Chapter_07

p-Block Elements

Practice Questions

1.	Chile saltpetre is the co (a) AgNO ₃ (c) NaSO ₄	ommon name of (b) NaNO ₃ (d) AgCl	11.	The compound that cannot act both as oxidising and reducing agent is (a) H ₂ SO ₃ (b) H ₃ PO ₄ (c) HNO ₂ (d) H ₂ O ₂						
2.	The common oxidation are $(a) + 3$ and $+ 5$ $(c) - 5$ and $+ 5$	states of group 15 elements (b) - 3 and $-5(d) - 3, + 3$ and $+ 5$	12.	• Sulphur exhibits valencies of 2, 4 and 6, whereas oxygen has a valency of 2 due to (a) being less electronegative than S						
3.	Nitrogen lacks <i>d</i> -orbita hence, it cannot (<i>a</i>) exhibit orbital hybrid	l in its valence shell and		(b) presence of d-orbitals in S(c) S is bigger atom(d) S has higher ionisation potential						
,	(b) exhibit the oxidation(c) forms oxides with oxides(d) have covalency greated	state of +5 idation state greater than +3 er than three	13.	 All the hydrides (of group 16 elements) except or possess reducing property. Identity the hydride (a) H₂Se (b) H₂O 						
4.	which of the following boiling point? (a) PH ₃ (c) SbH ₃	(b) AsH ₃ (d) NH ₃	14.	(c) H ₂ S (d) H ₂ Te Tetrafluorides of elements of group-16 have hybridisation and structure respectively are (a) sp ³ and trigonal pyramidal						
5.	Extra pure N ₂ can be of decomposition of (a) NH ₃ with CuO	btained by thermal (b) NH ₄ NO ₃		 (b) sp³d and tetrahedral (c) sp³d and trigonal bipyramidal (d) sp³d and tetrahedral 						
	$(c) (NH_4)_2 Cr_2 O_7$	$(d) \operatorname{Ba}(N_3)_2$	15.	Water is much less vol	atile than H ₂ S because					
6.		g are the applications of ogical materials and food items atmosphere in copper and steel	16	 (a) H₂O has a bond angle of nearly 150° (b) hydrogen is loosely bonded with the sulphur (c) S-atom is less electronegative than O-atom (d) S-atom is more electronegative than O-atom Which of the following oxides is amphoteric in 						
	(c) In the preparation of (d) Etching of metals	explosives	10.	nature? (a) Cl_2O_7	(b) Na ₂ O					
7.	On heating HNO ₃ with	P ₄ O ₁₀ , the oxide of nitrogen		(c) N_2O	(d) Al ₂ O ₃					
R		(c) N ₂ O ₄ (d) N ₂ O ₃ reactive, less volatile and less	17.	1 /	e molecule consists of (b) 2σ -bond and 2π -bonds s (d) 2σ -bond and 1π -bond					
0.		lvent than white/yellow	18.	The industrial preparati	on of SO ₂ is					
	phosphorus because	·		(a) $S(s) + O_2(g) \longrightarrow SO_2(g)$						
	(a) it has high molecular			(b) $SO_3^{-1}(aq) + 2H^+(aq) \longrightarrow H_2O(l) + SO_2(g)$						
	(b) it has low molecular e(c) it forms condensation			(c) $4\text{FeS}_2(s) + 11\text{O}_2(g) \longrightarrow 2\text{Fe}_2\text{O}_3(s) + 8\text{SO}_2(g)$						
	(d) it possesses highly po	-		(d) All of the above						
9.		ngs when it comes in contact	19.	Peroxoacids of sulphur are						
	with air because			(a) H ₂ S ₂ O ₈ and H ₂ SO ₅ (b) H ₂ S ₂ O ₈ and H ₂ S ₂ O ₇ (c) H ₂ S ₂ O ₇ and H ₂ S ₂ O ₆ (d) H ₂ SO ₅ and H ₂ S ₂ O ₇						
	(a) PH ₃ reacts with water (b) PH ₃ reacts with N ₂	vapours								
	(c) PH ₃ burns in air									
	(d) PH ₃ contains impuritie	es of P_2H_4	20.	H ₂ SO ₄ is used in						
10.		the number of compounds that		(a) petroleum refining						
	can react with PCl ₅ to g I. O ₂ III. CO ₂ IIII. Cl	-		(b) manufacture of paints, pigments and dyestuff intermediates(c) detergent industry						
	V. C ₂ H ₅ OH VI. P.	ž								
	(a) 1 (b) 2	(c) 3 $(d) 4$		(d) All of the above						

- 21. The anomalous behaviour of fluorine is due to
 - (a) its small size
 - (b) its highest electronegativity
 - (c) low F—F bond dissociation enthalpy and non-availability of d-orbitals in valence shell
 - (d) All of the above
- **22.** Correct order of bond dissociation energy is
 - (a) $Br_2 > Cl_2$ (b) $F_2 > Cl_2$ (c) $I_2 > F_2$
- 23. HCl gas can be dried by passing through
 - (a) conc. H_2SO_4
- (b) dil. H₂SO₄

(*d*) $F_2 > I_2$

- (c) conc. HNO₃
- (d) dil. HNO₃
- **24.** The first noble gas compound obtained was
 - (a) $Xe^{+}PtF_{6}^{-}$
- (b) XeF₄
- (c) XeF₂
- (d) XeOF₄
- **25.** Among XeO₃, XeO₄ and XeF₆, the molecules having same number of lone pairs on Xe are
 - (a) XeO₃ and XeO₄
 - (b) XeO₃ and XeF₆
 - (c) XeO₄ and XeF₆
 - (d) XeO₃, XeOF₄ and XeF₆

ANSWERS

1. (b) 2.	(d)	3.	(b)	4.	(a)	5.	(d)	6.	(a)	7.	(b)	8.	(d)	9.	(d)	10. (d)
11. (b) 12.	(b)	13.	(b)	14.	(c)	15.	(c)	16.	(d)	17.	(d)	18.	(c)	19.	(a)	20. (d)
	d) 22.																

Hints & Solutions

- **4.** (a) PH₃ has the lowest boiling point because boiling point increases with increase in size of central atom and NH₃ has more boiling point than that of PH₃ due to hydrogen bonding.
- **5.** (*d*) Extra pure N₂ can be obtained by thermal decomposition of barium azide as follows:

$$Ba(N_3)_2 \xrightarrow{\text{Heat}} Ba(s) + 3N_2(g)$$

As the decomposed product of $Ba(N_3)_2$ contain solid Ba as by-product alongwith gaseous nitrogen, hence no additional step of separation is required.

- **6.** (a) Liquid N₂ is used as refrigerant to preserve biological materials, food items and in cryosurgery.
 - It also finds use where an inert atmosphere is required (e.g. in iron and steel industry, inert diluent for reactive chemicals).
- **7** (b) On heating HNO₃ with P₄O₁₀, the oxide of nitrogen produced is N₂O₅.

The reaction is given below:

$$2HNO_3 + P_2O_5 \longrightarrow N_2O_5 + 2HPO_3 \atop \text{(Dinitrogen pentaoxide)} \quad \text{(Metaphosphoric acid)}$$

- **9.** (*d*) PH₃ produces smoky rings when it comes in contact with air because PH₃ contains impurities of P₂H₄ which undergoes spontaneous combustion.
- **10.** (d) Among the given compounds, the four compounds, i.e. CH₃COOH, H₂O, C₂H₅OH and P₄O₁₀ can react with PCl₅ to give POCl₃. The reactions are given as below:

$$\begin{aligned} & \text{PCl}_5 + \text{CH}_3 \text{COOH} \longrightarrow \text{CH}_3 \text{COCl} + \text{POCl}_3 + \text{HCl} \\ & \text{PCl}_5 + \text{H}_2 \text{O} \longrightarrow \text{POCl}_3 + 2 \text{HCl} \\ & \text{PCl}_5 + \text{C}_7 \text{H}_5 \text{OH} \longrightarrow \text{POCl}_3 + \text{C}_7 \text{H}_5 \text{Cl} + \text{HCl} \end{aligned}$$

$$6PCl_5 + P_4O_{10} \longrightarrow 10POCl_3$$

11. (b) In H₃PO₄, P is in its highest oxidation state (+5), it can only act as oxidising agent but not as reducing agents, because it can be reduced but not oxidised.

 H_2SO_3 : S = +4 can get oxidised or reduced.

 $HNO_2: N = +3$ can get oxidised or reduced.

 H_2O_2 : O = -1 can get oxidised or reduced.

- **12.** (*b*) Due to presence of *d*-orbitals, sulphur can expand its valencies from 2 to 6, while oxygen has only one valency (2) due to the absence of *d*-orbital.
- **13.** (b) All the hydrides of group 16 elements except H₂O possess reducing property and this character increases from H₂S to H₂Te.
- **15.** (c) Water (H₂O) is much less volatile than H₂S because sulphur atom is less electronegative than O-atom and, hence does not form H-bonding like water.
- **16.** (*d*) Some metallic oxides exhibit a dual behaviour. They show characteristics of both acidic as well as basic oxides. Such oxides are known as amphoteric oxides. Al₂O₃ is such an example.
- **17.** (*d*) Angular shape of ozone molecule consists of 2σ and 1σ -bond.
- **18.** (c) Industrially, SO₂ is produced as a by-product of the roasting of sulphide ores.

$$4\text{FeS}_2(s) + 11\text{O}_2(g) \longrightarrow 2\text{Fe}_2\text{O}_3(s) + 8\text{SO}_2(g)$$

- **19.** (a) H₂S₂O₈ (peroxodisulphuric acid) and H₂SO₅ (peroxomonosulphuric acid) are peroxoacids of sulphur.
- **20.** (d) H₂SO₄ is used in petroleum refining, manufacture of pigments, paints and dyestuff intermediates, detergent industry, etc.

- **27.** (*d*) The anomalous behaviour of fluorine is due to its small size, highest electronegativity, low F F bond dissociation enthalpy and non-availability of *d*-orbitals in its valence shell.
- **22.** (*d*) In general, bond enthalpy or bond dissociation energy of halogen molecules (X_2) decreases down the group from Cl_2 to I_2 .

$$Cl_2 > Br_2 > F_2 > I_2$$

The decrease in bond enthalpy from Cl_2 to I_2 is due to increase in atomic size that increases the distance between two atoms. Hence, it becomes easier to break them apart. The exceptionally low bond dissociation energy of fluorine molecule is due to very small size of fluorine atom. This brings the non-bonding electrons of fluorine nearer to each other, resulting in a much greater lone pair-lone pair repulsion, which weakens the covalent bond and lowers its dissociation energy. Hence, option (d) is the only correct option.

23. (a) HCl gas can be dried by passing through concentrated

sulphuric acid (H₂SO₄).

- **24.** (a) The first noble gas compound obtained by mixing PtF_6 and xenon, $Xe^+PtF_6^-$.
- **25.** (d) Among XeO₃, XeOF₄ and XeF₆, all the molecules have one lone pair of electrons on Xe.