Alkaptonuria Brachydactyly Blue eyes Brown eyes Cystic fibrosis Huntington disease Tongue Non roller's Tongue roller's Duchenne muscular dystrophy Morphan syndrome Phenylthiocarbamide (PTC) tasting Lesch-Nyhan syndrome Fused ear lobes Free ear lobes Tay-Sach's disease Widow's peak

IMPORTANT PRACTICE QUESTION SERIES FOR NEET EXAM - 1

- 1. A condition characterized by not having an exact number of chromosomes in a multiple of haploid set is called
 - a) Polyploidy
- b) Synploidy
- c) aneuploidy
- d) None of these

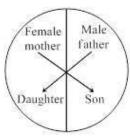
2. Choose correct option for *A*, *B*, *C* and *D*

 $TT \times Tt$

a) A-tt, B-TT, C-TT, D-TT

b) A-Tt, B-Tt, C-Tt, D-Tt

c) A-TT, B-TT, C-Tt, D-TT


- d) A-Tt, B-Tt, C-Tt, D-TT
- 3. When a cross is conducted between black feathered hen and a white feathered cock, blue feathered fowls are formed. When these fowls are allowed for interbreeding, in F_2 generation, there are 20 blue fowls. What would be the number of black and white fowls?
 - a) Black 20, white 10 b) Black 20, white 20
- c) Black 10, white 10
 - d) Black 10, white 20

- 4. Chromosomes are made up of
 - a) DNA are protein
- b) RNA and DNA
- c) DNA and histone
- d) Only histones
- 5. In pedigree analysis, the square, blackened and horizontal lines represents

6.	c) Male, affected individ Following pedigree cha	-	d) Male, affected	d) Male, affected individual, progeny		
	a) Character is carried	by Y-chromosome	b)Character is s	sex-linked recessive		
	c) Character is sex-link	ed dominant	d) Character is i	recessive autosomal		
7.	_		•	lis father is heterozygous for		
		orobability of Sidd's s	perm having one rec	cessive autosomal allele and		
	holandric gene is	1	1	1		
	a) $\frac{1}{2}$	b) $\frac{1}{8}$	c) $\frac{1}{10}$	$d)\frac{1}{4}$		
8.	F_3 -generation is obtain	U	10	4		
0.	a) Selfing of F ₁	b) Selfing of F ₂	c) Crossing of F	₁ and F ₂ d) None of these		
9.				rato of 9 : 7 is observed?		
	a) Fruit shape in Sheph		b)Coat colour in			
	c) Feather colour in fov	•	d) Flower colou			
10.	Starch synthesis gene i			•		
	a) Single gene produce	more than one effect	S			
	b) Multiple genes produ	ace more than one eff	fects			
	c) Two genes produce	more than one effects	3			
	d) Multiple genes produ	ace less than one effe	cts			
11.	In <i>Drosophila</i> , the sex	•				
	a) The ratio of pairs of X-chromosomes to the pairs of autosomes					
	b) Whether the egg is fe					
	c) The ratio of number		the set of autosome	2 S		
12	d) X and Y-chromosome		T			
12.		the pink flower in the		cate the phenomenon of		
	a) Dominancec) Incomplete dominant	nco	b) Codominanced) Segregation	3		
12	Sexual reproducation le		ujsegregation			
13.	a) Genetic recombination		b) Polyploidy			
	c) Aneuploidy	511	d) Euploidy			
14.		up-A and wife has blo		s the blood group of children?		
	a) A	b)B	c) AB	d) A, B, AB and O		
15.	•	•	•	on at which the crossing over		
	takes place					
	(W X	Y Z				
	W X	YZ				
	W X	y z				
	W X	y z				
	a) w and W	b) X and y	c) y and Z	d) w and z		
16.	Given diagram shows c	ertain type of traits in	n human. Which one	of the following option could b	e	
	an example of this patt	ern?				

b) Female, affected individual, parents

a) Female, healthy individual, parents

	a) Haemophilia	b) Anaemia	c) Phenylketonuria	d) Thalassaemia			
17.	In case of incomplete d	ominance, what will be t	the phenotypic ratio of F	generation?			
	a) 3:1	b) 1 : 2 : 1	c) 1:1:1:1	d) 2 : 2			
18.	Haemophilia, a X-linked	d recessive disease is cau	used due to deficiency of	•			
	a) Blood plasma and vit	tamin-K	b) Blood platelets and h	naemoglobin			
	c) Lack of clotting mate	erial and vitamin-K	d) All of the above				
19.	All of this obeys Mende	l's laws except					
	a) Codominance		b)Independent assortm	nent			
	c) Dominance		d) Purity of gametes				
20.	in β -thalassaemia, the α	affected chromosome is					
	a) 16th	b) 14th	c) 13th	d) 19th			
21.	In pea plants, yellow se	eds are dominant to gre	en. If a heterozygous yel	low seeded plant is			
	crossed with a green se	eded plant, what ratio o	f yellow and green seede	ed plants would you			
	expect in F_1 generation?	?					
	a) 50 : 50	b)9:1	c) 1:3	d)3:1			
22.	Who was fly men of gen	netics?					
	a) Sutton	b) Pasteur	c) Robert Hooke	d) TH Morgan			
23.	Mendel's contribution	for genetic inheritance w	vas				
	a) The idea that genes a	are found on chromosom	nes				
	b) Providing a mechani	sm that explains pattern	is of inheritance				
	c) Describing how gene	es are influenced by the e	environment				
	d) Determining that the	e information contained	in DNA codes for protein	ıs			
24.	The genotypic ratio of a	a monohybrid cross in F ₂	₂ -generation is				
	a) 3:1	b) 1 : 2 : 1	c) 2:1:1	d)9:3:3:1			
25.	Baldness is more comm	non in men than in woma	an. It could be explained	on the basis that			
	a) Genes of baldness ar	a) Genes of baldness are located on X-chromosomes only					
	b) Baldness genes are le	b) Baldness genes are located on Y-chromosomes					
	c) Genes of baldness ar	e autosomal but influenc	ced by androgens				
	d) None of the above						
26.	How many pairs of con	trasting characters in pe	ea pod were chosen by M	lendel?			
	a) 3	b)5	c) 7	d) 9			
27.	A mutagen pollutant is						
	a) Organophosphates		b)Resins				
	c) Chlorinated hydroca		d) Nitrogen oxides				
28.		•	s) whether dominant or	recessive are transmitted			
	from generation to gen		a) Altored form	d) Digintagnated			
20	a) Changed	b) Unaltered form	c) Altered form	d) Disintegrated			
49.		ry important in human b	-				
		selers to avoid disorders	S				
	b) It shows origin of tra						
	c) It shows the flow of td) All of the above	li aits iii iaiiilly					
20	•	homozugous condition	results in non – viable pr	rogeny the factor			
, , , , ,	Genes when meself in		resours in non – vianie ni	USCHV. LIC IALLUI			

	responsible for such co	nditions are		
	a) Polygenes	b) Linked genes	c) Lethal genes	d) Epistatic genes
31.	Turner's syndrome cau	sed due to the absence of	of	
	a) One X-chromosome	(44 with X0)	b) One Y-chromosome	
	c) One X-and Y-chromo	some	d) Two X-chromosome	
32.	The recessive genes loc	cated on X-chromosome	in humans are always	
	a) Lethal	b) Sub-lethal	c) Expressed in males	d) Expressed in females
33.	Strength of the linkage	•		
	_	distance between them		
		ate to the distance betw	veen them	
	c) Depend on the chron			
	d) Depend upon the siz			
34.	Fruitfly is excellent mo		of	
	I. Small life cycle (two v	=		
	II. Can be feed on simpl			
		ice large number of prog	geny	
	IV. Clear differentiation		_	
		tion can be seen with lov	w power microscopes	
	Choose the correct opti a) I, II and III	on b) III, IV and V	c) I, IV and V	d) All of these
35	-		nant over white long hai	•
55.			rith genotypes BBSS, BbS	
	the ratio of	cheration marviduais w	itil gellotypes bbss, bbs	5, DD53 and Db53 are in
	a) 9:3:3:1	b)4:2:1:2	c) 1:2:1:2	d) 1 : 2 : 2 : 4
36	When both parents are	•	•	uj1.2.2.4
50.	a) A, B, AB and O blood	· ·	b) A, B, and AB blood ty	mes
	c) A and B blood types	types	d) A, B and O blood typ	•
37	Test cross is		ajri, b ana o biooa typ	C 3
57.		rosses with dominant F ₂	-nlant	
		rosses with dominant F_3		
		rosses with recessive pa	=	
		rosses with heterozygou	=	
38.			veral phenotypes is calle	ed
	a) Multiple allelism		b)epistasis	
	c) Incomplete dominan	ce	d) Pleiotropism	
39.	•		•	n genotypes are crossed,
			re crossed, 75% of the flo	
			rents having red coloure	
	a) Both homozygous	•	b) One homozygous an	
	c) Both heterozygous		d)Both hemizygous	
40.		hilic son and three norr	nal children. Her genoty	pe and that of her
	husband with respect t			
	a) XX andX ^h Y	b) X ^h X ^h andX ^h Y	c) X ^h X ^h andXY	d) X ^h X and XY
		U)	•	- 7
41.			all in F ₂ - generation ofo	
	a) $\frac{1}{4}$ th and $\frac{3}{4}$ th	b) $\frac{3}{4}$ th and $\frac{1}{4}$ th	c) $\frac{2}{3}$ rd and $\frac{1}{3}$ rd	d) $\frac{1}{3}$ rd and $\frac{4}{3}$ rd
42.	Night blindness is	1 1	3 3	3 3
	a) Genetic disease		b) Nutritional deficience	cy disease
	c) Generally found in m	nale	d) Generally found in fe	
43.				nap of maize plant. When
	_	es are hybridized, then	_	-

	a) 1 : 2 : 1	b)3:1	c) 9:3:3:1	d)1:1:1
11	•	•	•	the segregation of a pair
44.	of factor they carried?	ig and separation of thic	illosoffies would lead to	the segregation of a pair
	a) Sutton	b) Boveri	c) Both (a) and (b)	d) Morgan
4.5	Sex chromosomes of m	•	c) both (a) and (b)	u) Morgan
43.	a) Homozygous	b) Heterozygous	c) Hemizygous	d) autosomes
16		mosome is involved in De		ujautosomes
40.	a) 15 th	b) 21st	c) 20 th	d) 19 th
17		symbols are used for rep	•	•
47.	a) ZZ-ZW	b) XX-XY	c) XO-XX	d) ZZ-WW
1Ω	•	change in a character of a	,	u) LL-vv vv
то.	a) Mutation	b) Heterosis	c) Inbreeding	d) selection
49	•	ower is crossed with rec	,	
т).	a) All purple	ower is crossed with rec	b) All white	progery has the ratio
	c) 50% purple, 50% wh	nite	d) 75% purple, 25% wh	nite
50		ue breeding tall and dwa		
50.		nt and recessive characte	•	•
	appeared in	it and recessive characte	i was awari. The recess.	ive character was
	a) F ₁	b) F ₂	c) F ₃	d) F ₂ and F ₃
Г 1			, ,	·
51.		different types of gamet		ant naving the genotype
		sed to a plant with the ge		d) aabb
5 2	a) aaBB The lowest number of	b) AaBb chromosomes is found, ii	c) AABB	d) aabb
32.		s b) <i>Poa litorosa</i>	_	d) <i>Ageratum coigzoides</i>
53		aracters of pea plant tha		
55.	experiment are present		t were considered in Me	nuel hybridisation
	a) 4 chromosome	b) 5 chromosome	c) 7 chromosome	d)8 chromosome
54	-	of the given fruitfly tick t	=	-
0 11			are correct enoice for du	
	00 \	00		
	(30) (30)			
	(00 no pp) (00	100 MM		
	$\setminus \mathbb{W} \times \setminus$			
	71/	<u> </u>		
	A B C	D) D	D.D.
	a) A	b) C	c) D	d)B
55.	Identify the wrong stat		ro no gov al nomogono	
		rs, 50% of the sperms have		
		s produce two types of g		
	•	ive one of their sex chron		
	-	ls, the sex of the progeny	depends on the type of	speriii radier dian die
56	egg The chromosome show	ın in the diagram helow i	e hroken at the nointe w	hich are indicated by the
50.		etween these points bec	=	inch are mulcated by the
	arrows and the genes b	.Chromosome	anic inverted	
	PQRSTUVW	consisting		
	\uparrow	of eight genes		
	Break Break			
	The resulting order of	_		••
_	a) PQUTSRVW	b) WVUTSRQP	c) PQTURSVW	d) VWUTSRPQ
57	Which of these is a don	ninant factor?		

58	a) Rh factor b) Haemophilia A person with unknown blood group under ABC	c) Albinism System, has suffered m	d) Colour blindness					
50.	accident and needs immediate blood transfusion own blood type, offers for blood donationwithout blood group of the donor friend?	n. His one friend who ha	s a valid ceruficate of his					
	a) Type AB b) Type 0	c) Type A	d) Type B					
59.	If Mendel had studied 7 traits using a plant of 12							
	Choose the correct option for probable result							
	a) He would have discovered crossing over							
	b) He would have discovered blending							
	c) He would have not discovered independent a	ssortment						
60	d) All of the above	ahin ia						
60.	In thalassaemia, the affected chain of a haemogle a) α -globin chain b) β -globin chain	c) Both (a) and (b)	d) None of these					
61	Sex chromosomes in male of silkworm is	c) both (a) and (b)	d) Notice of these					
01.	a) X b) Y	c) XX	d) No X no Y					
62.	A hereditary disease, which is never passed on f	*	.,					
	a) Autosomal linked disease	b)X-chromosomal linke	ed disease					
	c) Y-chromosomal linked disease	d) None of the above						
63.	Two genes R and Y are located very close on the	_	nap of maize plant. When					
	RRYY and rryy genotypes are hybridized, then F							
	a) Higher number of the recombinant typesc) Segregation in 3 : 1 ratio	b) Segregation in the ex d) Higher number of the	=					
64	DuringA both members of chromosome pair							
0 1.	gametes. Choose the correct option for A and B							
	a) A-mitosis; B-allele pair	b) A-meiosis; B-allele pa	air					
	c) A-allele pair; B-meiosis	d) A-allele pair; B-mitos						
65.	Genetic map is one that							
	a) Shows the stages during the cell division							
	b) Shows the distribution of various species in a	-						
	c) Establishes sites of the genes on a chromosond) Establishes the various stages in gene evoluti							
66	Given below is a highly simplified representatio		mosomes from a					
00.	karyotype. The gene 'a' and 'b' could be of		mosomes nom a					
	Gene 'a'							
	Gene 'b'							
	a) Colour blindness and body height	b) Attached ear lobe and	d rhesus blood group					
	c) Haemophilia and red-green colourblindness	d) Phenylketonuria and	haemophilia					
67.	Human females have							
	a) 22 pairs of autosomes and one pair of sex chr							
	b) 21 pairs of autosomes and two pairs of sex ch							
	c) 23 pairs of autosomes and one pair of sex chr d) 20 pairs of autosomes and one pair of sex chr							
	a, 20 pairs of autosomics and one pair of sex till	OHIOSOHIC						

68. The progenies are found to be male sterile after crossing two plants. This is due to some genes, which are present in

60		b) Cytoplasm	c) Nucleus	d) chloroplast		
69.	Mutation may results in	tne	h) Ch : h	_		
	a) Change in metabolism		b) Change in phenotype			
70	c) Change in metabolism		d) All of these	arring gran an armindal ad		
70.			e breeding pea plants ha			
			ellow colour in F ₂ -gener			
71	a) 12	b) 10	c) 14	d) 11		
/ 1.	=		of contrasting character i			
72	a) Monohybrid cross	b) Dihybrid cross	•	, ,		
/ Z.	•	_		ctor is the ratio of number of		
	a) X-chromosome to au		b) Autosome to X-chron			
72	c) Y-chromosome to X-c		d) Y-chromosome to au			
73.	white) from the given of		eration (K – dominant a	and red, $r = recessive$ and		
	,	1055				
	RR × rr P-generat	ion				
	↓ ↓ Counctes					
	R Gametes					
	F ₁ -generation					
	a) Rr and white	b) Rr and red	c) Rr and pink	d) Can not predict		
74.	Which one of the follow	ring conditions correctly	describes the manner o	f determining the sex in		
	the given example?					
	a) XO type of sex chrom	osomes determine male	e sex in grasshopper			
	b) XO condition in hum	ans as found in Turner's	syndrome, determines f	emale sex		
	c) Homozygous sex chr	omosomes (XX) produce	e male in <i>Drosophila</i>			
		omosomes, (ZZ) determ				
75.		orid cross (phenotypical	• •			
	a) 3 : 1	b) 1 : 2 : 1	c) 9 : 7	d) 9 : 3 : 3 :1		
76.	Trisomy stands for					
	a) 2n – 1	b) $2n + 2$	c) $2n + 3$	d) $2n + 1$		
77.	Klinefelter's syndrome	results from				
	a) XX egg of Y sperm		b)XX egg and XY sperm			
	c) X egg and YY sperm		d)XY egg and X sperm			
78.	=	e colourblind with AB b	lood group, identify the	parents from the		
	following.					
	-		father normal with bloo			
			er colourblind with bloo			
	-		father normal with bloo			
			er colourblind with bloc			
79.			are most likely to take p	lace when homologous		
	chromosomes are unde					
	a) Inversion and translo		b)Deletion and duplication			
	c) Inversion and deletic		d)Translocation and d	=		
80.			orn amongst four childre			
			mozygous for Rh ⁻ gene?			
٠.	a) 25%	b)50%	c) 75%	d) 100%		
81.	Mendel could not find o	_		1		
		t hut thay are too far and	art for crossing over to b	e distinguished from		

	independent assortme	nt				
	_	ever tested for the same				
	III. all seven genes, were present on the same chromosomes					
	IV. all seven genes were present on 4 chromosome but they were present far apart					
	Find out the correct op	tion				
	a) I and II	b) II and III	c) III and IV	d) IV only		
82.	Haemophilia is also cal	lled				
	a) Bleeders disease	b) Blood disease	c) RBC disease	d) All of these		
83.	The genes located in th	The genes located in the same chromosome do not separate and are inherited together over its				
	generations due to the	phenomenon of				
	a) Complete linkage		b)Incomplete linkage			
	c) Incomplete recombi	nation	d) Complete recombina	ation		
84.	Universal donor is					
	a) 0 Rh ⁺	b) O Rh-	c) AB Rh ⁺	d) AB Rh ⁻		
85.	Persons with Klinefelto	er's syndrome have chro	mosomes			
	a) XX	b)XY	c) XXY	d) XYY		
86.	-	d dwarf plant. In F ₂ -gene	•			
	produced. This shows	1 20		•		
	a) Blending of characte	ers	b)Atavism			
	c) Non-blending of cha		d) Intermediate charac	ters		
87.	•	nked genes are located o				
	a) Autosomes	b) X-chromosome	c) Y-chromosome	d) Both (b) and (c)		
88.	•	-	•	ılting from the following		
	cross?		J 11 0 J/	0		
	AA BB CC \times aa bb cc					
	a) 3	b)8	c) 27	d) 64		
89.	Point mutation involve	•	,	,		
	a) Insertion		b) Change in single bas	e pair		
	c) Duplication		d)deletion			
90.	-	lood group may safely re				
	a) Type-AB			b) Type-A and type -0		
	c) Type-A and type –Al	В	d) Type-AB and type –0			
91.		get most pink flowers?				
	a) Red × red	b) Red × pink	c) Pink × pink	d) Red × white		
92.	Triticale has been pro	duced by the intergenic	hybridization of			
	a) Wheat and rice b) Wheat and rye c) Wheat and aegilops d) Rice and maize					
93.	Which one of the follow	ving characters studied l	oy Mendel in garden pea	was found to be		
	dominant?					
	a) Green seed colour		b) Terminal flower position			
	c) Green pod colour		d)Wrinkled seed			
94.	Mendel's experimental	material was				
	a) <i>Pisum sativum</i>	b) <i>Lathyrus odoratus</i>	c) <i>Oryza sativa</i>	d) <i>Mirabilis jalappa</i>		
95.	Which of the following	is not considered as mu	tagen?			
	a) Lower temperature		b)X-rays			
	c) Higher temperature		d)UV rays			
96.	The physical expressio	n or appearance of a cha	racter is called as			
	a) Morphology	b) Genotype	c) Phenotype	d) Ecotype		
97.	Carrier organism refer	s to an individual, which	carries a			
	a) Dominant gene, that is not expressed b) Recessive gene, that is not expressed					

- c) Recessive gene, that is expressed
- d) Dominant gene, that is expressed
- 98. In previous question, find out which alphabete (A-D) labelled for X and Y-chromosome
 - X Y
 - a) A D

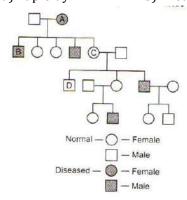
b)A,C D

c) C D

- d)B D
- 99. In amniocentesis of a pregnant woman, it is found that the embryo contains both, Barr body and F-body. The syndrome likely to be associated with the embryo is
 - a) Edward' syndrome

b) Down's syndrome

c) Klinefelter's syndrome


- d) Patau's syndrome
- 100.In the previous question, find out the chances of fifth child to be albino
 - a) 1 in 2
- b) 1 in 4
- c) 1 in 3
- d) 1 in 5

IMPORTANT PRACTICE QUESTION SERIES FOR NEET EXAM - 2

- 1. Three children in a family have blood types O, AB and B respectively. What are the genotypes of their parents?
 - a) I^Ai and I^Bi
- b) IAIB and i i
- c) IBIB and IAIA
- d) IAIA and IB i

- 2. The chromosomal arrangement results in
 - a) Euploidy
- b) Aneuploidy
- c) Duplication
- d) polyploidy

3.

In the above pedigree, assume that no outsider marrying in, carry a disease. Write the genotypes of C and D.

- a) X^CY and X^CX^C
- h) XX^C and XY
- c) XY and XCXC
- d) XCXC and XCX
- 4. The specific pair of chromosomes which determine the sex of the individual called
 - a) Sex chromosomes
- b) Allosomes
- c) Heterosomes
- d) All of these
- 5. The 'Cri-du-chat' syndrome is caused by change in chromosome structure involving
 - a) Deletion
- b) Duplication
- c) Inversion
- d) translocation
- 6. During his experiments, Mendel used the term factor for
 - a) Genes
- b) Traits
- c) Characters
- d) Qualities
- 7. In a monohybrid cross involving incomplete dominance, the phenotypic ratio equals the genotypic ratio in F_2 generation. The ratio is

a) 3:1 d)9:7 b)1:2:1 c) 1:1:1:1 8. The genome of Caenorhabditiselegans consists of a) 3 million base pairs and 30,000 genes b) 180 million base pairs and 13,000 genes c) 4.7 million base pairs and 4,000 genes d) 97 million base pairs and 18,000 genes 9. Albinism is caused by the deficiency of a) Amylase b) Tyrosinase c) Phenylalanine d) Xanthene oxidase 10. The ABO blood grouping in human beings is an example for **I.Dominance** II.Incomplete dominance III.Codominance IV. Multiple alleles a) I and II b) II, III and IV c) I, III and IV d) III and II 11. Sickle-cell anaemia is an autosomal linked recessive trait can be transmitted from parents to the offspring when both the partners are carrier for all the genes or heterozygous. The disease is controlled by a single pair of allele, Hb^A and Hb^S. Identify X, Y and Z Normal Hb (A) GeneCTC mRNA ·····GAG····· Hb^A Peptide Sickle-cell Hb (B) Gene mRNA....GUG.... Hb^S Peptide a) GTG GAC Val (GUG) b) CAC CTC val (GUG) c) GTA GAG val (GUG) d) GTC GAC val (GUG) 12. Diploid cells have a) Two chromosomes b) One set of chromosomes c) Two pairs of homologous chromosomes d) Two sets of chromosomes 13. Single gene can produce more than one effect. Like starch synthesis in pea plant. It has two alleles (B and b) for starch synthesis the phenotypes of which are also given below BB, bb, Bb I. BB - round seed, large starch synthesis II. bb – wrinkle seed, less starch synthesis III. Bb – intermediate size seed, intermediate less starch synthesis Choose the correct option a) I and II b) II and III c) III and I d) I, II and III 14. After examining the blood groups of husband and wife, the doctor advised them not to have more than one child, the blood group of the couple are likely to be a) maleRh⁻and female Rh⁺ b) FemaleRh and male Rh+ c) Male and female Rh+ d) Male and female Rh-

15. A person with blood group-A has

	a) Antigen-A and antibody-b	b) Antigen-B and antibo	ody-a	
	c) Both antibodies	d) No antibody and no antigen		
16.	Which of the following is not a correct match?			
	a) Sex determination	 A chromosomal ph 	ienomenon	
	b) Y-chromosome	Autosomal		
	c) Red-green colour blindness in human	 A sex-linked charac 	cter	
	d) An abnormal chromosome number in each ce	ell – A case of polyploid	y	
17.	In law of independent assortment. How many fa	actors are involved? (for	a dihybrid cross)	
	a) 2 b) 3	c) 4	d) 1	
18.	Mother B homozygous, father A unknown, there	efore, possible blood gro	up in progeny is	
	a) AB and B possible b) AB and A possible	c) A and B possible	d) 0 possible	
19.	Consider the following four statements I, II, III a	and IV and select the cor	rect statements	
	I. Mendelian experiments has a large sampling s	size, which gave greater (credibility to the data	
	that he collected			
	II. Recessive allele influences the appearance of	the phenotype even in t	he presence of a	
	dominant allele			
	III. Multiple alleles can be found only when pop	ulation studies are made	!	
	IV. In F ₂ -generation of a Mendelian monohybric	d cross, the tall and dwar	f traits were identical to	
	their parental types and shows blending inherit	tance		
	The correct statements are			
	a) I and III b) III and IV	c) II and IV	d) II and III	
20.	When released from ovary, human egg contain			
	a) One Y-chromosome b) Two X-chromosome	c) One X-chromosome	d) XY-chromosome	
21.	The tendency of offsprings to differ from their p	parents is called		
	a) Variation b) Heredity	c) Inheritance	d) Resemblance	
22.	The gene, which controls many characters, is ca	lled		
	a) Codominant gene b) Polygene	c) Pleiotropic gene	d) Multiple gene	
23.	The given diagram A and B indicates			
	\wedge			
	A			
	\wedge			
	or O			
	B			
	a) A-Zygotic twins; B-Dizygotic twins	b) A-Dizygotic twins; B-	Identical twins	
	c) A-Zygotic twins; B-Identical twins	d)A-Identical twins; B-	Dizygotic twins	
24.	Which of the following statement is/are correct	regarding law of segreg	ation?	
	a) Alleles separate with each other during game	etogenesis		
	b) The segregation of factors is due to the segreg	gation of chromosomes o	during meiosis	
	c) Law of segregation is called as law of purity of	of gametes		
	d) All of the above			
25.	Which of the following discoveries resulted in a	Nobel Prize?		
	a) Recombination of linked genes	b) Genetic engineering		
	c) X-rays induce sex-linked recessive lethal	d) Cytoplasmic inherita	nce	
	mutations			
26.	When alleles of two contrasting characters are p	present together, one of	the character expresses	
	itself during the cross while the other remains h	nidden. This is the		
	a) Law of purity of gametes	b) Law of segregation		
	c) Law of dominance	d) Law of independent a	assortment	

2	27.		osis-I the two chromosor	ne can align at the metap	ohase plate
		independently of each			15 m 1 1 v
_		a) Metaphase-II	b) Metaphase-I	c) Anaphase-I	d) Telophase-I
2	28.		nited to the substitution		other, it is called
		a) Translocation		b) Point mutation	
_		c) Base inversion		d)Sugar phosphate de	letion
2	29.		served in a dihybrid cross		D 6
_		a) 9	b) 12	c) 4	d)6
3	30.		nts on linkage, the perce	ntage of white eyed, min	iature-winged
		recombinants in F_2 -ge) (0.0	1) 70 0
		a) 1.3	b) 37.2	c) 62.8	d) 73.2
2	21	Which cross was used	to study the independen	t accortment?	
J	1.	a) Monohybrid cross	b) Dihybrid cross	c) Trihybrid cross	d) Tetrahybrid cross
2	22	•			the dominant allele (H)
J) 4.		by recessive allele (h).	iniger) is determined by	the dominant anele (11)
			family tree in which som	a mambars of the family	aro hymordactylus
		Canada (11994)	Hyperdactylus male	e members of the family	are hyperuactyrus
		7			
		()B	Normal mate		
			Normal female		
			Hyperdactylus female		
		C			
		Find out the genotype			
		a) A-Hh, B-Hh, C-hh	b) A-HH, B-Hh, C-hh	•	d) A-Hh, B-HH, C-hh
3	33.	_	statements about muta		
			urce of new alleles for ge		
			to create mutations to m		
			lom events and can happ	•	
			id to be harmful or have	_	
_		a) I, II and III	b) I, II, III and IV	c) I, III and IV	d) I and III
3	34.	Centromere is also call	led		
		a) Chromomere		b) Secondary constrict	ion
_	_	c) Primary constriction		d)chromocentre	
3	35.	Which of the following			
		•	re acquired because they		
			lows different laws of in		alleles do
			opies of each gene from	=	
			out regard to which alle	•	15 7 77 1 777
-		a) II and III	b) II and IV	c) II, III and IV	d) I, II and IV
3	66.	Which contributed to			
		I. Selection of pea planII. Knowledge of histor			
		III. One character at or			
		IV. His statistical know			
		Choose the correct opt	_		
		a) I, II, III and IV	b) II and III	c) I, III and IV	d) IV, III and II
3	37.	-	omal sex determination		•
		a) Male	b) Female	c) Both (a) and (b)	d) None of these
3	88.	Which of the following	•		-
		_	which more recombinan	ts are produced in F ₂ -ge	neration

		nation are produced in	-	y in Fa-generation		
	III. Genotype which are present in F_1 hybrid. Reappear in high frequency in F_2 -generation IV. It is a phenomenon in which two chromosome are linked					
	a) Only I	b) Only II	c) I and III	d) III and IV		
39.		, ,	dihybrid cross of Mende			
	generation. How many			Z		
	a) 240	b)360	c) 480	d) 720		
40.	A child of blood group-(•				
	a) A and A	b) AB and O	c) A and B	d) B and B		
41.	Rh factor is present in			,		
	a) All vertebrates		b)All mammals			
	c) All reptiles		d) Man and rhesus mor	ikey only		
42.	Which of the following	condition is called mond	osomic?			
	a) 2 <i>n</i> +1	b) 2 <i>n</i> +2	c) <i>n</i> +1	d) 2 <i>n</i> -1		
12	A man of blood group	A marries woman of blo	od group-AB, which type	of progeny would		
43.	indicate that man is het		ou group-Ab, winch type	of progetty would		
	a) 0	b) B	c) A	d)AB		
44.	The children of a haemo	•		u)·ID		
	a) All haemophilic	Sp	ar women are			
	b) Only daughters are h	aemophilic				
	c) Only sons are haemo	=				
	d) Neither sons nor dau	•				
45.	In man, four phenotype	es of blood groups are di	ue to the presence of anti	gen-A and antigen-B on		
	the RBC. The chromoso	me that has the gene to	control these antigens is			
	a) X-chromosome	b) 21 st chromosome	c) 9 th chromosome	d) ^{7th} chromosome		
16	Mara man auffar fram a	,	-7			
46.	More men suffer from c					
	-	sistant to disease than m ne testosterone causes t				
		e is carried on the 'Y' chr				
			is enough to make them	colourblind		
47	'Cri-du-chat' syndrome	_	_	colourbilliu		
		egg by a normal Y-bear				
		ort arm of chromosome				
	•	ng arm of chromosome 5				
	d) Trisomy of 21st chro	_				
48.			mosomal mutation. Wha	t is the kind of mutation		
	represented?					
	A B C D E F G	→				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ď				
	a) Deletion		b) Duplication			
	c) Inversion		d)Reciprocal transloca	tion		
49.	Which of the following	symbols and its represe	ntation, used in human p	edigree analysis is		
	correct?	H2 2000 200 200				
	a) = Mating	g between relatives	b) \bigcirc = Unaffecte	d male		

1	 - Ilma	ffootod	famo	1
c)	 - Ona	ffected	lema	le

50. Ischihara chart is used to detect

a) Tuberculosis

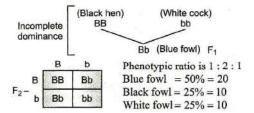
b) Eye sight

c) Colour blindness

d) Diabetes

IMPORTANT PRACTICE QUESTION SERIES FOR NEET EXAM - 1 (ANSWERS)

1)	c	2)	b	3)	c	4)	c
5)	c	6)	a	7)	a	8)	b
9)	d	10)	a	11)	c	12)	c
13)	a	14)	d	15)	d	16)	a
17)	b	18)	c	19)	a	20)	d
21)	a	22)	a	23)	b	24)	b
25)	c	26)	a	27)	c	28)	b
29)	d	30)	c	31)	a	32)	c
33)	b	34)	d	35)	d	36)	b
37)	c	38)	d	39)	c	40)	d
41)	a	42)	b	43)	a	44)	c
45)	b	46)	b	47)	a	48)	a
49)	c	50)	d	51)	b	52)	a
53)	a	54)	c	55)	d	56)	a
57)	a	58)	b	59)	c	60)	c
61)	c	62)	b	63)	d	64)	b
65)	c	66)	c	67)	a	68)	a
69)	d	70)	a	71)	a	72)	a
73)	b	74)	a	75)	d	76)	d
77)	a	78)	a	79)	b	80)	b
81)	a	82)	a	83)	a	84)	b
85)	c	86)	c	87)	a	88)	b
89)	b	90)	b	91)	d	92)	a
93)	c	94)	a	95)	a	96)	c
97)	b	98)	b	99)	c	100)	b
1	(c)						


Aneuploidy is the variations in individual chromosomal number. Actually, loss or gain of individual chromosomes upsets the balance and, hence normal development is not possible.

3 **(c)**

Black feathered hen = BB

White feathered cock = bb

Blue feathered fowl = Bb

4 **(c)**

Histones are special type of basic protein associated with DNA and form chromosome. RNA, protein, carbohydrate, fat, doesn't find in chromosomes

5 **(c)**

In pedigree

Square represents male blackened square or circle represents affected individual. Horizontal line represents-parents

The study of inheritance of genetic traits in several generations of a human family in the form of a family tree diagram is called **pedigree analysis**.

Advantages

- (i) It helps in genetic counselling to avoid disorders
- (ii) It shows the origin of a trait and flow of a trait in a family
- (iii) It is important to know the possibility of a recessive allele that can cause genetic disorders like colour blindness, haemophilia, etc.

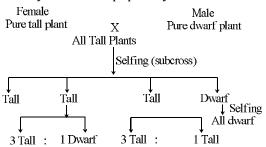
Signosed in the pedigree are

	Maic
\bigcirc	Female
\Diamond	Sex unspecified
	> Affected individuals
	Mating
	Mating between relatives (consanguineous mating)
	Parents above and children below (in order of birth-left to right)
	Parents with male child affected with disease
$\langle \hat{5} \rangle$	Five unaffected offspring

6 **(a)**

In the given pedigree chart only males are affected. So, it can be easily inferred that the given trait is connected to Y-chromosome. The genes, which are present on the Y-chromosome are called holoandric genes

7 **(a)**


In the gametogenesis meiosis occur. The diploid chromosome become haploid, so the probability of side is sperm lacking one recessive autosomal allele and holandric gene is half

8 **(b**

 F_3 -generation obtained by selfing of F_2 -generation.

Mendel cross-pollinated a pure tall pea plant (100-120 cm hight) and a pure dwarf pea plant. (only 22 to 44 cm hight). He called them parental generation, expressed now-a-days by symbol P.

This hybridization popularly called as monohybrid cross

This three generations of pea plants after crossing a pure tall plant with a dwarf one. The plants of F_1 -generation are all tall, of F_2 -generation three tall and one dwarf. One third of the tall plants are pure, while the remaining behave as hybrids

 $\mathbf{F_1}$ -generation Seeds collected from the parental generation called first filial generation or $\mathbf{F_1}$ -generation

 F_2 -generation F_1 -plants pollinated among them self (self breeding or inbreeding) and seed produced by F_1 -plants called F_2 -generation. They were in ratio 3:1 (three tall and one dwarf).

 F_3 -generation Mendel allowed F_2 -plant to form seed by self-pollination called F_3 -generation. Mendel observed that tall and dwarf plant behave differently

- (i) Dwarf plant produced dwarf plant on self-pollinated
- (ii) In tall plants one third plants breed true so they were pure
- (iii) Other two third plant behave like parents and give tall to dwarf plants 3 : 1 indicate that their parents have dwarf genes also
- 9 **(d)**

W Bateson and R C Punnettobserved complementary gene interaction for flower colour in sweet pea (Lathyrusodoratus). In complementary interaction, two separate pairs of genes interact to produce the phenotype in such a way that neither of the dominant genes is expressive unless the other one is present. In F_2 generation, complementary genes produce a ratio of 9:7.

10 (a)

Occasionally a single gene product may produce more than one effect. For example starch synthesis in pea seeds is controlled by one gene. It has two allele (B and b). Starch is synthesized effectively by BB and have bigger grains. In contrast bb homozygous have lesser efficiency in starch synthesis and produce smaller grains

11 **(c)**

In *Drosophila*, sex is determined by the ratio number of X-chromosomes to the set of autosomes.

12 **(c)**

The genotypic and phenotypic ratio of $\mathbf{1}:\mathbf{2}:\mathbf{1}$ with \mathbf{red} , \mathbf{pink} and \mathbf{white} flowers are produced in Mirabilisjalapa, when red flowered plants (RR) are crossed with white flowered (rr). It occurs due to allelic gene interactions, called, $\mathbf{incomplete}$ dominance. In which, both of the allelomorphic genes will have partial or incomplete dominance and F_1 -hybrid will show mixture of characters of two parents.

13 **(a)**

Meiosis is an important stage in sexual reproduction. During meiosis, genetic recombination occurs as a result of crossing over.

14 **(d)**

Blood group of children may be A, B, AB and O.

15 **(d)**

The genes, which are present very far from each other tend to get unlinked and they are the most chances for crossing over

16 **(a)**

Given diagram depicits the sex linked inheritance in given options haemophilia is the sexlinked character

17 **(b)**

Incomplete dominance or blending inheritance is the phenomenon, in which the two genes of allelomorphic pair are not related as dominant or recessive but each of them expresses itself partially, thus the F_1 hybrids exhibit a mixture or blending of characters of both the parents. In F_2 generation, the phenotypic ratio obtained is 1:2:1.

18 **(c)**

Haemophilia is a disease, which is caused due to lack of blood clotting factor. It appears only in human male which can be transferred to their grandson through his carrier daughter.

19 **(a)**

In the given option only codominance does not obey Mendel's laws.

The phenomenon of expression of both the alleles in heterozygote is called codominance. As the result the phenotype is different from both homozygous genotype.

Examples

- 1. Blood group is the good example codominance
- 2. ABO blood groups are controlled by gene I. The gene (l) has three allele I^A, I^B, i, I^A, I^B produce slightly different form of sugar while i does not produce any kind of sugar.
- 3. I^A, I^B are dominant alleles where as i is recessive alleles
- 4. Since, there are three different allele, there are six different combination of these three alleles are possible and four phenotypes (A, B, AB and O)

Genetic Basis of Blood Groups in Human Population

Allele	Allele	Genotype	Blood
from	from	of	Types of
Parent	Parent	Offspring	Offspring
1	2		
IA	IA	IAIA	A
I ^A	IB	IAIB	AB
I ^A	i	I ^A i	A
IB	IA	IAIB	AB
IB	IB	I_BI_B	В
IB	i	I ^B i	В
i	i	ii	0

When I^A and I^B are present together they both express their own types of sugars this is because of co-dominance. ABO blood grouping also provides a good example of multiple alleles.

Here, you can see that there are more than two, *i.e.*, three alleles governing the same character. Since, in an individual only two alleles can be present multiple alleles can be found only when population studies care made. Dominance is not an autonomous features of a gene. It depends on much on the gene product

20 **(d)**

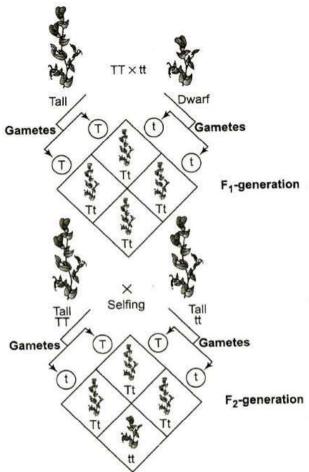
11th.

Thalassaemia

- (i) It is an autosome-linked recessive disesase
- (ii) It occurs due to either mutation or deletion resulting in reduced rate of synthesis of one of globin chains of haemoglobin
- (iii) Anaemia is the characteristic of this disease
- (iv) Thalassaemia is classified into two types
- 5. α -thalassaemia Production of α -globin chain is affected. It is controlled by the closely linked genes HBA1 and HBA2 on chromosome 16. It occurs due to mutation or deletion of one or more of the four genes.
- 6. β -thalassaemia Production of β -globin chain is affected. It occurs due to mutation of one or both HBB genes on chromosome 11

22 **(a)**

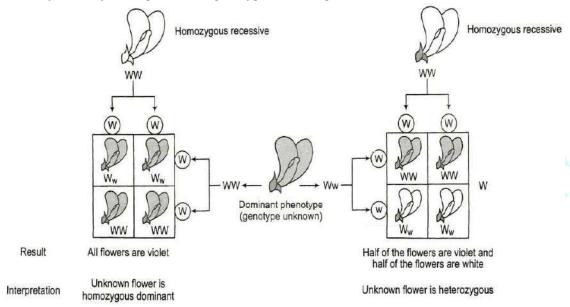
TH Morgan.


Father of experimental genetics is TH Morgan. He is also called the fly man of genetics because of selecting fruit fly (*Drosophila melanogaster*) as research material in experimental genetics

23 **(b)**

Mendel gave the laws of inheritance, which provides the mechanism that explains the pattern of inheritance

24 **(b)**


The genotypic ratio can be find out of a dominant phenotype by test cross or by simply Punnett square.

Phenotypic ratio Tall : Dwarf Genotypic ratio TT : Tt : tt 1:2:1

A Punnett square used to understand to typical monhybrid cross conducted by Mendal between true-breeding tall plants and true-breeding dwarf plants

Crossing of F_1 (dominant phenotype) to any one of the parent called back cross and when phenotype of crossing parent is recessive than this is called test cross. The progeny of such cross can easily be analysed to predict the genotype of test organism

25 **(c)**

Genes for baldness are located on autosomes and influenced by androgens, thus, this is more common in men than in women.

26 **(a)**

The number of characters studied by Mendel was seven which were present on four chromosomes. Three contrasting characters with respect to pea pod are (i) pod shape,(ii) pod colour, (iii)pod position.

- (c)Chlorinated hydrocarbons are mutagen pollutants which can cause mutation in gene.
- 28 **(b)**

Both genes and chromosomes (Mendelian factors) whether dominant or recessive are transmitted from generation to generation in the pure or unaltered form. It is also called law of purity of gametes

29 **(d)**

The study of inheritance of genetic traits in several generations of a human family in the form of a family tree diagram is called **pedigree analysis**.

Advantages

- (i) It helps in genetic counselling to avoid disorders
- (ii) It shows the origin of a trait and flow of a trait in a family
- (iii) It is important to know the possibility of a recessive allele that can cause genetic disorders like colour blindness, haemophilia, etc.

Signosed in the pedigree are

Male
Female
Sex unspecified
> Affected individuals
Mating
Mating between relatives (consanguineous mating)
Parents above and children below (in order of birth-left to right)
Parents with male child affected with disease
Five unaffected offspring

30 **(c)**

Some genes control phenotypic traits and at the same time they also influence the viability of the individuals. The influence of these genes on viability is such that it may cause death of individual carrying them. Such genes are called **lethal genes**.

31 **(a)**Absence of one X-chromosome (44 with XO).

Disorders	Autosomal/Sex Linked	Symptoms	Effects
Down's syndrome	Autosomal aneuploidy (trisomy, +21)	Mongolian eyefold (epicanthus), open mouth, protruded tongue, projected lower lip, many loops on finger tip, palm crease Short stature	Retarded mental development IQ (below
syndrome	chromosomal monosomy 44 + XO	females (<5'), webbed neck, body hair absent menstrual cycle absent. Sparse pubic hair, underdeveloped breasts narrow lips puffy fingers	hearing problem
Klinefelter's syndrome	Sex chromosomal aneuploidy (tri/tetrasomy of X chromosome) 44+XXY	The males are tall with long legs, testes small, sparse body hair, Barr body present, breast enlargement	Gynaecomast ia azospermia sterile

(i) **Down's syndrome-**21 trisomy

Symptoms

- (a) Short statured with small round head
- (b) Partially open mouth with protruding furrowed tongue
- (c) Palm is broad with characteristic palm crease
- (d) Slow mental development
- (ii) Turner's syndrome

Cause Absence of one of the X-chromosomes, resulting in the karyotype 44+XO

Symptoms

- (a) Sterile female with rudimentary ovaries
- (b) Shield-shaped thorax
- (c) Webbed neck
- (d) Poor development of breasts
- (e) Short stature, small uterus, puffy fingers
- (iii) Klinefelter's syndrome

Cause Presence of an additional copy of X-chromosome resulting in the karyotype 44+XXY **Symptoms**

- (a) Sex of the individual is masculine but possess feminine characters
- (b) Gynaecomastia, i.e., development of breasts
- (c) Poor beard growth and often sterile
- (d) Feminine pitched voice
- 32 **(c)**

The recessive genes located on X-chromosome in humans are always expressed in males because a female may be homozygous or heterozygous, while male is always hemizygous (*i.e.*, only one allele is present).

33 **(b)**

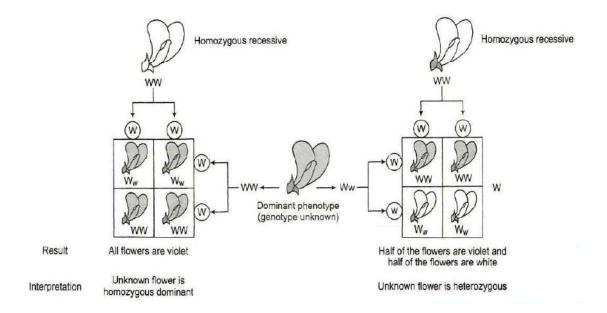
Strength of linkage between two genes inversely proposed to the distance of two gene means if two genes are closely placed then they have high percentage of linkage and if they placed for then there is low percentage of linkage.

Linkage and recombination are two opposite phenomena. In linkage two genes remains united and in recombination the two get apart due to crossing over during gametogenesis (meiosis)

34 **(d)**

Fruitfly is excellent model for genetics because

- (i) Life cycle is very short (14 days)
- (ii) Can be feed on simple synthesis medium
- (iii) Single mating produces large number of progeny
- (iv) Clear differentiation of sexes
- (v) Variation can be seen simply by hand lens or simple microscope
- (vi) They (fruitfly) are easy to handle

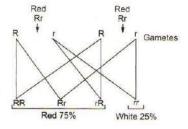

36 **(b)**

If both parents have blood group-AB then the possible blood groups of children are A, B and AB.

37 **(c)**

Test cross is a cross in which the dominant F_1 -plant crosses with the homozygous recessive parents plant.

Crossing of F_1 (dominant phenotype) to any one of the parent called back cross and when phenotype of crossing parent is recessive than this is called test cross. The progeny of such cross can easily be analysed to predict the genotype of test organism

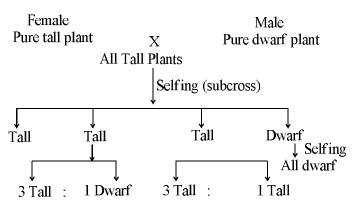


38 **(d)**

The ability of a gene to have multiple effects is known as **pleiotropy** and this phenomenon pleiotropism. The basis of pleiotropy is the interrelationship between the metabolic pathways that may contribute towards different phenotypes.

39 **(c)**

When two pea plants having red (dominant) coloured flowers with unknown genotype are crossed, the 75% red and 25% white flowered plants will be produced by following the law of Mendel. This is possible only if the parents are heterozygous.



41 **(a)**

 $\frac{1}{4}$ th and $\frac{3}{4}$ th.

Mendel cross-pollinated a pure tall pea plant (100-120 cm hight) and a pure dwarf pea plant. (only 22 to 44 cm hight). He called them parental generation, expressed now-a-days by symbol P.

This hybridization popularly called as monohybrid cross

This three generations of pea plants after crossing a pure tall plant with a dwarf one. The plants of F_1 -generation are all tall, of F_2 -generation three tall and one dwarf. One third of the tall plants are pure, while the remaining behave as hybrids

 F_1 -generation Seeds collected from the parental generation called first filial generation or F_1 -generation

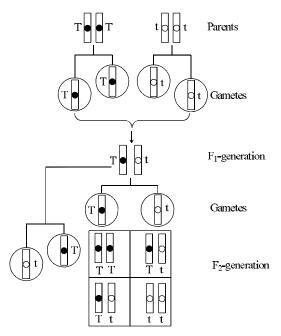
 F_2 -generation F_1 -plants pollinated among them self (self breeding or inbreeding) and seed produced by F_1 -plants called F_2 -generation. They were in ratio 3:1 (three tall and one dwarf).

 F_3 -generation Mendel allowed F_2 -plant to form seed by self-pollination called F_3 -generation. Mendel observed that tall and dwarf plant behave differently

- (i) Dwarf plant produced dwarf plant on self-pollinated
- (ii) In tall plants one third plants breed true so they were pure
- (iii) Other two third plant behave like parents and give tall to dwarf plants 3:1 indicate that their parents have dwarf genes also
- 42 **(b**)

Night blindness is nutritional deficiency disease generally happens due to deficiency of vitamin-A

43 **(a)**


The genotypic ratio of monohybrid cross is 1:2:1, whereas the phenotypic ratio is 3:1.

9:3:3:1 is the phenotypic ratio of dihybrid cross (the cross made to study the inheritance of two pairs of factors or alleles of two genes).

44 **(c)**

Chromosomal Theory of Inheritance

Walter Sutton and Theodore Boveri noted that the behavior of chromosomes was parallel to the behaviour of genes and used chromosome movement to explain Mendel's laws.

Law of segregation interpreted on the basis of genes or factors (solid and hollow) situated on two homologous chromosomes.

Comparison between the Behaviour of Chromosomes and Genes

Chromosomes	Genes	
Segregate at the	Segregate of	
time of gamete	gamete	
formation such	formation and	
that only one of	only one of	
each pair is	each pair is	
transmitted to a	transmitted to	
gamete	a gamete	
Independent	One pair	
pairs segregate	segregates	
independently	independently	
of each other	of another pair	

Sutton and Boveri argued that the pairing and separation of a pair of chromosomes would lead to the segregation of a pair of factors they carried. Sutton united the knowledge of chromosomal segregation with Mendelian principles and called it the chromosomal theory of inheritance.

Experimental verification of chromosomal theory of inheritance was given by Thomas Hunt Morgan. Morgan worked with tiny fruitfly (*Drosphila melanogaster*)

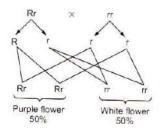
45 **(b)**

The females have **homozygous** XX sex chromosomes, while males have **heterozygous** XY-chromosome. Y-chromosome is shorter than X-chromosome.

46 **(b)**

The **Down's syndrome** (Mongolian idiocy) arises due to **trisomy** of **21**st **chromosome**, *i.e.*, total 47 chromosomes will present in such person. The main features are mental deficiency, short stature, round face, flaccid muscles, protruding tongue, etc.

47 **(a)**

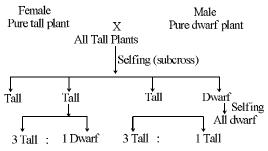

ZW-ZZ system of sex determination occurs in certain insects (gypsy moth) and vertebrates such as fishes, reptiles and birds and plants such as *Fragaris elatior*.

48 **(a)**

The Sudden and heritable change in the genetic make up of an individual is called **mutation**. The term mutation was introduced by Hugo de Vries.

49 (c)

According to law of purity of gametes, when the gametes are formed, they carry only one allele of the gene considered.



50 **(d)**

The recessive trait shown by $\frac{1}{2}$ and $\frac{1}{3}$ generation both but firstly it was observed in $\frac{1}{2}$ generation.

Mendel cross-pollinated a pure tall pea plant (100-120 cm hight) and a pure dwarf pea plant. (only 22 to 44 cm hight). He called them parental generation, expressed now-a-days by symbol P.

This hybridization popularly called as monohybrid cross

This three generations of pea plants after crossing a pure tall plant with a dwarf one. The plants of F_1 -generation are all tall, of F_2 -generation three tall and one dwarf. One third of the tall plants are pure, while the remaining behave as hybrids

 $\mathbf{F_1}$ -generation Seeds collected from the parental generation called first filial generation or $\mathbf{F_1}$ -generation

 F_2 -generation F_1 -plants pollinated among them self (self breeding or inbreeding) and seed produced by F_1 -plants called F_2 -generation. They were in ratio 3:1 (three tall and one dwarf).

 ${f F_3}$ -generation Mendel allowed ${f F_2}$ -plant to form seed by self-pollination called ${f F_3}$ -generation. Mendel observed that tall and dwarf plant behave differently

- (i) Dwarf plant produced dwarf plant on self-pollinated
- (ii) In tall plants one third plants breed true so they were pure
- (iii) Other two third plant behave like parents and give tall to dwarf plants 3 : 1 indicate that their parents have dwarf genes also
- 51 **(b)**

Selfing of F_1 hybrids in dihybrid cross gives 9:3:3:1 ratio of progeny. The gametes

produced by Aa, Bb are of four types (AB, aB, Ab, ab).

52 **(a)**

Haplopappus gracilishas lowest number of chromosomes out of the given options.

53 **(a)**

Scientist later discovered or found that the gene for seven characters that were took by Mendel in his experiment is present on four chromosome but Mendel was Lucky because seven gene were not linked

54 **(c)**

Drosophila have 3 pairs of autosome and one pair sex chromosome. Sex determination in *Drosophila* is exactly similar to the human beings, *i.e.*, female is homogenetic and male is heterogametic. In the given diagrams, 'A' belongs to the female *Drosophila* and 'B' belongs to the male *Drosophila*

1 indicates = X-chromosomes in female *Drosophila*

2 indicates = Autosome

3 indicates = X-chromosomes in male Drosophila

4 indicates = Y-chromosome in male *Drosophila*

55 **(d)**

In domesticated fowls, the sex of progeny depends on the type of egg rather than sperm, as two different types of gametes are produced by females (ZW), while males have a same pair of sex chromosome (ZZ).

56 **(a)**

Given example is the example of inversion mutation in which the order of genes in a chromosome get inverted

57 **(a)**

Persons having Rh factor is called Rh⁺ and without Rh factor Rh⁻. Rh⁺ is **dominant** over Rh⁻.

58 **(b)**

Blood type 'O' has no igen but both types of antibodies 'a' and 'b'. The person with blood type 'O' is universal donor.

59 **(c)**

Law of independent assortment discovered by Mendel because all of his selected traits were present on the different chromosomes. None of his trait present on the same chromosome. If Mendel had studied 7 traits using plant of 12 chromosome instead of 14 then it is most probable that he would have not discovered the law of independent assortment

60 (c)

Thalassaemia have two major kinds

 α -thalassaemia and β -thalassaemia.

According to defective gene in α or β -chain of haemoglobin.

Thalassaemia

- (i) It is an autosome-linked recessive disesase
- (ii) It occurs due to either mutation or deletion resulting in reduced rate of synthesis of one of globin chains of haemoglobin
- (iii) Anaemia is the characteristic of this disease
- (iv) Thalassaemia is classified into two types
- 7. α -thalassaemia Production of α -globin chain is affected. It is controlled by the closely linked genes HBA1 and HBA2 on chromosome 16. It occurs due to mutation or deletion of one or more of the four genes.
- 8. **\beta-thalassaemia** Production of β -globin chain is affected. It occurs due to mutation of

one or both HBB genes on chromosome 11

61 **(c)**

In silkworm (insect), **female** has **XY** and **male** has **XX** type of sex chromosomes. This is essentially opposite to that of mammals.

62 **(b)**

The X-chromosome linked disease never passed on from father to son because the X-chromosome of father go to the daughter during inheritance.

63 **(d)**

Law of independent assortment does not applicable when the gene of different character occupy on the same homologous chromosome, *i.e.*, linked gene.

64 (b)

A-Meiosis; B-Allele pair

65 **(c**

Genetic map is a diagram, which shows the relative position of genes on a chromosome. **Strutevant** in 1911 prepared the first genetic map of two chromosomes of fruitfly.

66 **(c)**

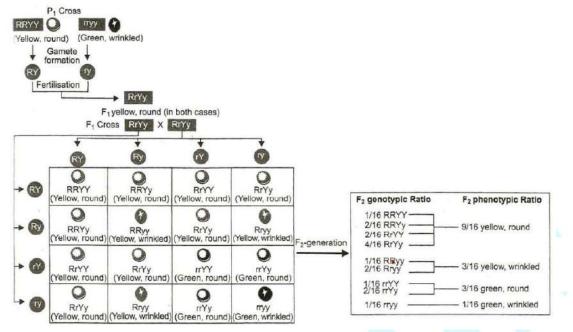
Haemophilia and red green colour blindness, both are sex linked recessive gene on 'X' chromosome.

Body height is an example of polygenic inheritance.

Rhesus blood group is based on the presence or absence of

Rh-protein on the surface of RBC. Phenylketonuria (PKU) is a recessive autosomal variation.

67 **(a)**


Human's have 22 pairs of autosomes and one pair of sex chromosome

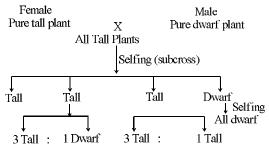
68 **(a)**

There are evidences that the gene for cytoplasmic male sterility particularly in maize reside in **mitochondria**.

69 **(d)**

In most cases if there is a change in genotype than it ultimately leads to change in phenotype also.

A dihybrid cross in pea plant between yellow round (smooth) seeded and green wrinkled seeded plant. The cross proves the principle of independent assortment


71 **(a**)

A cross in which parents differ in a single pair of contrasting character is called monohybrid cross. From the monohybrid cross the Mendel gave law of segregation, law of paired factor and law of dominance.

Law or Principle of Dominance

In heterozygous individuals or hybrids a character is represented by two contrasting factors called alleles or allelomorphs. Out of the two contrasting alleles. Only one is able to express its effect in the individual. It is called dominant factor or dominant allele.

The other which does not show its effect in the heterozygous individual is called recessive factor or recessive allele. The cross between the pure tall and pure dwarf gives all progeny (F_1) tall.

The character shown by F₁ called dominant character

72 **(a)**

Genic Balance Theoryof Sex The theory of genic balance given by Calvin Bridges (1926) states that instead of XY-chromosomes sex is determined by the genic balance or ratio between X-chromosomes and autosome genomes

The theory is basically applicable to *Drosophila melanogaster* over, which bridges worked. He found that the genic ratio X IA of 1.0 produces fertile females whether the files have XX + 2A or XXX + 3A chromosome complement. A genic ration (X I A) of 0.5 forms a male fruitfly. This occurs in XY + 2A as well as XO + 2A

Chromosome	X/A Ratio	Sexual
------------	-----------	--------

Complement		Morphology
XXX + 2A	3/2 or 1.5	Metafemale
XXX + 3A	3/3 or 1.0	Female
XX + 2A	2/2 or 1.0	Female
XX + 3A	2/3 or 0.67	Inter sex
X X X +4A	3/4 or 0.75	Inter sex
XO + 2A	1/2 or 0.5	Male
XY + 2A	1/2 or 0.5	Male
X Y +3A	1/3 or 0.33	Metamale

73 **(b)**

Rr and red because the R is dominant r so, the F₁-hybrid will be red

74 **(a)**

Grasshopper is an example of XO type of sex determination in which the male have only one X-chromosome besides the autosomes, whereas females have a pair of X-chromosomes (2A + XX).

75 **(d)**

9:3:3:1.

Law of Independent Assortment

Mendel also worked with and crossed pea plants that different in two characters/factor. He crossed between pea plant that has seeds with yellow colour and round shape and other that has seeds of green colour and wrinkled shaped.

Ratio appeared as 9:3:3:1 such ratio appeared for several character that Mendel studied 9/16 = Yellow round 3/16 = Yellow wrinkled

3/16 = Green yellow 1/16 = Green wrinkled

Based on such observation Mendel concluded second law of inheritance called law of independent assortment.

According to this principle or law the two factors of each character assort or separate independent of the factors of other characters at the time of gamete formation and get randomly re-arranged in the offspring producing both parental and new combination of traits.

Thus, the phenotypic ratio of a dihybrid cross is 9:3:3:1. The occurrence of four types of plants (more than parental types) in the F_2 generation of dihybrid cross shows that the factors of each of the two characters assort independent of the others as if the other pair of factors are not present. It can also be proved by studying the individual characters of seed colour and seed texture sepraterly.

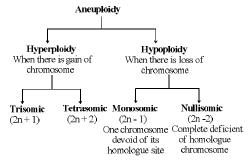
Seed colour Yellow (9+3=12): Green (3+1=4) or 3:1

Seed Texture Round (9+3=12): Wrinkled (3+1=4) or 3:1

The result of each character similar to monohybrid ratio. Generally, the dihybrid cross used to study the independent assortment of genes

76 **(d)**

Trisomy stands for 2n+1.


Chromosomal disorders are caused due to excess, absence or abnormal arrangement of one or more chromosomes.

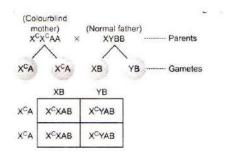
Sometimes the chromatids fail to segregate during cell division, resulting in gain or loss of a chromosome. This is called **aneuploidy**

Aneuploidy is also called heteroploidy

Aneuploidy is of two kinds

(i) Hyperploidy (ii) Hypoploidy

77 **(a)**


The genotype of Klinefelter syndrome is XXY. In this there is one extra X-chromosome. This extrachromosome comes when there is non-disjunction of X-chromosome in ova-or-sperm fuses with Y or X-chromosome of sperm or ova resulting XXY genotype

78 **(a)**

Colour blindness is caused by recessive sex-linked gene carried by X-chromosome. So, in male, one recessive gene is sufficient for its expression, *i.e.*, (X^CY) but female needs two recessive gene (X^CX^C) for the expression of colour blindness.

Mother will colourblind with A blood group and father normal with blood group-B as—

So, all the sons will be colourblind with AB blood group.

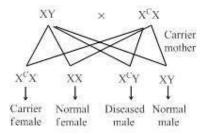
79 **(b)**

Deletion and duplication occurs in homologous chromosomes usually during meiosis. In deletion, some part of chromosome is lost while in duplication a piece of chromosome is copied next to an identical section, thus, increasing chromosome length.

80 (b)

The husband is heterozygous for Rh⁺so, it will (Rh rh) and wife is homozygous of Rh⁻ so, it will have genetic alleles (rh rh):

So, 50% homozygous Rh⁻ children will be born.


81 **(a)**

Mendel could not find out linkage because all of his experimental characters of pea were not linked. They were present far apart from each other

82 **(a)**

Bleeder's disease.

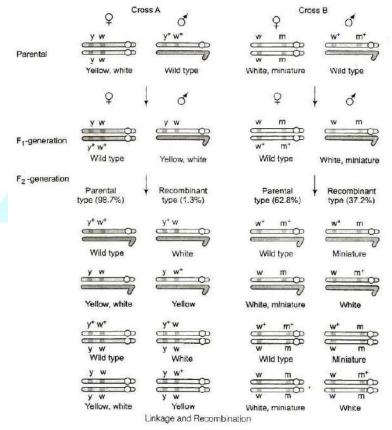
Haemophilia is also called Bleeder's disease. It is a sex linked recessive disorder. It transmit from carrier female to male progeny

83 (a)

Complete linkage.

Linkage and Recombination

Morgan carried out several dihybrid crosses in *Drosophila* to study genes that were sex linked. The crosses were similar to the dihybrid crosses carried out by Mendel in peas.


He observed that when two genes were grouped on the same chromosome, same genes are highly linked of associated and show low recombination.

When the genes are clearly present linked they show higher recombination.

Morgan attributed this due to the physical association or linkage of the two genes and coined the term linkage to describe this physical association of genes on a chromosome and the term recombination to describe the generation of non-parental gene combinations.

His student Alfred Sturtevant used the frequency of recombination between gene pairs on the same chromosome as a measure of the distance between genes and 'mapped' their position on the chromosome.

Morgan hybridized yellow bodied and white eyed females with brown bodied and red eyed male (wild type) (cross-A) and inter-crossed their F_1 -progeny

In the incomplete linkage we get some recombinant progeny but in complete linkage the recombinant progeny percentage is very less as compared to incomplete linkage

With regard to transfusions of whole blood or packed red blood cells, individuals with O type negative blood are often called universal donors, and those with type AB positive blood are universal recipients, however, these terms are only generally true with respect to possible reactions of the recipients anti-A and anti-B antibodies to transferred red blood cells.

85 **(c)**

The individuals suffering from Klinefelter's syndrome disease show trisomy of X-chromosomes, *i.e.*, they contain 47 chromosomes in total with 22 autosomes (XXY).

86 **(c)**

Dominant and recessive were expressed or appeared together separately. This shows that there is no mixing of characters means non-blending of character

87 **(a)**

Sex-limited and sex-linked genes are located on autosomes.

88 (b)

Types of gametes = 2^n

n=Number of heterozygotes considered, i.e., monohybrid cross(n=1), dihybrid cross(n=2), trihybrid cross(n=3) and so on. AA BB CC × aa bb cc is a trihybrid cross, therefore, different types of gametes are

$$= 2^{n}$$

$$= (2)^{3}$$

$$= 2 \times 2 \times 2 = 8$$

89 **(b)**

The **point mutations** involves alterations in the structure of gene by altering the structure of DNA. Point mutations are of two types- (i) base pair substitution and (ii) frameshift mutation.

90 **(b)**

Type A blood group receive blood A and O type.

91 **(d)**

Pink colour flower is the intermediate character. It is obtained maximum by crossing of homozygous red and white flower

Example (Red) (White)

$$RR \times rr$$

Rr (pink) - All progeny have pink colour

92 **(a)**

Triticale is the hybrid variety, which is obtain by crossing between wheat and rye. '*Triti*' is for wheat and 'cale' is for rye together it is called *Triticale*. Its production value is higher than both wheat (*Triticum*) and rye (*Secale*)

93 **(c**)

Mendel found that tallness, round shape of seed, yellow colour of seed, purple colour of flower, green colour of pod, inflated nature of pod and axial position of flower were domianant over dwarfness, wrinkled seed, green colour of seed, white colour of flower, yellow colour of pod, constricted nature of pod and terminal position of flower.

94 **(a)**

Garden pea is the common name for *Pisum sativum* which was the experimental material of Mendel's experiments

95 **(a)**

Mutations can be induced by a number of agents called mutagens.

Physical mutagen- UV rays, X-rays, cosmic rays, high temperature.

Chemical mutagens- 5 bromouracil, proflavin.

96 **(c)**

The observable characteristics of an organism is called phenotype. These are determined by its genes

97 **(b)**

Carrier organism refers to an individual, which carries a recessive gene that is not expressed.

98 **(b)**

X = 1, 3Y = 4.

Drosophila have 3 pairs of autosome and one pair sex chromosome. Sex determination in *Drosophila* is exactly similar to the human beings, *i.e.*, female is homogenetic and male is heterogametic. In the given diagrams, 'A' belongs to the female *Drosophila* and 'B' belongs to the male *Drosophila*

1 indicates = X-chromosomes in female *Drosophila*

2 indicates = Autosome

3 indicates = X-chromosomes in male *Drosophila*

4 indicates = Y-chromosome in male *Drosophila*

99 **(c)**

In the given case, embryo contains one Barr body and one F-body, which corresponds to XXY related to Klinefelter's syndrome.

100 **(b)**

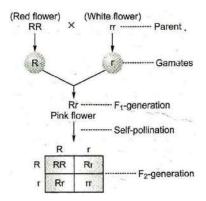
The chances of fifth child to be albino in previous question would be one in four

1)	a	2)	b	3)	b	4)	d
5)	a	6)	a	7)	b	8)	d
9)	b	10)	C	11)	a	12)	d
13)	d	14)	b	15)	a	16)	b
17)	a	18)	a	19)	a	20)	c
21)	a	22)	c	23)	b	24)	d
25)	c	26)	c	27)	b	28)	b
29)	a	30)	b	31)	b	32)	d
33)	c	34)	c	35)	d	36)	c
37)	a	38)	a	39)	c	40)	b
41)	d	42)	d	43)	b	44)	d
45)	c	46)	d	47)	b	48)	c
49)	a	50)	c				

- 1 (a) Genotypes of the parents shall be I^A i and I^B i.
- 2 (b)Aneuploidy is the deletion or addition of few chromosomes from the original genomes.
- 3 **(b)**Genotypes of C and D are XX^c and XY respectively.
- 4 **(d)**

Allosomes, heterosomes are the synonymous used for sex chromosomes

5 **(a)**


Cri-du-chat syndrome also known as chromosome 5p deletion syndrome, 5p minus syndrome or Lejeune's syndrome is a rare genetic disorder due to a missing part of chromosome-5. This syndroms is associated with malformation of the larynx.

6 **(a)**

During his experiments, Mendel called factors something unchanged that pass from parent to offspring through the gametes over successive generation

7 **(b)**

In case of incomplete dominance, when pink flowers of F_1 -generation, are self-pollinated, they develop red(RR), pink (Rr) and white(rr) flowers in the ratio 1:2:1, respectively, genotypically as well as phenotypically.

Genotypic ratio—RR: Rr: rr

Phenotypic ratio—Red: Pink: White

1:2:1

8 **(d)**

Genome of model organisms

Organism	Number of	Numbe
	Bass Pair	rof
		Gene
Bacteriop	10	-
hage	thousand	
Escherichi	4.7 million	4,000
a coli		
Saccharo	12 million	6,000
myces		
cerevisiae		
Caenohab	97 million	18,000
ditis		
elegans		
Drosophil	180 million	13,00
а		
melanoga		
ster		
Human	3 million	30,000
Lily	106 billion	-

9 **(b)**

Albinism is caused by the absence of enzyme **tyrosinase**, which is necessary for the synthesis of melanin.

10 (c)

In human beings, ABO blood grouping is an example of dominance, codominance and multiple alleles.

11 **(a)**

In sickle-cell anaemia only one nucleotide substitution takes place from T to A. Genetic or chromosomal symbol used for person who is having sickle-cell anaemia Ps — Hb^s Hb^s.

Sickle-cell Anaemia

- (i) It is an autosome-linked recessive trait
- (ii) The disease is controlled by a single pair of allele Hbs and Hbs
- (iii) Only the homozygous individuals for Hb^s, i.e., Hb^sHb^s show the diseased phenotype
- (iv) The heterozygous individuals are carriers (Hb^AHb^S)
- (v) Due to point mutation, glutamic acid (Glu) is replaced by valine (Val) at the sixth position of β -globin chain of haemoglobin molecule
- (vi) A single base substitution at sixth codon of the beta globulin gene from GAG to GUG. GAG code for glutamic acid and GUG code for valine.
- (vii) Hb^S behaves as normal haemoglobin except under the oxygen stress where erythrocytes lose their circular shape and become sickle-shaped. As a result, the cells cannot pass through narrow capillaries. Blood capillaries are clogged and thus, affect blood supply to different organs

12 **(d)**

A cell or an organism having two copies of a single genome (with chromosome number 2x) is called **diploid.**

13 **(d)**

All the given statements are correct.

Occasionally a single gene product may produce more than one effect. For example starch synthesis in pea seeds is controlled by one gene. It has two allele (B and b). Starch is synthesized effectively by BB and have bigger grains. In contrast bb homozygous have lesser efficiency in starch synthesis and produce smaller grains

In starch synthesis gene following condition to seen

BB - rounded (due to more starch synthesis)

bb - wrinkled (due to less starch synthesis)

Bb – in between rounded of wrinkled size. It produce starch of intermediate quantity between BB to bb homozygous condition. So, it is incomplete dominance.

Therefore, dominance is not an autonomous feature of a gene or the product that it has information for. It depends as much on the gene product and the production of a particular phenotype from this product as it does on the particular phenotype that we choose to examine, in case more than one phenotype is influenced by the same gene

14 **(b)**

When Rh⁺mother carries Rh⁺ foetus, in the first pregnancy no serious problem occurs because Rh⁺antigen arises in child's blood and the concentration of antibodies produced in mother's blood due to immunization by child's Rh⁺ antigen will be rather low.

15 **(a)**

Blood group-A has antigen-A and antibody-b.

16 **(b)**

Chromosomes are of two type, **autosomes** and **sex chromosomes** (allosomes). Y-chromosome is the sex chromosome.

17 **(a)**

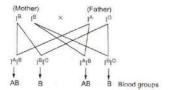
Law of Independent Assortment

Mendel also worked with and crossed pea plants that different in two characters/factor. He crossed between pea plant that has seeds with yellow colour and round shape and other that has seeds of green colour and wrinkled shaped.

Ratio appeared as 9:3:3:1 such ratio appeared for several character that Mendel studied

9/16 =Yellow round 3/16 =Yellow wrinkled

3/16 = Green yellow 1/16 = Green wrinkled


Based on such observation Mendel concluded second law of inheritance called law of independent assortment.

According to this principle or law the two factors of each character assort or separate independent of the factors of other characters at the time of gamete formation and get randomly re-arranged in the offspring producing both parental and new combination of traits.

Thus, the phenotypic ratio of a dihybrid cross is 9:3:3:1. The occurrence of four types of plants (more than parental types) in the F_2 generation of dihybrid cross shows that the factors of each of the two characters assort independent of the others as if the other pair of factors are not present. It can also be proved by studying the individual characters of seed colour and seed texture sepraterly.

Seed Colour Yellow (9+3=12): Green (3+1=4) or 3:1**Seed Texture** Round (9+3=12): Wrinkled (3+1=4) or 3:1 The result of each character similar to monohybrid ratio. Generally, the dihybrid cross used to study the independent assortment of genes

18 **(a)**

Thus, possible groups are :**AB** and **B**.

19 **(a)**

Recessive alleles influence the appearance of the phenotype only when they are in homozygous condition.

Mendel did not find the blending inheritance in F_2 -generation of a Mendelian monohybrid cross the tall and dwarf traits were identical to their parental types and doesn't show blending

20 **(c)**

The eggs are produced by meiosis, *i.e.*, reduction division. So, the egg contains one X-chromosome when released from ovary.

21 **(a)**

Variation.

Variation is the degree of difference in the progeny and between the progeny and the parents. The term variation is also used for a single difference in a trait

22 **(c)**

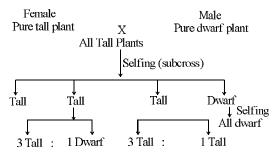
Pleiotropic gene is one which produces or controls more than one effects or characters. In other words, we can say that pleiotropic gene produces a major phenotypic trait and with that also influences some other phenotypic traits, *e.g.*, lethal genes, which are known to control the menifestation of some phenotypic trait alongwith affecting the viability of organism.

23 **(b)**

A-Dizygotic twins are the twins, which results from the fusion of two sperm with two ova. It is very rare in case of human beings.

B-Monozygotic twins are the twins, which results from the fusion of one sperm with one ova leads to zygote. This zygote later on divide and give rise to two or more zygote. In this cells of all progeny have the identical genome

25 **(c)**


H J Muller was awarded Nobel Prize in 1946 for his discovery of the production of mutations by X-ray irradiation.

26 **(c)**

Law or Principle of Dominance

In heterozygous individuals or hybrids a character is represented by two contrasting factors called alleles or allelomorphs. Out of the two contrasting alleles. Only one is able to express its effect in the individual. It is called dominant factor or dominant allele.

The other which does not show its effect in the heterozygous individual is called recessive factor or recessive allele. The cross between the pure tall and pure dwarf gives all progeny (F_1) tall.

The character shown by F₁ called dominant character

27 **(b**)

It is metaphase

28 **(b)**

When heritable alterations occur in a very small segment of DNA molecule, *i.e.*, a single nucleotide or nucleotide pair then this type of mutations are called **point mutations**.

29 **(a)**

Dihybrid genotype ratio. 1:2:1:2:4:2:1:2:1 total nine types of genotype and four types of phenotype

30 **(b)**

In Morgan's experiment on linkage, the percentage of white eyed, miniature-winged recombinants in F^2 generation is 37.2%. It is due to incomplete linkage, where two linked genes are sufficiently apart and the chances of their separation are quite good.

31 **(b)**

Dihybrid cross.

Law of Independent Assortment

Mendel also worked with and crossed pea plants that different in two characters/factor. He crossed between pea plant that has seeds with yellow colour and round shape and other that has seeds of green colour and wrinkled shaped.

Ratio appeared as 9:3:1 such ratio appeared for several character that Mendel studied

9/16 = Yellow round 3/16 = Yellow wrinkled

3/16 = Green yellow 1/16 = Green wrinkled

Based on such observation Mendel concluded second law of inheritance called law of independent assortment.

According to this principle or law the two factors of each character assort or separate independent of the factors of other characters at the time of gamete formation and get randomly re-arranged in the offspring producing both parental and new combination of traits.

Thus, the phenotypic ratio of a dihybrid cross is 9:3:3:1. The occurrence of four types of plants (more than parental types) in the F_2 generation of dihybrid cross shows that the factors of each of the two characters assort independent of the others as if the other pair of factors are not present. It can also be proved by studying the individual characters of seed colour and seed texture sepraterly.

Seed colour Yellow (9+3=12): Green (3+1=4) or 3:1

Seed Texture Round (9+3=12): Wrinkled (3+1=4) or 3:1

The result of each character similar to monohybrid ratio. Generally, the dihybrid cross used to study the independent assortment of genes

32 **(d)**

Dominant allele shows its effect in homozygous or heterozygous condition and recessive allele shows its effect only in homozygous condition. Given pedigree chart possible only when the male parent in hotorozygous for hymordaetyle. If it is homozygous for

hyperdactyle then its son would also be the hyperdactyle as well

33 **(c)**

Mutation happens by itself. It is the spontaneous phenomena

34 **(c)**

The **centromere** lies within a thinner segment of chromosome, the **primaryconstriction**.

35 **(d)**

Mutations are not acquired. They are selected by the nature. Gametes fuse with regard to which alleles they carry

36 **(c)**

Mendel's knowledge background was mathematics and physics. In Vienna university he studied botany and physics. Later he became the teacher of physics and natural sciences. Main reasons for Mendel's success were.

- (i) Mendel took those traits, which were not linked
- (ii) Mendel choose distinctive contrasting pairs
- (iii) Mendel took one or two character at a time
- (iv) Pea plant is ideal for controlled breeding
- (v) Mendel kept complete record of every cross
- (vi) Mendel used statistical method and law of probability (vi) Mendel used statistical method and law of probability
- 37 **(a)**

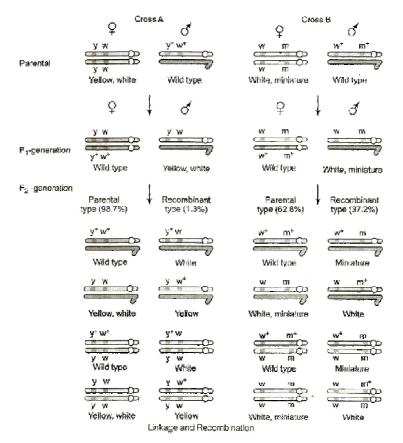
Insect, grasshopper, cockroaches and bugs have XX and XO type of sex determination in which XO happens to be male and XX happens to be female

38 **(a)**

Linkage and Recombination

 $Morgan\ carried\ out\ several\ dihybrid\ crosses\ in\ \textit{Drosophila}\ to\ study\ genes\ that\ were\ sex\ linked.$

The crosses were similar to the dihybrid crosses carried out by Mendel in peas.


He observed that when two genes were grouped on the same chromosome, same genes are highly linked of associated and show low recombination.

When the genes are clearly present linked they show higher recombination.

Morgan attributed this due to the physical association or linkage of the two genes and coined the term linkage to describe this physical association of genes on a chromosome and the term recombination to describe the generation of non-parental gene combinations.

His student Alfred Sturtevant used the frequency of recombination between gene pairs on the same chromosome as a measure of the distance between genes and 'mapped' their position on the chromosome.

Morgan hybridized yellow bodied and white eyed females with brown bodied and red eyed male (wild type) (cross-A) and inter-crossed their F_1 -progeny

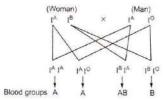
39 **(c)**

In Mendel's dihybrid cross out of 16 progenies, 6 are recombinants so in case of 1280 progenies, the recombinants are

$$=\frac{1280\times6}{16}$$
 = 480 progenies.

40 **(b)**

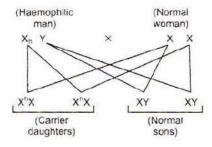
A child of blood group-O cannot have parents of AB and O blood groups.


41 **(d)**

Rh factor was discovered by Landsteiner and Wiener (1940) in Rhesus monkey (*Macacarhesus*). It is found in man and rhesus monkey only. Erythroblastosis foetails occurs when the mother is Rh⁺, father is Rh⁺ and foetus is Rh⁺.

42 **(d**)

Monosomics (2n-1) one chromosome less then diploid set of somatic chromosome number.


43 **(b)**

In this case, progeny with blood group-B is produced only when man is heterozygous, *i.e.*, I^AI^O.

44 (d)

The children of a haemophilic man and normal woman will be all normal. Neither sons nor daughters (only carrier) will be haemophilic

45 **(c)**

A set of three alleles present on chromosome number 9 is responsible for the four blood groups.

46 **(d)**

The gene for colour blindness is present on X-chromosome. If one X-chromosome of female have gene for colour blindness, this will be carrier (normal) but if a male have gene on X-chromosome it will be colourblind (since only one X-chromosome is present in male).

47 **(b)**

Cri-du–chat syndrome is caused by a conspiuous deletion in the short arm of $5^{\rm th}$ chromosome. These individuals asre severly impaired and their cat-like crying give the syndrome its name.

48 **(c)**

Inversion invoves a reverse order of genes in part of chromosome. ABCDEFGH has been shown in figure, where breaks occur between A and E. Reunion at broken ends may leads to inversion of the segment BCD into DCB. Indeletion, a section of chromosome is lost.

50 **(c)**

Ischihara chart is used to detect colour blindness.