrO_{4}+2H^{+}\longrightarrow Na_{2}Cr_{2}O_{7}+2Na^{+}H_{2}O \end{array}$

11 (c) In MnO_4^{-} ,

x + (-2)4 = -1

 \Rightarrow x = +7

 $_{25}$ Mn⁺⁷ = [Ar], no unpaired electrons.

Thus, it will not show *d-d* transition. It is dark purple coloured due to charge transfer from ligand to metal.

12. (*b*) SO₂ gas can readily decolourise acidified KMnO₄ solution because KMnO₄ is an oxidising agent that easily oxidises SO₂,

$$2MnO_4^- + 5SO_2 + 2H_2O \longrightarrow 2Mn^{2+} + 5SO_4^{2-} + 4H^+$$

while other options such as NO_2 (strong oxidising agent), CO_2 (neither oxidising agent nor reducing agent) cannot decolourise acidified KMnO₄ solution.

13. (b) The product of given reaction is $Cr_2O_7^{2-}$, NO_3^- and H_2O_7 ,

$$\begin{array}{ccc} 2CrO_4^{2-} + 2HNO_3 \longrightarrow & Cr_2O_7^{2-} + 2NO_3^- + H_2O\\ Chromate & (Dil.) & Dichromate \\ (yellow) & (orange) \end{array}$$

- **14.** (*a*) The manganate and permanganate ions are tetrahedral. Here, the π -bonding takes place by overlap of *p*-orbitals of oxygen with *d*-orbitals of manganese. The green manganate is paramagnetic because of one unpaired electron but the purple permanganate is diamagnetic due to charge transfer.
- **15.** (*b*) Lanthanum is a *d*-block element, whereas plutonium is an actinoid. Both cerium and promethium are lanthanoids. But cerium is a common lanthanoid because it occurs naturally, whereas Pm does not occur naturally and is radioactive.
- **16.** (d) Zr^{4+} and HF^{4+} have same size due to lanthanoid contraction.
- **18.** (*a*) Actinide is a man-made white silvery metal, radioactive in nature has a strong tendency to form oxocations and complexes.
- **19.** (*b*) All the actinoids are believed to have the electronic configuration of $7s^2$ and variable occupancy of 5f and 6d-subshell.
- **25** (c) TiCl₄ with Al(CH₃)₃ forms the basis of *Ziegler-Natta* catalysts that is used to manufacture polythene.