Build Up Your Understanding

EXERCISE-I (Conceptual Questions)

ELASTICITY

- The lower surface of a cube is fixed. On its upper surface, force is applied at an angle of 30° from its surface. The change will be in its

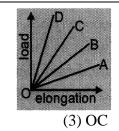
 (1) shape
 (2) size
 (3)volume
 (4) both shape and size
- 2. One end of uniform wire of length L and of weight W is attached rigidly to a point in the roof and a weight W_1 is suspended from its lower end. If s is the area of cross-section of the wire, the stress in the wire at a height (L/4) from its lower end is

(1)
$$\frac{W_1}{s}$$

(2) $\frac{\left[W_1 + \frac{W}{4}\right]}{s}$
(3) $\frac{\left[W_1 + \frac{3W}{4}\right]}{s}$
(4) $\frac{W_1 + W}{4}$

- 3. For steel, the breaking stress is 6×10^6 N/m² and the density is 8×10^3 kg/m³. The maximum length of steel wire, which can be suspended without breaking under its own weight is $[g = 10 \text{ m/s}^2]$ (1) 140m (2) 120m (3) 75 m (4) 200m
- 4. The dimensions of two wires A and B are the same. But their materials are different. Their loadextension graphs are shown. If Y_A and Y_B are the values of Young's modulus of elasticity of A and B respectively then

(1)
$$Y_A > Y_B$$
 (2) $Y_A < Y_B$ (3) $Y_A = Y_B$ (4) $Y_B = 2Y_A$


- 5. If the density of the material increase, the value of Young's modulus
 (1) increases
 (2) decreases
 (3) first increases, then decreases
 (4) first decreases, then increases
- 6. A fixed volume of iron is drawn into a wire of length λ . The extension produced in this wire by a constant force F is proportional to –

(1)
$$\frac{1}{1^2}$$
 (2) $\frac{1}{1}$ (3) λ^2 (4) λ

- 7. A wire elongates by λ mm when a load W is hanged from it. If the wire goes over a pulley and two weights W each are hung at the two ends, the elongation of the wire will be (in mm)-(1) λ (2) 2λ (3) zero (4) $\lambda/2$
- 8. The Young's modulus of a rubber string 8 cm long and density 1.5 kg/m³ is 5×10^8 N/m², is suspended on the ceiling in a room. The increase in length due to its own weight will be : (1) 9.6×10^{-5} m (2) 9.6×10^{-11} m (3) 9.6×10^{-3} m (4) 9.6m

0				
9.		ke of depth 200m sho the material of the bal		ts volume at the bottom. What is p^2
	(1) 19.6×10^{-10} N/m ² (3) 19.6×10^{10} N/m ²	2	(4) 19.6×10^{-8} N/m	
10.	10% keeping temper	ature constant. The bu	Ik modulus of the med	
	(1) 204.8×10^5 Pa	(2) 102.4×10^5 Pa	(3) 51.2×10^5 Pa	(4) 1.55×10^5 Pa
11.				e ratio 1 : 2 are stretched by the res when stretched will be in the
	(1) 16 : 1	(2) 4 : 1	(3) 2 : 1	(4) 1: 1
12.	A weight is suspend	ed from a long metal v	wire. If the wire sudder	nly breaks, its temperature
	(1) rises(3) remains unchang	red	(2) falls (4) attains a value 0	к
13.	A mass of 0.5 kg is work done :	suspended from wire	e, then length of wire	increase by 3 mm then find out
	(1) $4.5 \times 10^3 \mathrm{J}$	(2) 7.3×10^3 J	(3) $9.3 \times 10^{-2} \text{ J}$	(4) $2.5 \times 10^{-2} \text{ J}$
14.	The modulus of bra		The force maximum	N/m ² , Diameter of wire is 1 mm. weight hung from the wire is:-
	(1) 110 N	(2) 125 N	(3) 157 N	(4) 168 N
15.	When a tension F is	applied in uniform w	ire of length λ and rad	lius r, the elongation produced is
	e. When tension 2F radius 2r made of sa		ion produced in anothe	er uniform wire of length 2λ and
	(1) 0.5 e	(2) 1.0 e	(3) 1.5 e	(4) 2.0 e
16.	How much force is	required to produce	an increase of 0.2% i	in the length of a brass wire of
	diameter 0.6mm?			
	(1) Nearly 17 N	or brass= 0.9×10^{11} N/	(2) Nearly 34 N	
	(3) Nearly 51 N		(4) Nearly 68 N	
17.	If the interatomic sp constant in N/m is-	acing in a steel wire is	s 2.8×10^{-10} m and Y	= 2×10^{11} N/m ² then steel force
	(1) 5.6	(2) 56	(3) 0.56	(4) 560
18.	The load versus elo	ngation graph for four	wires of the same ma	aterial and same length is shown

18. The load versus elongation graph for four wires of the same material and same length is shown in the figure. The thinnest wire is represented by the line.

(4) OD

19. The mean distance between the atoms of iron is 3×10^{-10} m and inter atomic force constant for iron is 7 N/m. The young's modulus of elasticity for iron is: (1) 2.33×10^5 N/m² (3) 233×10^{10} N/m² (4) 2.33×10^{10} N/m²

20. Cross section area of a steel wire (Y = $2.0 \times 10^{11} \text{ N/m}^2$) is 0.1 cm². The required force, to make its length double will be -(1) $2 \times 10^{12} \text{ N}$ (2) $2 \times 10^{11} \text{ N}$ (3) $2 \times 10^{10} \text{ N}$ (4) $2 \times 10^6 \text{ N}$

21. For a given material, the Young's modulus is 2.4 times that of rigidity modulus. Its Poisson's ratio is:
(1) 2.4
(2) 1.2
(3) 0.4
(4) 0.2

22. The diameter of a brass rod is 4 mm and Young's modulus of brass is 9×10^{10} N/m². The force required to stretch by 0.1% of its length is : (1) 360 π N (2) 36 N (3) $144\pi \times 10^{3}$ N (4) $36\pi \times 10^{5}$ N

23. Poisson's ratio can not have the value : (1) 0.1 (2) 0.7 (3) 0.2 (4) 0.5

(2) OB

(l) OA

24. Two wires of the same length and material but different radii r_1 and r_2 are suspended from a rigid support both carry the same load at the lower end. The ratio of the stress developed in the second wire to that developed in the first wire is –

(1) $\frac{\mathbf{r}_1}{\mathbf{r}_2}$ (2) $\frac{\mathbf{r}_1^2}{\mathbf{r}_2^2}$ (3) $\left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^{5/2}$ (4) $\left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^{1/2}$

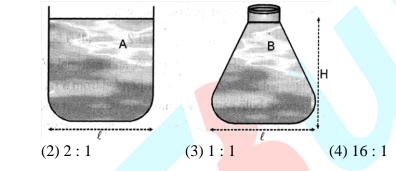
An increases in pressure required to decreases the 200 litres volume of a liquid by 0.004% in container is: (Bulk modulus of the liquid= 2100 M Pa)
(1) 188 kPa
(2) 8.4 kPa
(3) 18.8 kPa
(4) 84 kPa

26. If 'S' is stress and 'Y is Young's modulus of material the energy stored in the wire per unit volume is

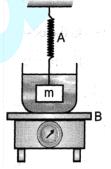
(1)
$$\frac{S}{2Y}$$
 (2) $\frac{2Y}{S^2}$ (3) $\frac{S^2}{2Y}$ (4) $2S^2Y$

27. For a constant hydraulic stress on an object, the fractional change in the object's volume $\left(\frac{\Delta V}{V}\right)$ and its bulk modulus (B) are related as :

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141


(1)
$$\frac{\Delta V}{V} \propto B$$
 (2) $\frac{\Delta V}{V} \propto \frac{1}{B}$ (3) $\frac{\Delta V}{V} \propto B^2$ (4) $\frac{\Delta V}{V} \propto B^{-2}$

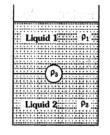
28. A wire of length L and cross-sectional area A is made of a material of Young's modulus Y. The work done in stretching the wire by an amount x is given by:-


(1)
$$\frac{YAx^2}{L}$$
 (2) $\frac{YAx^2}{2L}$ (3) $\frac{YAL^2}{x}$ (4) $\frac{YAL^2}{2x}$

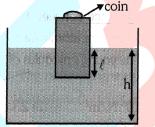
FLUIDS STATICS

29. Two vessels A and B have the same base area and contain water to the same height, but the mass of water in A is four times that in B. The ratio of the liquid thrust at the base of A to that at the base of B is:-

- **30.** A cylinder is filled with a liquid of density d upto a height h. If the beaker is at rest, then the mean pressure on the wall is :-
 - (1) Zero (2) hdg (3) $\frac{h}{2}$ dg (4) 2hdg
- **31.** The spring balance A read 2 kg. with a block m suspended from it. A balance B reads 5 kg. when a beaker with liquid is put on the pan of the balance. The two balances are now so arranged that the hanging mass is inside the liquid in the beaker as shown in figure. In this situation :-


- (1) The balance A will read more than 2 kg.
- (2) The balance B will read more' than 5 kg.
- (3) The balance A will read less than 2kg. and B will read more than 5 kg.
- (4) The balance A and B will read 2 kg. and 5 kg. respectively.

32. A jar is filled with two non-mixing liquids 1 and 2 having densities ρ_1 and ρ_2 , respectively A solid ball, made of a material of density ρ_3 , is dropped in. the jar. It comes to equilibrium in the position shown in the figure: Which of the following is true for ρ_1 , $\rho_2 \& \rho_3$


(1) $\rho_3 < \rho_1 < \rho_2$	(2) $\rho_1 > \rho_3 > \rho_2$
(3) $\rho_1 < \rho_2 < \rho_3$	(4) $\rho_1 < \rho_3 < \rho_2$

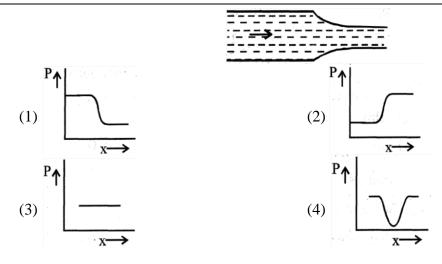
Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

(1)4:1

- 33. A boat having a length of 3 meter and breadth 2 meter floating on a lake. The boat sinks by one cm where a man gets on it. The mass of the man is
 - (1) 60 kg(2) 62 kg (4) 128 kg (3) 72 kg
- If the density of a block is 981 kg/m^3 then it shall 34.
 - (1) Sink in water
 - (2) float with some part emmersed in water
 - (3) float completely immersed in water
 - (4) float completely out of water.
- 35. A wooden block, with a coin placed on its, floats in water as shown in figure. The distance λ and h are shown there. After sometime the coin falls into the water. Then:-

(1) λ decreases and h increases

(3) both λ and h increase


- (2) λ increases and h decreases (4) both λ arid h decrease
- 36. A piece of ice is floating in a jar containing water. When the ice melts, then the level of water :-(1) Rises (2) Falls
 - (3) Remains unchanged

- (4) Changes, erratically
- 37. A sample of metal weights 210 gram in air, 180 gram in water and 120 gram in an unknown liquid. Then :-
 - (1) the density of metal is 3 g/cm^3
 - (2) the density of metal is 7 g/ cm^3
 - (3) density of metal is 4 times the density of the unknown liquid
 - (4) the metal will float in water
- 38. 'Torr' is the unit of:-(1) Pressure (2) Density (3) Volume (4) Flux
- 39. A sphere is floating in water its 1/3rd part is outside the water and when sphere is floating in unknown $\frac{3}{4}$ th liquid, its part is outside the liquid then density of liquid is (1) 4/9 gm/c.c.(2) 9/4 gm/c.c. (3) 8/3 gm/c.c. (4) 3/8 gm/c.c.

			Edubull
40. Which of the following works on Pascal's law?			
		turimeter (3) Hydraulic lift	t (4) Aneroid barometer
41.	will be		l of density ρ_1 . Its appearent weight
	(1) $W(\rho - \rho_1)$ (2) $\frac{(\rho - \rho_1)}{V}$	$\frac{(-\rho_1)}{V} \qquad (3) \ W\left(1 - \frac{\rho_1}{\rho}\right)$	(4) $W(\rho_1 - \rho)$
42.	Which law states that the mag (1) Pascal's law	nitude of pressure within fluid is (2) Gay-Lusac's l	
	(3) Dalton's law	(4) Boyle's law	
43.	Δ body measures 5 N in air an	d 2 N when put in water. The b	uovant force is
т.).	(1) 7 N (2) 9 N	(3) 3 N	(4) None of these
44.	Hydraulic press is based upon		
	(1) Archimede's principle	(2) Bernoulli's th	
	(3) Pascal's law	(4) Reynold's nur	mber
45.	A wooden block is taken to the	e bottom of a lake of water and	then released, it rise up with a
	(1) Constant acceleration	(2) Decreasing ac	-
	(3) Constant velocity	(4) Decreasing ve	
			· · · · · · · · · · · · · · · · · · ·
		FLUID DYNAMICS	
46.		wing diarneter 2×10^{-2} m and 4% and 6% are of water. The velocity of water (2) 2 times that o	
	(3) $\frac{1}{2}$ times that of Q	(4) $\frac{1}{4}$ times that	of Q
47.			d of which has n fine holes, each of the speed of ejection of the liquid
	(1) $\frac{v}{n}\left(\frac{R}{r}\right)$	(2) $\frac{v}{n} \left(\frac{R}{r}\right)^{1/2}$	
	$(3) \frac{v}{n} \left(\frac{R}{r}\right)^{3/2}$	(4) $\frac{v}{n} \left(\frac{R}{r}\right)^2$	
48.			nitial speed of 1.0 m/s. The cross- s constant throughout the stream of

- sectional area of tap is 10^{-4} m². Assume that the pressure is constant throughout the stream of water and that the flow is steady, the cross-sectional area of stream 0.15 m below the tap is :-(1) 5.0×10^{-4} m² (3) 5.0×10^{-5} m² (4) 2.0×10^{-5} m²
- 49. Water flows through a frictionless duct with a cross-section varying as shown in figure. Pressure P at points along the axis is represented by

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

- A tank of height 5 m is full of water. There is a hole of cross sectional area 1 cm^2 in its bottom. 50. The initial volume of water that will come out from this hole per second is (1) $10^{-3} \text{ m}^{3}/\text{s}$ (4) 10^{-2} m³/s. (2) $10^4 \text{ m}^3/\text{s}$ (3) $10 \text{ m}^3/\text{s}$
- The pressure of water in a water pipe when tap is opened and closed is respectively 3×10^5 N/m² 51. and 3.5×10^5 N/m². With open tap, the velocity of water flowing is (1) 10 m/s(2) 5 m/s(3) 20 m/s(4) 15m/s
- 52. The flow speeds of air on the lower and upper surfaces of the wing of an aeroplane are v and $\sqrt{2}v$ respectively. The density of air is p and surface area of wing is A The dynamic lift on the wing is : $\sqrt{2} \rho v^2$

(1) $\rho v^2 A$	(2) √2
(3) (1/2) $\rho v^2 A$	(4) 2p

- An incompressible fluid flows steadily through a cylindrical pipe which has radius 2 Rat point A 53. and radius Rat point B farther along the flow direction. If the velocity at point A is v, its velocity at point height h in air. The final velocity is B is:-
 - (3) $\frac{v}{2}$ (1) 2v(4) 4v(2) v

54. Water is flowing through a non-uniform radius tube. If ratio of the radius of entry and exit end of the pipe is 3 : 2 then the ratio of velocities of entring and exit liquid is:-(1)4:9(2) 9 : 4(3) 8:27(4) 1 : 1

An aeroplane of mass 3×10^4 kg and total wing area of 120 m is in a level flight at some height. 55. The difference in pressure between the upper and lower surfaces of its wings in kilopascals is $(g = 10 \text{m/s}^2)$ (1) 2.5(2) 5.0(3) 10.0(4) 12.5

	(1) 2.0	(2) 8.0	(0) 1010	(1) 12.
56.	Scent sprayer is	based on		
	(1) Charle's law	7	(2) Archimede's	principle
	(3) Boyle's law		(4) Bernoulli's t	heorem

57. Bernoulli's equation for steady, non-viscous, in compressible flow expresses the

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

	(1) Concernation of an automatum	(2) Concernation	
	(1) Conservation of angular momentum(3) Conservation of momentum	(2) Conservation(4) Conservation	of mechanical energy.
58.	Application of Bernoulli's theorem can be	seen in	
	(1) Dynamic lift to aeroplane	(2) Hydraulic pre	SS
	(3) Speed Boat	(4) None of these	
59.	The velocity of water flowing in a non-un 0.2 cm. The velocity at another point, whe		-
	(1) 80 cm/s (2) 40 cm/s	(3) 20 cm/s	(4) 5 cm/s
		SCOSITY	
60. A small drop of water falls from rest through a large height h in air.			
	(1) almost independent of h(3) proportional to h	(2) proportional to(4) inversely prop	
61.	Two drops of Equal radius are falling th drops coalesce, then its terminal velocity v	-	ady velocity 0f 5 cm/s. If the two
	(1) $4^{\frac{1}{3}} \times 5$ cm/s	(2) $4^{\frac{1}{3}}$ cm/s	
	(3) $5^{\frac{1}{3}} \times 4$ cm/s	(4) $4^{\frac{2}{3}} \times 5$ cm/s	
62.	If the terminal speed of a sphere of gold (density = 1.5 kg/m^3), find the terminal space same size in the same liquid.		
	(1) 0.4 m/s (2) 0.133 m/s	(3) 0.1 m/s	(4) 0.2 m/s
63.	Speed of 2 cm radius ball in a viscous liqu same liquid is	uid is 20 cm/s. Then	the speed of 1 cm radius ball in the
	(1) 5 cm/s (2) 10 cm/s	(3) 40 cm/s	(4) 80 cm/s
64.	The velocity of falling rain drop attain limited value because of		f
	(1) surface tension	(2) upthrust due t	
	(3) viscous force exerted by air	(4) air current	
65.	Poise is the unit of		
	(1) Pressure (2) Friction	(3) Surface tensio	on (4) Viscosity
66.	Two rain drops falling through air have r	adii in the ratio 1:2	2. They will have terminal velocity
	in the ratio. (2) $1 + 4$	(3) 2 : 1	(4) 1 · 2
	(1) 4:1 (2) 1:4	(3) 2 . 1	(4) 1 : 2
67.	A sphere of mass M and radius R is falling	ng in a viscous fluid	. The terminal velocity attained by
	the falling object will be proportional to		$(A) \mathbf{L} (\mathbf{D}^2)$
		(2)MR	$(4)M/R^{2}$
	(1) MR^2 (2) M/R		
68.	(1) MR ² (2) M/R A drop of water of radius 0.0015 mm is		
68.	A drop of water of radius 0.0015 mm is 2.0×10^{-5} kg/(m-s), the terminal velocity of	s falling in air. If th of the drop will be	
68.	A drop of water of radius 0.0015 mm is	s falling in air. If th of the drop will be	e coefficient of viscosity of air is

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

(3) 2.5×10^{-4} m/s

(4) 5.0×10^{-4} m/s

SURFACE TENSION

- 69. Spiders and insects move and run about on the surface of water without sinking because :
 - (1) Elastic membrane is formed on water due to property of surface tension
 - (2) Spiders and insects are lighter
 - (3) Spiders and insects swim on water
 - (4) Spiders and insects experience rip-thrust
- 70. A thin liquid f.ilm formed between a U-shaped wire and a light slider supports a weight of 1.5×10^{-2} N (see figure). The length of the slider is 30 cm and its weight negligible the surface tension of the liquid film is :-

(4) 0.05 N/m

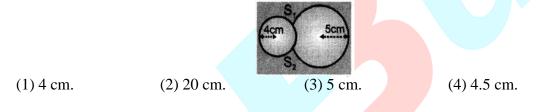
71. A liquid drop of diameter D breaks into 27 tiny drops. The resultant change in energy is-(1) $2\pi TD^2$ (2) $4\pi TD^2$ (3) πTD^2 (4) None of these

(2) 0.0125 N/m

72. The excess pressure inside an air bubble of radius r just below the surface of water is p_1 . The excess pressure inside a drop of the same radius just outside the surface is p_2 . If T is surface tension, then

(1) $p_1 = 2P_2$ (2) $p_1 = P_2$ (3) $P_2 = 2p_1$ (4) $P_2 = 0, P_1 \neq 0$

- **73.** A water drop is divided into 8 equal droplets. The pressure difference between inner and outer sides of the big drop
 - (1) will be the same as for smaller droplet
 - (2) will be half of that for smaller droplet
 - (3) will be one-forth of that for smaller droplet
 - (4) will be twice of that for smaller droplet.
- 74. A false statement is:


(1) 0.025 N/m

- (1) Angle of contact $\theta < 90^\circ$, if cohesive : force < adhesive force $\times \sqrt{2}$
- (2) Angle of contact $\theta > 90^\circ$, if cohesive force > adhesive force $\times \sqrt{2}$
- (3) Angle of contact $\theta = 90^\circ$, if cohesive force = adhesive force $\times \sqrt{2}$
- (4) If the radius of capillary is reduced to half, the rise of liquid column becomes four times.
- **75.** If a capillary of radius r is dipped in water, the height of water that rises in it is hand its mass is M. If the radius of the capillary is doubled the mass of water that rises in the capillary will be
 - (1) 4M (2) 2M (3) M (4) $\frac{M}{2}$

Power by: VISIONet Info Solution Pvt. Ltd
Website : www.edubull.com

				Eddbdii					
76.	On dipping a capillary of radius 'r' in water, water rises up to a height H and potential energy of water is u_1 . If a capillary of radius 2r is dipped in water, then the potential energy is u_2 . The ratio								
	$\frac{\mathbf{u}_1}{\mathbf{u}_1}$ is								
	u ₂								
	(1) 2 : 1	(2) 1 : 2	(3) 4 : 1	(4) 1 : 1					
77.	maximum height to which the water can be filled without leakage is :- (S.T. of water = 75 dyne/cm, $g = 1000 \text{ cm/s}^2$)								
	(l) 100 cm	(2) 75 cm	(3) 50 cm	(4) 30 cm					
78.	In a surface tension experiment with a capillary tube water rises up to 0.1 m. If the same experiment is repeated on an artificial satellite which is revolving round the earth, water will rise in the capillary tube up to a height of								
	(1) 0.1m		(2) 0.98 m						
	(3) 9.8m		(4) full length of	f capillary tube					
79.	-			bap bubble in vacuum has a radius of then the radius of the new bubble is: (4) 1 cm					
0.0									
80.	The spherical shape of rain-drop is due to								
	(1) Density of the liquid (2) Surface tension								
	(3) Atmospheric	e pressure	(4) Gravity						
81.	tube having, hal	f, the radius of the first	is :	ter that will rise in another capillary					
	(1) 1.2mm	(2) 2.4 mm	(3) 0.6 mm	(4) 0.4 mm					
82.	height of water	column in the same cap	illary will be :	rth. On the surface of the moon the					
	(1) 6h	(2)1/6 h	(3) h	(4) Zero					
83.	Shape of meniso	cus for a liquid of zero	angle of contact is-						
	(1) plane	(2) parabolic	(3) hemi-spheric	cal (4) cylindrical					
84.	Due to capillary	action a liquid will rise	e in a tube if angle of o	contact is					
	(1) acute	(2) obtuse	(3) 90°	(4) 180°					
85.	Two droplets m	erge with each other an	d form a large droplet	. In this process :					
	(1) Energy is lib	0	(2) Energy is ab	•					
		ated nor absorbed		is converted into energy					
86.	densities are 0.8		nsions are 60 dyne/cm	e each in two liquids whose relative a and 50 dyne/cm respectively. Ratio					
				9					
	(1) $\frac{10}{9}$	(2) $\frac{3}{10}$	(3) $\frac{10}{3}$	(4) $\frac{9}{10}$					
	7	10	5	10					

- 87. The property utilized in the manufacture of lead shots is:
 (1) Specific weight of liquid lead
 (2) Specific gravity of liquid lead
 (3) Compressibility of liquid lead
 (4) Surface tension of liquid lead
- 88. Surface tension of a liquid is 5 N/m. If its thin film is made in a ring of area 0.02 m², then its surface energy will be -(1) 5×10^{-2} Joule (2) 2.5×10^{-2} Joule (4) 2×10^{-1} Joule
- 89. If one end of capillary tube is dipped into water then water rises up to 3cm. If the surface tension of water is 75×10^{-3} N/m then the diameter of capillary tube will be (1) 0.1 mm (2) 0.5 mm (3) 1 mm (4) 2 mm
- **90.** If the surface tension of a liquid is T and its surface area is increased by A, then the surface energy of that surface will be increased by (1) AT (2) A/T (3) $A^{2}T$ (4) $A^{2}T^{2}$
- **91.** Two soap bubbles of radii r_1 and r_2 equal to 4cm and 5 cm are touching each other over a common surface S_1S_2 (shown in figure). Its radius will be :-

92. The radius of a soap bubble is r. The surface tension of soap solution is T. Keeping temperature constant, the radius of the soap bubble is doubled, the energy necessary for this will be (1) $24 \pi r^2 T$ (2) $8 \pi r^2 T$ (3) $12 \pi r^2 T$ (4) $16 \pi r^2 T$

93. A liquid does not wet the sides of a solid, if the angle of contact is
(1) Zero
(2) Obtuse (more than 90°)
(3) Acute (less than 90°)
(4) 45°

94. The excess of pressure inside a soap bubble than that of the outer pressure is :

(1)
$$\frac{2T}{r}$$
 (2) $\frac{4T}{r}$ (3) $\frac{T}{2r}$ (4) $\frac{T}{r}$

95. In a capillary tube experiment, a vertical 30 cm long capillary tube is dipped in water. The water rises up to a height of 10 cm due to capillary action. If this experiment is conducted in a freely falling elevator, the length of the water column becomes :

- (1) 10 cm (2) 20 cm (3) 30 cm (4) Zero
- 96. Radius of a capillary is 2×10^{-3} m. A liquid of weight 6.2×10^{-4} N may remain in the capillary. Then the surface tension of liquid will be : (1) 5×10^{-3} N/m (2) 5×10^{-2} N/m (3) 5 N/m (4) 50 N/m
- 97. A capillary tube of radius r can support a liquid of weight 6.28×10^{-4} N. If the surface tension of the liquid is 5×10^{-2} N/m. The radius of capillary must be:-(1) 2×10^{-3} m (2) 2×10^{-4} m (3) 1.5×10^{-3} (4) 12.5×10^{-4} m

	/ (/	()	
Power by: VISIONet Info Solution Pvt. Ltd			
Website : www.edubull.com	Mob no. : +91-9350679141		

98.	Water rise in a capillary upto an extension height such that upward force of surface tension balances the force of 75×10^{-4} N. due to weight of water. If surface tension of water is 6×10^{-2} N/m. The internal circumference of the capillary must be:- (1) 12.5×10^{-2} m (2) 6.5×10^{-2} m (3) 0.5×10^{-2} m (4) 1.25×10^{-2} m							
99.	Two small drops of mercury, each of radius R, coalesce to form a single large drop. The ratio of the total surface energies before and after the change is:- (1) $1: 2^{1/3}$ (2) $2^{1/3}: 1$ (3) $2: 1$ (4) $1: 2$							
100.	Inside a drop excess pressure is maximum in:-(1) 0.200 μm diameter(2) 20.0 μm diameter(3) 200 μm diameter(4) 2.0 μm diameter							
101.	The diameter of one drop of water is 0.2 cm. The work done in breaking one drop into 1000 equal droplets will be :- (surface tension of water = 7×10^{-2} N/m) (1) 7.9×10^{-6} J (2) 5.92×10^{-6} J (3) 2.92×10^{-6} J (4) 1.92×10^{-6} J							
102.	If two bubble of radii 0.03 cm and 0.04 cm come in contact with each other then the radius of curvature of the common surface 'r' is given by. (1) 0.03 cm (2) 0.06 cm (3) 0.12 cm (4) 0.24 cm							
1 03.	Work done in forming a soap bubble of radius R is W. Then work done is forming a soap bubble of radius '2R' will be : (1) 2W(2) 4W(3) W/2(3) W/4							
104.	At which angle liquid will not wet solid.(3) 45° (4) obtuse							
105.	Internal radius of a capillary tube is $\frac{1}{28}$ cm and surface tension of water 70 dyne/cm, if angle of contact is zero, then water will rise up in the tube upto height. (1) 4 cm (2) 2 cm (3) 14 cm (4) 18 cm							
106.	Area of liquid film is $6 \times 10 \text{ cm}^2$ and surface tension is T = 20 dyne/cm, what is the work done to change area up to $12 \times 10 \text{ cm}^2$: (1) 120 joule (2) 120 erg (3) 1200 joule (4) 2400 erg							
107.	The work done in blowing a soap bubble of radius 0.2 m, given that the surface tension of soap solution is 60×10^{-3} N/m, is (1) $24\pi \times 10^{-4}$ J (2) $8\pi \times 10^{-4}$ J (1) $102 = 10^{-4}$ J							
108.	(3) $96\pi \times 10^{-4}$ J (4) $192\pi \times 10^{-4}$ J Adding detergents to water helps in removing dirty greasy stains. This is because (a) It increases the oil-water surface tension (b) It decreases the oil-water surface tension (c) It increases the viscosity of the solution							

(c) It increases the viscosity of the solution

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

(d) Dirt is held sus	pended surrounded b	y detergent molecules	
(1) (b) and (d)	(2) (a) only	(3) (c) and (d)	(4) (d) only

- 109. The excess pressure inside a soap bubble A is twice that in another soap bubble B. The ratio of volumes of A and B is
 (1) 1:2
 (2) 1:4
 (3) 1:8
 (4) 1:16
- 110. Consider a soap film on a rectangular frame of wire of area $4 \times 4 \text{ cm}^2$. If the area of the soap film is increased to $4 \times 5 \text{ cm}^2$, the work done in the process will be (The surface tension of the soap film is $3 \times 10^{-2} \text{ N/m}$) (1) $12 \times 10^{-6} \text{ J}$ (2) $24 \times 10^{-6} \text{ J}$ (3) $60 \times 10^{-6} \text{ J}$ (4) $96 \times 10^{-6} \text{ J}$

ANSWER KEY													
EXERCISE-I (Conceptual Questions)													
1.	(4)	2.	(2)	3.	(3)	4.	(1)	5.	(1)	6.	(3)	7.	(1)
8.	(2)	9.	(1)	10.	(4)	11.	(1)	12.	(1)	13.	(2)	14.	(3)
15.	(2)	16.	(3)	17.	(2)	18.	(1)	19.	(4)	20.	(4)	21.	(4)
22.	(1)	23.	(2)	24.	(2)	25.	(4)	26.	(3)	27.	(2)	28.	(2)
29.	(3)	30.	(3)	31.	(3)	32.	(4)	33.	(1)	34.	(2)	35.	(4)
36.	(3)	37.	(2)	38.	(1)	39.	(3)	40.	(3)	41.	(3)	42.	(1)
43.	(3)	44.	(3)	45.	(1)	46.	(1)	47.	(4)	48.	(3)	49.	(1)
50.	(1)	51.	(1)	52.	(3)	53.	(4)	54.	(1)	55.	(1)	56.	(4)
57.	(4)	58.	(1)	59.	(1)	60.	(1)	61.	(1)	62.	(3)	63.	(1)
64.	(3)	65.	(4)	66.	(2)	67.	(2)	68.	(3)	69.	(1)	70.	(1)
71.	(1)	72.	(2)	73.	(2)	74.	(4)	75.	(2)	76.	(4)	77.	(4)
78.	(4)	79.	(3)	80.	(2)	81.	(2)	82.	(1)	83.	(3)	84.	(1)
85.	(1)	86.	(4)	87.	(4)	88.	(4)	89.	(3)	90.	(1)	91.	(2)
92.	(1)	93.	(2)	94.	(2)	95.	(3)	96.	(2)	97.	(1)	98.	(1)
99.	(2)	100.	(1)	101.	(1)	102.	(3)	103.	(2)	104.	(4)	105.	(1)
106.	(4)	107.	(4)	108.	(1)	109.	(3)	110.	(2)				