EXE	RCISE-I (Conceptual	Questions)	Bu	uild Up Your Understanding			
		GRAHAM'S LA	W OF DIFFUSION				
1.	Which pair of the gaseous species diffuse through a small jet with the same rate of diffusio						
	same P and T : (1) NO, CO	(2) NO, CO ₂	(3) NH ₃ , PH ₃	(4) NO, C_2H_6			
2.	The rate of diffusior weight of X is :	n of methane at a given	n temperature is twice	that of a gas X. the molecular			
	(1) 64	(2) 32	(3) 4.0	(4) 8.0			
3.	The increasing order (1) H ₂ , CO ₂ , , NH ₃ , ((3) H ₂ , O ₂ , , NH ₃ , C	O_2	e gases, H ₂ , O ₂ , NH ₃ and CO ₂ is :- (2) H ₂ , NH ₃ , O ₂ , CO ₂ (4) CO ₂ , O ₂ , NH ₃ , H ₂				
4.	Gas a having molect weight of gas B is :	ular weight 4 diffuses	thrice as fast as the ga	s B at a give T. The molecular			
	(1) 36	(2) 12	(3) 18	(4) 24			
5.	Four rubber tubes are respectively filled with H_2 , O_2 , N_2 and CO_2 . The tube which will be reinflated first is :						
	(1) H ₂ filled tube	(2) O_2 filled tube	(3) N_2 filled tube	(4) CO_2 filled tube			
6.	A balloon filled with methane CH4 is pricked with a sharp point and quickly plunged into a tank of hydrogen at the same pressure. After sometime the balloon will have : (1) Enlarged (2) Collapsed (3) Remained unchanged in size(2) Collapsed (4) Ethylene (C2H4) inside it						
7.	Rate of diffusion of (1) Half of He (3) Double than He	hydrogen is :	(2) 1.4 times of He(4) For times of He				
8.	A football bladder contains equimolar proportions of H_2 and O_2 . The composition by mass of the mixture effusing out of punctured football is in the ratio ($H_2 : O_2$)						
	(1) 1 : 4	(2) $2\sqrt{2}$: 1	(3) 1 : $2\sqrt{2}$	(4) 4 : 1			
9.	If the vapour densities of methane & oxygen are in the ratio 1 : 2, the ratio of rate of diffusion of O_2 & CH_4 is respectively						
	(1) 1:2	(2) 1 : 1.414	(3) 2 : 1	(4) 1.414 : 1			
10.	A gas X diffuses three times faster than another gas Y the ratio of their densities i.e., $D_x : D_y$ (1) 1/3 (2) 1/9 (3) 1/6 (4) 1/12						
11.	The relative rate of c (1) 1/7	liffusion of a gas (Mol (2) 1/5	wt. = 98) as compared (3) 1/4	l to hydrogen will be :- (4) 1			
12.	The relative rate of c (1) 2 times	(2) 1/4	ecular weight = 128) as (3) 1/8	s compared to oxygen is (4) 1/2			

13.	the following pairs of gases, the pair that will (1) Carbon dioxide and nitrous oxide	en and oxygen are 12, 14 and 16 respectively, among /ill diffuse at the same rate is : (2) Carbon dioxide and nitrogen peroxide (4) Carbon dioxide and nitric oxide						
14.	A bottle of dry ammonia and a bottle of dry ammonia and a bottle of dry hydrogen chloride connected through a long tube are opened simultaneously at both ends, the white ammonium chloride ring first formed will be :-							
		(2) Near the hydroger(4) Thought out the left						
15.	50 mL of a gas A diffuse through a membrane in the same time as for the diffusion of 40 mL of a gas B under identical pressure temperature conditions. If the molecular weight of $A = 64$, that of B would be :							
	(1) 100 (2) 250	(3) 200	(4) 80					
16.	If rate of diffusion of A is 5 times that of B, y	what will be the densit	ty ratio of A and B :					
	(1) 1/25 (2) 1/5	(3) 25	(4) 5					
17.		50 mL of hydrogen diffuses through a small hole from vessel in 20 minutes time. Time taken for 40 mL of oxygen to diffuse out under similar condition will be :-						
	(1) 12 min (2) 64 min	(3) 8 min	(4) 32 min					
18.	The densities of two gases are in the ratio of							
	(1) 16:1 (2) 4:1	(3) 1 : 4	(4) 1 : 16					
19.	The rate of diffusion of a gas having molecul sec the ratio of diffusion of nitrogen gas will	The rate of diffusion of a gas having molecular weight just double of nitrogen gas is 56 mL per						
	0 0	(3) 56 mL/sec	(4) 90 mL/sec					
20.	If the four tubes of a car are filled to the sam	e pressure with N ₂ , O	2, H ₂ and CO ₂ separately then					
	which one will be filled first: (1) N_2 (2) O_2	(3) H ₂	(4) CO ₂					
21								
21.	Under identical conditions of temperature and pressure the ratio of the rates of effusion of O_2 and CO_2 gases is given by :							
	(1) $\frac{\text{rate of effusion of oxygen}}{\text{rate of effusion of CO}_2} = 0.87$ (2) $\frac{\text{rate of effusion of oxygen}}{\text{rate of effusion of CO}_2} = 1.17$							
	(3) $\frac{\text{rate of effusion of oxygen}}{\text{rate of effusion of CO}_2} = 8.7$	$\frac{\text{of effusion of oxygen}}{\text{e of effusion of CO}_2} = 8.7 \qquad (4) \ \frac{\text{rate of effusion of oxygen}}{\text{rate of effusion of CO}_2} = 0.17$						
	DEVIATION FROM IDE	EAL GAS BEHAVIC	UR					
22.	When does a real gas show behavior same as							
	(1) At low temperature and low pressure	-	re and high pressure					

- (1) At low temperature and low pressure(2) At high temperature and high pressure(3) At low temperature and high pressure(4) At high temperature and low pressure
- 23. In van der Waal's equation of state of the gas law, the constant 'b' is a measure of :

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

	(1) Intermolecular repulsions(3) Volume occupied by the molecules	(2) Intermolecular attraction(4) Intermolecular collisions per unit volume				
24.	(1) RT	Force in van der Waal's equation for non ideal gas is : (2) V – b				
	$(3)\left(\mathbf{P}-\frac{\mathbf{a}}{\mathbf{V}^2}\right)$	(4) $[RT]^{-1}$				
25.	Pressure of real gas is less than the pressur (1) No. of collisions increase (3) Inter molecular forces	e of ideal gas because : (2) Difinite shape of molecule (4) K.E. of molecule increases				
26.	Which gas can be easily liquefied ? Given 'a' for $NH_3 = 4.17$, $CO_2 = 3.59$, SO_2 (1) NH_3 (2) Cl_2	= 6.71 , $Cl_2 = 6.49$ (3) SO_2 (4) CO_2				
27.	At relatively high pressure, van der waal's	equation reduces to :				
	(1) PV = RT	(2) $PV = RT + \frac{a}{V}$				
	(3) PV = RT + Pb	(2) $PV = RT + \frac{a}{V}$ (4) $PV = RT - \frac{a}{V^2}$				
28.	A real gas most closely approaches the beh					
	(1) 15 atm and 200 K (3) 0.5 atm and 500 K	(2) 1 atm and 273 K (4) 15 atm and 500 K				
29.	The compressibility factor of an ideal gas i					
	(1) 0 (2) 1	(3) 2 (4) 4				
30.	The compressibility of a gas is less than un (1) $V_m < 22.4$ lit (3) $V_m = 22.4$ lit	ity at STP therefore : (2) $V_m > 22.4$ lit (4) $V_m = 44.8$ lit				
31.		for the gases O ₂ , N ₂ , NH ₃ and CH ₄ are 1.360, 1.390, The gas which can most easily be liquefied is : (3) NH ₃ (4) CH ₄				

ANSWER KEY

				ЕX	ERCIS	E-I (Co	ncentu	al Oue	stions)				
1.	(4)	2.	(1)	3.	(4)	4.	(1)	5.	(1)	6.	(1)	7.	(2)
8.	(1)	9.	(2)	10.	(2)	11.	(1)	12.	(4)	13.	(1)	14.	(2)
15.	(1)	16.	$(1)^{(-)}$	17.	(2)	18.	(2)	19.	(1)	20.	(3)	21.	(2)
22.	(4)	23.	(3)	24.	(3)	25.	(4)	26.	(3)	27.	(3)	28.	(3)
29.	(2)	30.	(2)	31.	(3)				(-)		(-)		(-)

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141