IMPORTANT PRACTICE QUESTION SERIES FOR NEET EXAM - 1

SECTION - A : NUCLEIC ACIDS (THE SEARCH FOR GENETIC MATERIAL, DNA, RNA)

- 1. To prove that DNA is the genetic material, Griffith used
 - (1) Neurospora crassa

(2) Drosophila melanogaster

(3) Diplococcus pneumoniae

(4) Escherichia coli

- 2. Who experimently proved that DNA is the basic genetic material?
 - (1) J. D Watson
- (2) H.G. Khorana
- (3) Alfred Griffith
- (4) Hershey & Chase

3.	Radioactive (35S) was d	etected in? (2) Sediment	(3) Both 1 and 2	(4) None of these
4.	DNA was first discover (1) Beadle and Tatum	•	(3) Friedrich Miescher	(4) A. Kornberg
5.	(1) (a) Blending, (b) Int (2) (a) Infection, (b) Ce (3) (a) Infection, (b) Blending	teriophage, choose the cofection, (c) Centrifugation entrifugation, (c) Blendir ending, (c) Centrifugation (b) Blending, (c) Infection	ng on	ey-Chase experiment.
6.	A nucleoside is (1) purine / pyrimidine (3) pyrimidine + purine	= =	(2) purine / pyrimidine(4) Purine + sugar + pl	=
7.	A DNA molecule make (1) 3.4 Å	es complete turn after ev (2) 20Å	ery (3) 10 bases	(4) 12 bases
8.	The two stands of DNA (1) Similar in nature an (3) Always single stran	d complementary	(2) Antiparallel and cor (4) Rarely double stran	•
9.	The similarity between DNA & RNA is that both (1) are double stranded (2) have similar sugars (3) are polymers (4) have similar pyrimidines			
10.	In which of the following (1) bacteria	ng, double stranded RNA	A is present? (3) retrovirus	(4) reovirus
11.	Why does cytosine make pair with guanine and not with adenine? (1) Polar nature of C and A (2) C - A pair would not reach across the double helix (3) C - A pair would be wider than double helix (4) Hydrogen bond forming functional groups are not complementary between C and A			
12.	Regarding to features of double helix structure of DNA which of the following is wrong (1) Two polynucleotide chains have antiparallel polarity (2) The bases in two strands are paired through phosphodiester bonds (3) Adenine form two hydrogen bonds with thymine (4) The pitch of the helix is 3.4 nm			
13.	•	adenine constituted 31	•	hase composition of human the quantity of cytosine in (4) 62%
14.	In a given sample of nu (1) GC rich	cleic acid G + A content	t is not equal to C + T. To (2) AT rich	his indicates that sample is
15	(3) single-stranded DN.		(4) double-stra	nded DNA
15.	riucieic acid was artific	cially synthesized in vitro	o oy—	

(2) Nirnberg and Ochoa

(1) Ochoa and Kornberg

	(3) Nirenberg and C	Ochoa	(4) Kornberg and Nire	nberg
16.	The haploid content	of human DNA is		
	(1) 3.3×10^9 bp	(2) $3.3 \times 10^9 \text{ kbp}$	(3) $4.6 \times 10^6 \text{ bp}$	(4) 48502 bp
17.	Histone proteins are (1) Tryptophan, Lys	erich in sine (2) Arginine, Lysine	(3) Histidine, Arginine	(4) Histidine, Tryptophan
18.	Bacterial DNA is as	sociated with		
	(1) Few polyamines	or basic proteins	(2) Histone proteins	
	(3) No proteins		(4) Non histon	e acidic proteins
19.	Which was first gen	etic material?		
	(1) RNA	(2) DNA	(3) Protein	(4) Both (1) and (2)
20.	Which RNA occurs	abundantly in a cell?		
	(1) r RNA	(2) t RNA	(4) m RNA	(3) Primer RNA
21.	The length of DNA molecule greatly exceeds the dimensions of the nucleus in the eukaryotic How is this DNA accommodated?			leus in the eukaryotic cells.
	(1) Super coiling in(3) Through elimina	nucleosomes ation of repetitive DNA	(2) DNase digestion(4) Deletion of non-ess	sential genes
22.	(a) DNA is made up(b) Backbone of DN	o of two polynucleotide ch JA is constituted by sugar ave anti parallel polarity		of DNA
	(1) b & c	(2) a & d	(3) b only	(4) b & d
23.	(1) Ability of replication(2) Chemically and(3) It should be non	ation structurally stable	termination of genetic mat an characters	erial
24.	Choose the incorrec			
	(1) Nucleosomes in	chromatin are seen as "be	ads on string structure"	
	(2) Nucleosome in a	histone octamer		
	(3) Nucleosome is p	resent in both prokaryotic	& eukaryotic DNA	
	(4) A typical nucleo	some contains 200 bp. of	DNA helix	
25.	Number of Nucleos	omes found in helical coil	of 30 nm chromatin fibre	is
	(1) 6	(2) 10	(3) 12	(4) 15
26.	(a) A typical nucleo(b) Histone are rich(c) The packaging of	_		
	(1) a only	(2) a & c both	(3) c only	(4) None
27.	Which is incorrect f	or t-RNA		

	(1) t-RNA has an anticodon loop that has base(2) t-RNA are specific for each amino acid	complementary to the codon of m-RNA	
	(3) Three t-RNA are present for stop codon		
	(4) In actual structure, the t-RNA is a compact	molecule which looks like inverted L.	
28.	Heat killed pathogenic bacterial cells and liv	ve nonpathogenic cells are mixed and injected	linto
	(1) Mice develop disease and die	(2) Mice die without developing disease	
	(3) Mice remain healthy	(4) 50% mice develop disease and die	
	(5) All mice remain healthy but lose vision.		
29.	Chargaff's rules are applicable to		
	(1) Single stranded RNA	(2) Single stranded DNA and RNA	
	(3) Single stranded DNA	(4) Double stranded DNA.	
	SECTION	ON - B	
D	NA REPLICATION, TRANSCRIPTION,	GENETIC CODE AND TRANSLATION	1
1.	The experimental system used in the studies or	the discovery of replication of DNA has been	
	(1) Drosophila melanogaster	(2) Pneumococcus	
	(3) Escherichia coli	(4) Neurospora crassa	
2.	DNA replication is		
	(1) Semiconservative and semi discontinous	(2) Semiconservative and discontinous	
	(3) Conservative	(4) Conservative and discontinous	
3.	DNA replication is aided by		
	(1) DNA polymerase only	(2) DNA ligase only	
	(3) Both DNA polymerase and ligase	(4) RNA polymerase	
4.	A DNA strand on which new strand is produce		
	(1) complementary	(2) template	
	(3) primer	(4) elongating	
5.	In DNA replication, primer strand is formed by		
	(1) A small piece of deoxyribonucleotide poly	ner	
	(2) A small piece of ribonucleotide polymer		
	(3) Deoxyribonucleotides + pyrophosphates(4) DNA replicase + nucleotide + ATP		
6.	The enzyme which catalyses the formation of	RNA from DNA template is known as	
0.	(1) Reverse transcriptase	(2) RNA polymerase	
	(3) DNA polymerase	(4) Nucleases	
7.	Ligase - an ezyme is used for		
	(1) joining bits of DNA	(2) splitting DNA thread into small bits	
	(3) denaturation	(4) none of the above	
8.	The protein which helps to unwind DNA doub	le helix during replication is	
	(1) DNA polymerase (2) DNA gyrase	(3) helicase (4) DNA topoisomer	ase
9.	Small fragments of DNA synthesized during re	eplication of DNA are called	

	(1) Nucleotides(3) Okazaki fragements		(2) Genes(4) Single stranded DN	ΙA
10.	The strand of DNA who	ich is synthesized contin (2) lagging strand	uously during replication (3) sense strand (4) ant	
11.	DNA polymerase enzyments (1) Kornberg	me was discovered by (2) Nirenberg	(3) Khorana	(4) Ochoa
12.	The first codon discove (1) GGG	red by Nirenberg and M (2) CCC	athaei was (3) UUU	(4) AAA
13.	A codon is said to be degenerate because (1) It degenerates soon after coding (2) more than one amino acid can be coded by a single codon (3) the same amino acid can have many codons (4) all the above			
14.	Which of the following	serves as a termination	codon?	
	(1) AUG	(2) CGC	(3) UAG	(4) GUG
15.	In the genetic code dicacids?	tionary, how many code	ons are used to code for	all the 20 essential amino
	(1) 20	(2) 64	(3) 61	(4) 60
16.	There are 64 codons in genetic code dictionary because (1) There are 64 types of tRNA found in the cell (2) There are 44 meaningless and 20 codons for amino acids (3) There are 64 amino acids to be coded (4) Genetic code is triplet			
17.		ng as template for mR Il be the order of bases in (2) UCTG AAG CU	-	following order of bases (4) UCG AAG CU
18.	Which of the following (1) 5' AATAAT3'	is Pribnow box? (2) 5' ATATTA3'	(3) 5' TATAAT3'	(4) 5TAATTA3'
19.	During elongation occ bond is (1) Peptidyl transferase (3) Protease	•	enzyme which catalyse (2) Peptidyl synthetase (4) Amino acyl synthet	
20.	Identify the characterist (1) Non-Polar	tic which is not applicable (2) Non-overlapping	le to the genetic code (3) Commaless	(4) Universal
21.	In DNA replication, the role of RNA primer is to— (1) Activate the DNA template (2) Synthesize DNA nucleotides for the formation of new strand (3) Initiate the formation of new strand on the template (4) Perform all these functions			
22.	At the end of the proce	ess of DNA replication t	the newly formed laggin	g strand is also continuous

due to the

	(1) Okazaki fragement	S	(2) Semiconservative	method of replication
	(3) DNA ligases		(4) Double-str	randed nature of DNA
23.	Find out the correct ma	atching		
	a Helicase	i. Joining of nu	cleotides	
	b Gyrase	ii. Opening of D	ONA	
	c Primase	iii Unwinding o	f DNA	
	d DNA polymerase	III iv. RNA priming	5	
	(1) a - ii, b - iii, c - iv,		(2) a-i, b-ii, c-iii,	
	(3) $a - iv$, $b - iii$, $c - i$,	d – ii	(4) a - ii, b - iv, c - ii	i, d-i
24.	called as(b) (c)while c (d) Here (1) (a) Heterochromati (2) (a) Euchromatin, (b (3) (a) Heterochromati	One strand of D	NA, replication is con NA replication is discontively: Lagging strand, (d) Lead Leading strand, (d) Lagg Leading strand, (d) Conti	ing strand inuous strand
25.	Termination of the tran	slation process occurs at	t the	
	(1) 5' end of the DNA	template	(2) 3' end of the mRN	ÍΑ
	(3) 3' end of t-RNA		(4) 5' end of mRNA	
26.	The amino acid valine of the code is referred (1) Degeneracy		olets GUU, GUC, GUA (3) Non-ambiguity	and GUG and this character (4) Commalessness
27.	The wobble concept w	os proposad by		
21.	(1) Watson and Crick	us proposed by	(2) Nirenberg and Led	lerherg
	(3) Nirenberg and Matt	thaei	(4) Crick	
28.				this character of the code
	(1) Degeneracy	(2) Universality	(3) Non-amibiguity	(4) Commalessness
29.	Sigma factor is compo	nent of		
	(1) RNA polymerase	(2) Dissociation factor	(3) DNA ligase	(4) DNA polymerase
30.	After reaching into cvt	oplasm the m-RNA attac	ches itself to	
	(1) 40S particle	(2) ER	(3) 70 ribosomes	(4) 60S particle
31.	Functional unit of gane	e that specifies synthesis	of one polymentides is	
31.	(1) Recon	(2) Cistron	(3) Codon	(4) Muton
32.				
32.	Starting and stopping of (1) AUG and UGA	(2) GUA and AAA	(3) UCA and UAA	(4) GUC and AUG
33.	The amino acids with a	single code are		
	(1) Phenylalanine and	glycine	(2) Methionine and Tr	yptophan
			(4) Proline and Glycine	

34.	Given below sequence of the processed m–RNA ready for translation: 5'AUG CUA UACCUCCUUUAUCUGUGA–3' How many different t–RNA molecule require to translate this m–RNA–			
	(1) 8	(2) 7	(3) 6	(4) 5
35.	Which of the following (1) Initiation	is exclusive property of (2) Elongation	transcription found in Ri	NA-polymerase (4) Processing
36.	Which of the following read in a contiguous ma (1) Chromosomal struct (3) Substitutional mutat	unner tural mutations	(2) Chromosomal nume (4) Frame shift insertion	
37.	What is wrong about tra (1) RNA polymerase is (2) There is only one R (3) In eukaryotes, hn-R		n factor & termination fa at in eukaryotes. I processing called as cap	octor pping & tailing.
38.	(b) The UTRS are prese	nesis formation of a pepti ent at both 5' and at 3' end in a transcription unit co	d.	energy nic mostly in eucaryotes. (4) All are correct
39.	Enzyme required for pe	ptide formation is (2) Peptidyl transferase	(3) Protease	(4) Nitrate reductase
40.	cDNA is formed by (1) DNA dependent DN (3) DNA dependent RN	= -	(2) RNA dependent DN (4) DNA ligase	NA polymerase
41.	Mode of DNA replication in Escherichia coli is (1) Conservative and unidirectional (3) Conservative and bidirectional		(2) Semiconservative and unidirectional(4) Semiconservative and bidirectional.	
42.	Match the columns Column I a. Termination b. Translation c. Transcription d. DNA replication (1) a - 2, b - 3, c - 1, d (3) a - 3, b - 1, c - 4, d (5) a - 2, b - 4, c - 1, d	-2	S	
43.	In Rous sarcoma virus,	the flow of information i	is	

(1) DNA \rightarrow RNA \rightarrow Proteins

(2) DNA \rightarrow Proteins \rightarrow RNA

	(3) RNA \rightarrow DNA \rightarrow RNA \rightarrow protein	s	(4) RNA \rightarrow DNA	→ proteins
44.	While working on Neurospora crassa (1) Every gene is responsible for a special (2) Plant cells are totipotent (3) DNA replication is semiconservation (4) Viruses have genetic material.	ecific (-	
45.	The sequence of events mentioned be where the alphabets are matched with			ets. Choose the correct answer
	RNA $\stackrel{a}{\longrightarrow}$ DNA $\stackrel{b}{\longrightarrow}$ DNA $\stackrel{c}{\longrightarrow}$ mI (1) a = Reverse transcription. b= Repl (2) a = Replication, b = Transformation (3) a = Reverse transcription, b = Transduction.	RNA ication on, c =	Polypeptide n, $c = \text{Transcription}$, $d = \text{Transcription}$, $d = \text{Transcription}$, action $c = \text{Transcription}$,	slation d = Translation
46.	Match the column:	•		
	Column I		Column II	7
	a. Transforming principle	i.	Watson & Crick	-
	b. Semiconservative replication	ii.	Gamow	
	c. Lac operon model	iii.	Griffith	
	d. Triplet codon	iv	Jacob & Monod	_
	(1) a. iii, b. i, c. iv, d. ii	(2)	a. iv, b. ii, c. iii, d. i	_
	(3) a. i, b. ii, c. iii, d. iv	(4)	a. iii, b. iv, c. i, d. ii	
	\$	SECT	TION - C	
	REGULATION OF GENE EXPR	ESSI	ON, HGP AND DNA	FINGERPRINTING
1.	Which of the following is/are the leve (a) Translational level	l of re	gulating of gene express	ion in eukaryotes
	(b) Transport of mRNA from nucleus	to the	cytoplasm	
	(c) Processing level		7 1	
	(d) Transcriptional level			
	(1) a, b only (2) d, c, b onl	у	(3) d, c, a only	(4) d, c, b, a all
2.	Operon contains (1) Operator and regulator genes (2) Operator and structural gene (3) Operator and regulator genes repre (4) Operator gene, regulator gene repre		structural genes and pro	omoter gene
3.	Which one of the following is the corn	ect se	quence of structural gen	e in lac operon?
	(1) z , a , y (2) z , y , a		(3) a, z, y	(4) y, a, z

4.

According to Operon concept a regulator gene forms

(1) A general inhibitor (2) A small peptide (3) A repressor (4) An inducer 5. In lac operon, sturctural gene 'Z' synthesises (1) β -galactosidase (2) Galactosidase permease (3) Galactosidase transacetylase (4) None of the above. 6. The function of promoter in lac-operon is to (1) Bind to gyrase (2) Bind to RNA polymerase (3) Code for DNA polymerase (4) Process mRNA. 7. Due to high degree of polymorphism, size of VNTR varies from (1) 0.1 - 2kb(2) 0.1 - 20 kb(3) 0.01 - 20 kb(4) 0.1 — 200 kb 8. Which suspect would you charge with the crime Crime scene sample Victim Suspect 1 Suspect 2 (2) Only suspect 1 (1) Both suspect 1 and 2 (3) Only suspect 2 (4) Neither suspect 1 nor suspect 2

9. Match the column:

	Column – I		Column – II
a.	VNTR	i. β–Galactosidase	
b.	Lac operon	ii.	DNA ligase
C.	Genetic code	iii.	DNA finger printing
d.	Okazaki fragments	iv.	Unambiguous

- (1) a. iv, b. ii, c. iii, d. i
- (2) a. iii, b. i, c. iv, d. ii
- (3) a. i, b. ii, c. iii, d. iv
- (4) a. iii, b. iv, c. i, d. ii
- **10.** The basis of DNA finger-printing is
 - (1) The double helix

- (2) Error in base sequence
- (3) Polymorphism in sequence
- (4) DNA replication
- 11. Which of the following is not related with HGP
 - (1) BAC & YAC cloning vector
- (2) Bioinformatics

(3) VNTR

(4) EST'S

- 12. Read the following sentence
 - (a) The technique of DNA finger printing was initially developed by Alec Jeffreys.
 - (b) Hybridisation using labelled VNTR probe is one of the step utilize in DNA finger printing

	Pick up wrong staten	nents-			
	(1) 'a' only	(2) 'b' only	(3) 'c' only	(4) None	
13.	Best method to deter	mine parternity is			
	(1) Protein analysis		(2) Chromosome	counting	
	(3) Gene counting		(4) DNA finger pr	rinting	
		MISCELLANEO	US QUESTIONS	A	
1.	Which is true accord	ing to Chargaff's rule			
	(1) A + G = T + C	(2) A = C	(3) G = T	$(4) \frac{A+T}{C+G} = 1$	
2.	DNA element with a	bility to change its position	on is		
	(1) Cistron	(2) Transposon	(3) Intron	(4) Recon.	
3.	Intron is part of DNA	A which			
	(1) Codes for protein	synthesis	(2) Helps in joining pieces of DNA		
	(3) Does not code for	(3) Does not code for protein synthesis		cription.	
4.	In DNA replication,	the leading strand is the o	ne one which replicates in		
	(1) 5' \longrightarrow 3' direction	on continuously	•		
	(3) 5' \longrightarrow 3' direction discontinuously (4) 3' \longrightarrow 5' direction discontinu		ction discontinuously.		
5.	Hargobind Khorana	was awarded Nobel Prize	for		
	(1) Deciphering gene	etic code	(2) Artificial gene synthesis		
	(3) Nucleotide seque	ence of t RNA	(4) Discovery of transposons.		
6.	t-RNA has the functi	on of			
	(1) Transcription				
	• •	hing amino acids over mR	RNA template		
	(3) Transferring info				
	(4) Carry genetic coo				
7.	-	at carries information for			
	(1) Muton	(2) Codon	(3) Operon	(4) Cistron.	
8.	Codon AUG specifie		(2) T	(A) Pl	
	(1) Methionine	(2) Valine	(3) Tyrosine	(4) Phenylalanine	
9.	Which one codes for				
	(1) Cistron	(2) Exon	(3) Intron	(4) Codon	
10.	Okazaki fragments a	re			
	(1) RNA primers		(2) Short DNA fragments on leading strand		
	(3) Short DNA fragn	nents on lagging strand	(4) DNA fragmen	ts from dimerisation	
11.	Repressor binds to op	perator of lac operon			
		to remove the repressor	(2) RNA polymera		
	(3) Galactosidase do	es not act on lactose	(4) Structural gene	es z, y and a fail to transcribe.	
12.		eptide formation is locate			
	(1) Smaller subunit of	of ribosome	(2) Larger subunit	of ribosome	

	(3) Central part of tRN	ÍΑ	(4) None of the	ne above
13.	Who was awarded Nol	oel Prize for in vitro syn	thesis of polyribonucleot	ides?
	(1) Kornberg	(2) Tatum	(3) Ochoa	(4) Khorana
14.	(2) mRNA is polycistr (3) mRNA is monocist	onic in both eukaryotes	• •	
15.	VNTR is employed for (1) Protoplasmic cultur (3) Regulation of plant	re	(2) DNA finger printing (4) Enhancing photosy	ng ynthesis in desert plant.
16.	Smallest part of DNA (1) Muton	that can undergo recomb (2) Cistron	oination is (3) Replicon	(4) Recon
17.	DNA and RNA differs (1) Nitrogen bases and (3) Number of C- atom	sugars	(2) Nitrogen bases and (4) Sugar and phospha	
18.	DNA acts as a templat (1) RNA	e for synthesis of (2) DNA	(3) Both (1) and (2)	(4) Protein
19. 20.	Length of DNA with 2 (1) 78·4 Å Find the correct match (1) UUA – Valine	(2) 78·2 Å	(3) 78 Å (3) AAA – Lysine	(4) 74 ·8 Å (4) CCC– Alanine
21.	CCA 3' end of t-RN(1) Anticodon loop(3) T→C	A is called (2) DHU loop (4) Amino acid bindin	ng site	
22.	Portion of gene which (1) Exon	is transcribed but not tra (2) Intron	anslated is (3) Cistron	(4) Codon
23.	The bond formed betw (1) Sulphide bond (3) Hydrogen bond	een phosphate and pento	ose sugars of DNA is (2) Phosphodiester bo (4) Covalent bond	nd
24.	Unwinding due to rele (1) Gyrase	ase of coiling tension ah (2) Unwindase	ead of moving replicatio (3) Topoisomerase	n fork is due to (4) All the above
25.	Synthesis of RNA mol (1) Alpha factor	ecule is terminated by (2) Gamma factor	(3) Delta factor	(4) rho factor
26.	(2) Starts at operator re	region and ends at stop egion and ends at telome region and ends are term	eric end	

	(4) Starts at CCA box	and ends at TATA box.		
27.		nd sequence of amino ac	e, the first base gets mutatids	ted. It will affect
28.	Hn-RNA is (1) Heteronuclear RN (3) Heterogeneous RN		(2) Homonuclear RNA (4) Useful RNA.	A
29.	Continuously function (1) House keeping get (3) Mild genes	_	lated on the tissue level at (2) Luxury genes (4) Gene battery.	re
30.	Which amino acid is s (1) Leucine	specified by genetic code (2) Methionine	es ACU, ACC, ACA, ACC (3) Glycine	G showing degeneracy? (4) Threonine
31.	Transfer of DNA band (1) Southern transfer	ds from agarose gel to ni (2) Western transfer	trocellulose or nylon mer (3) Northern transfer	nbrane is (4) Eastern transfer
32.	Complete turns in 450 (1) 45	000 bp DNA would (2) 450	(3) 4500	(4) 45, 000.
33.	Teminious central dogma of protein synthesis is (1) DNA □ DNA □ mRNA □ protein (3) gRNA □ DNA □ mRNA □ Protein		is $(\square = \rightarrow)$ - (2) mRNA \square gRNA \square (4) DNA \square gRNA \square	
34.	DNA replication requ (1) DNA polymerase	ires (2) DNA ligase	(3) RNA polymerase	(4) All the above
35.	The RNA primer is us (1) Translation	sed in (2) Replication	(3) Conjugation	(4) Transformation
36.	In a DNA, percentage (1) 20%	of thymine is 20% what (2) 40%	is the percentage of guar (3) 30%	nine (4) 60%
37.	•		functional unit of the boperator gene in the absertable (3) Repressor protein	pacterial genetic material ince of lactose? (4) Promoter gene.
38.	During translation in (1) 5' – UAC – 3'	•	to be aligned with the in (3) 5' – UCA – 3'	
39.	_	ving six coils, there are 2 ases are found in that set (2) 38	•	ked by two hydrogen bonds (4) 76
40.	Identify the triplet coo (a) UCC The correct answer is	lons which code for amin	no acids serine and prolin (c) GGG	e. (d) AAG
	(1) a and c	(2) b and d	(3) c and d	(4) a and b

	(a) Coding strand	(b) Noncoding strand	(c) Sense strand (d) A	ntisense strand	
	The correct answer is				
	(1) a and c	(2) a and d	(3) b and c	(4) b and d	
42.	An eukaryotic gene contains two kinds of base sequences. Which of these plays an important role in protein synthesis				
	(1) Introns	(2) Exons	(3) Both (1) and (2)	(4) None of these	

IMPORTANT PRACTICE QUESTION SERIES FOR NEET EXAM - 1 (ANSWERS)

SECTION - A													
1.	(3)	2.	(4)	3.	(1)	4.	(3)	5.	(3)	6.	(2)	7.	(3)
8.	(2)	9.	(3)	10.	(4)	11.	(4)	12.	(2)	13.	(1)	14.	(3)
15.	(1)	16.	(1)	17.	(2)	18.	(1)	19.	(1)	20.	(1)	21.	(1)
22.	(4)	23.	(3)	24.	(3)	25.	(1)	26.	(4)	27.	(3)	28.	(1)
29.	(4)												
SECTION - B													
1.	(3)	2.	(1)	3.	(3)	4.	(2)	5.	(2)	6.	(2)	7.	(1)
8.	(3)	9.	(3)	10.	(1)	11.	(1)	12.	(3)	13.	(3)	14.	(3)
15.	(3)	16.	(4)	17.	(4)	18.	(3)	19.	(1)	20.	(1)	21.	(3)
22.	(3)	23.	(1)	24.	(2)	25.	(2)	26.	(1)	27.	(4)	28.	(3)
29.	(1)	30.	(1)	31.	(2)	32.	(1)	33.	(2)	34.	(2)	35.	(2)
36.	(4)	37.	(2)	38.	(2)	39.	(2)	40.	(2)	41.	(4)	42.	(3)
43.	(3)	44.	(1)	45.	(1)	46.	(1)						
SECTION - C													
1.	(4)	2.	(4)	3.	(2)	4.	(3)	5.	(1)	6.	(2)	7.	(2)

8. (2) 9. (2) 10. (3) 11. (3) 12. (4) 13.	(4)
---	-----

Miscellaneous Questions													
1.	(1)	2.	(2)	3.	(3)	4.	(1)	5.	(2)	6.	(2)	7.	(4)
8.	(1)	9.	(4)	10.	(3)	11.	(4)	12.	(2)	13.	(3)	14.	(4)
15.	(2)	16.	(4)	17.	(1)	18.	(3)	19.	(2)	20.	(3)	21.	(4)
22.	(2)	23.	(2)	24.	(3)	25.	(4)	26.	(3)	27.	(2)	28.	(3)
29.	(1)	30.	(4)	31.	(1)	32.	(3)	33.	(3)	34.	(4)	35.	(2)
36.	(3)	37.	(2)	38.	(2)	39.	(2)	40.	(4)	41.	(4)	42.	(2)