Construction with Given Sides and Angles (SAS & ASA Criteria)

A. Fill in the Blanks

1. To use the SAS criterion, the given angle must be the	angle.	
2. If two angles of a triangle are 40° and 60°, the third angle must be		
3. In the ASA criterion, the given side must be between	the two given angles.	
4. A minimum of independent measurements are needed to define a unique triangle.		
5. If you are given two sides and a non-included angle (SSA), you	always construct a	

B. Match the Following;

Column A (Given Information)	Column B (Criterion)
1. Side = 8 cm, Angle = 40°, Side = 6 cm (Angle is included)	A. SSS (Side-Side-Side)
2. Angle = 50°, Side = 10 cm, Angle = 60° (Side is included)	B. ASA (Angle-Side-Angle)
3. Side = 7 cm, Side = 7 cm, Side = 7 cm	C. SAS (Side-Angle-Side)
4. Angle = 90°, Angle = 30°, Side = 5 cm (Side is not included)	D. RHS (Right-angle-Hypotenuse-Side)
5. Angle = 90°, Hypotenuse = 13 cm, Side = 5 cm	E. AAS (Angle-Angle-Side)

C. Practice Problems

Construct the following triangles using the given measurements. State which criterion (SAS or ASA) you used for each construction.

- 1. Construct $\triangle ABC$ where AB = 6 cm, $\angle B = 60^{\circ}$, and BC = 5 cm.
- 2. Construct $\triangle PQR$ where QR = 7 cm, $\angle Q = 50^{\circ}$, and $\angle R = 70^{\circ}$.
- 3. Construct Δ LMN where LM = 5.5 cm, \angle L = 90°, and LN = 5.5 cm.
- 4. Construct $\triangle XYZ$ where XY = 8 cm, $\angle X = 40^{\circ}$, and $\angle Y = 100^{\circ}$.
- 5. Construct $\triangle DEF$ where DE = 7.2 cm, $\angle E = 110^{\circ}$, and EF = 6 cm.

. Warm-up Questions

- 1. What do the letters in 'SAS' stand for in triangle construction?
- 2. What do the letters in 'ASA' stand for in triangle construction?
- 3. In ΔΧΥΖ, if you are given side XY and side YZ, which angle is the "included angle"?
- 4. In $\triangle PQR$, if you are given $\angle P$ and $\angle Q$, which side is the "included side"?
- 5. List the three essential tools you need from your geometry box for these constructions.

E. Challenge Questions

- 1. Can you construct \triangle ABC with AB = 8 cm, \angle A = 70°, and \angle C = 40°? If yes, construct it. (Hint: What is the sum of angles in a triangle?)
- 2. Construct an isosceles triangle PQR where the base QR = 6 cm and the equal base angles \angle Q and \angle R are both 50°.
- 3. Construct an equilateral triangle DEF with a side length of 6.5 cm using the ASA criterion. (Hint: What are the angles in an equilateral triangle?)
- 4. Explain why it is impossible to construct ΔXYZ with YZ = 7 cm, $\angle Y = 120^{\circ}$, and $\angle Z = 65^{\circ}$.
- 5. Construct a right-angled isosceles triangle ABC, where the two equal sides, AB and BC, are each 5 cm long. What are the measures of \angle A and \angle C?

F. Word Problems & Application

- 1. **Garden Plot:** A landscape designer is creating a triangular garden plot. One side of the plot is 8 meters long, and another side is 6 meters long. The angle between these two sides is 45°. Construct a scale drawing of this garden plot using a scale of 1 cm = 1 m.
- 2. **Surveying:** A surveyor stands at point A and measures the angle to a distant tree (T) as 50°. She then walks 100 meters to point B. From point B, she measures the angle to the same tree as 70°. Construct a scale drawing of the triangle ABT using a scale of 1 cm = 10 m and find the distance from point A to the tree.
- 3. **Support Beam:** A triangular metal brace is needed to support a shelf. The base of the brace (which sits on the shelf) is 7 cm long. The angle at one end of the base is 90° and the angle at the other end is 40°. Construct the brace.
- 4. **Sailboat Sail:** The main sail of a toy sailboat is a triangle. The boom (bottom edge) is 12 cm long and the mast (vertical edge) is 10 cm long. The angle where they meet is 90°. Construct the sail.
- 5. **Park Paths:** Two straight paths in a park diverge from a fountain at an angle of 120°. The first path is 50 m long, and the second path is 70 m long. Construct a scale drawing (1 cm = 10 m) of this section of the park. Measure the distance between the ends of the two paths on your drawing.

E.	True or False	
	1. We can construct a unique triangle with angles 100°, 40°, and 40°.	
W	2. To construct \triangle ABC with AB = 5 cm, BC = 7 cm, and \angle C = 50°, we use the SAS criterion.	
Y	3. A triangle can be constructed with sides 6 cm, 8 cm and an included angle of 180°.	
	4. Constructing a triangle with a side of 7 cm and angles of 90° and 45° on that side is an	
\	example of SAS.	
	5. All triangles with the same three angles are congruent.	