EXF	CRCISE-I (Conceptu	ual Questions)		Build Up Your Understanding
			Work	
1.	A force $\hat{F} = (2\hat{i} - \hat{j} - \hat{j})$	+ 4k̂) N displaces a p	article upto $\hat{d} = (3\hat{i} + 2)$	$\hat{j} - \hat{k}$)m, calculate work done.
	(1) Zero	(2) 8 J	(3) 4 J	(4) 12 J
2.	A body of mass m $\hat{F} = (3\hat{i} + 2\hat{j} + 4\hat{k})N$	is displaced from po	int A(3, 1, 2) to point 1 the force.	B(4, 3, 3) under the effect of a force
	(1) 57 J	(2) 11 J	(3) 0	(4) 22 J
3.	A force $F = (3x^2 + from x = 0 to x = 5)$ (1) 35 J	+ 2x – 7) N acts on m. The work done by (2) 70 J	a 2 kg body as a resu y the force will be- (3) 115 J	It of which the body gets displaced
4	(1) 55 C			() 2,00
4.	water. The person i	m is standing on one moves from one end	to another and stops.	Work done by normal force is -
	(1) MgL	(2) mgL	(3) $\frac{\text{mMgL}}{\text{M} + \text{m}}$	(4) 0
5.	A 2 kg mass lying done by the normal (1) 0	on a table is displa reaction will be - (2) 100 joule	ced in the horizontal (3) 100 erg	direction through 50 cm. The work (4) 10 joule
6.	A body of mass M distance h. The wor	tied to a string is lov rk done by the string	wered at a constant acc	celeration of (g/4) through a vertical
	(1) $\frac{3}{4}$ Mgh	(2) $\frac{1}{4}$ Mgh	$(3) \frac{-3}{4} \text{Mgh}$	$(4) \ \frac{-1}{4} \text{Mgh}$
7.	Find work done by	friction for displace	ment 'S' ?	
	μκ α	F m→S		
	(1) $\mu_k(mg + Fsin\theta)$ (3) $\mu_k(mg - Fsin\theta)$.	.S .S	(2) $-\mu_k(mg + Fsi)$ (4) $-\mu_k(mg - Fsi)$	nθ).S nθ).S
8.	Calculate the work 100 F(N) 4 -50	done for following I $ \begin{array}{c} 6 \\ d(m) \\ \end{array} $	F-d curves (P) 100 L	

Edubull

A force acts $\mathbf{\dot{F}} = (5\hat{i} + 4\hat{j})$ N on a body and produced a displacement $\mathbf{\dot{S}} = (-6\hat{i} + 5\hat{j} + 3\hat{k})$ m. 13. The work done will be (1) 30 J (2) 40 J (3) 10 J (4) 20 J

14. A force F acting on an object varies with distance x as shown here. The work done by the force in moving the object from x = 0 to x = 6m is :-

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

9.

10.

11.

12.

Mob no. : +91-9350679141

Website : www.edubull.com

- **22.** If K.E. body is increased by 100%. Then% change in 'P'. (1) 50% (2)41.4% (3) 10% (4) 20%
- **23.**2 particles of mass 1 Kg and. 5 kg have same momentum, calculate ratio of their K.E.
(1) 5:1(2) 25:1(3) 1:1(4) 10:1
- 24. The graph between $\sqrt{E_k}$ and $\frac{1}{p}$ is $(E_k = \text{kinetic energy and } p = \text{momentum})$

25. The graph between kinetic energy E_k and velocity V is-

26. Velocity-time graph of a particle of mass 2 kg moving in a straight line is as shown in figure. Work done by all the forces on the particle is :

- 27. The kinetic energy of a body becomes four times of its initial value. The new linear momentum will be :-
 - (1) Four times the initial value
 - (3) Twice the initial value

(2) Thrice the initial value(4) Same as the initial value

28. A 0.5 kg ball is thrown up with an initial speed 14m/sand reaches a maximum height of 8.0 m. How much energy is dissipated by air drag acting on the ball during the ascent ?

(1) 19.6 J	(2) 4.9 J	(3) 10 J	(4) 9.8 J	
Power by: VISIONet Info Solution	on Pvt. Ltd			
Website • www.edubull.com	Moh no	· +91-9350679141		

29.	If the kinetic energy of a body is double of its initial kinetic energy, then the momentum of the body will be :-							
	(1) $2\sqrt{2}$ times	(2) $\sqrt{2}$ times	(3) $\frac{1}{\sqrt{2}}$ times	(4) none of these				
30.	A ball of mass 2 kg a After a fall of 30 feet	and another of mass 4 each towards earth, th	kg are dropped togeth eir respective kinetic e	her from a 60 feet tall building. nergies will be in the ratio of:				
	(1) 1 : 4	(2) 1 : 2	(3) 1 : $\sqrt{2}$	(4) $\sqrt{2}$: 1				
31.	Two bodies of mass 1	l kg and 4 kg have equ	al K.E. then the ratio o	of their momentum is :-				
	(1) 2 : 1	(2) 1 : 2	(3) 4 : 1	(4) 1 : 4				
32.	If the kinetic energy i	is increased by 300%, t	he momentum will inc	crease by :-				
	(1) 100%	(2) 200%	(3) 150%	(4) 300%				
33.	If the kinetic energy of	of a body increases by	4% the momentum :					
	(1) increases by 2%	(2) increases by 4%	(3) increases by 8%	(4) increases by 16%				

CONSERVATIVE FORCE POTENTIAL ENERGY & LAW OF CONSERVATION OF ENERGY

- 34. Which of the following statements is true for work done by conservative forces :-
 - (1) It does not depend or path
 - (2) It is equal to the difference of initial and final potential energy function
 - (3) It can be recovered completely
 - (4) All of the above
- **35.** Which of the following statement is incorrect for a conservative field?

(1) Work done in going from initial to final position is equal to change in kinetic energy of the particle.

- (2) Work done depends on path but not on initial and final positions.
- (3) Work done does not depend on path but depends only on initial and final positions
- (4) Work done on a particle in the field for a round trip is zero.
- **36.** As shown in the diagram a particle is to be carried from point A to C via paths (I), (II) and (III) in gravitational field, which of the following statements is correct :-
 - (1) Work done Is same for all the paths
- (2) Work done is minimum for path (II)
 - (3) Work done is maximum for path (I)
- (4) None of the above
- 37. The relation between conservative force and potential energy U is given by :-

(1)
$$\mathbf{F} = \frac{dU}{dx}$$
 (2) $\mathbf{F} = \int U \, dx$ (3) $\mathbf{F} = -\frac{dU}{dx}$ (4) $\mathbf{F} = \frac{dU}{dx}$

- **38.** Which of the following is a non conservative force:-
 - (1) Electric force(3) Spring force

- (2) Gravitational force
- (4) Viscous force

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

P(a, a)

0

39. The graph between potential energy U and displacement X in the state of stable equilibrium will be-

40. A particle moves in a potential region given by $U = 8x^2 - 4x + 400$ J. Its state of equilibrium will be-(1) x = 25 m (2) x = 0.25 m (3) x = 0.025 m (4) x = 2.5 m

41. For the path PQR in a conservative force field the amounts work done in carrying a body from P to Q and from Q to R are 5 Joule and 2 joule respectively. The work done in carrying the body from P to R will be-

- 42. The mass of a bucket full of water is 15 kg. It is being pulled up from a 15m deep well. Due to a hole in the bucket 6 kg water flows out of the bucket. The work done in drawing the bucket out of the well will be $(g = 10m/s^2)$ -(1) 900 J (2) 1500 J (3) 1800 J (4) 2100 J
- **43.** A uniform chain of length Land mass M is lying on a smooth table and $\frac{2}{3}$ of its length is hanging down over the edge of the table. If g is the acceleration due to gravity, the work done to pull the hanging part on the table is :-

(1) MgL (2)
$$\frac{MgL}{3}$$
 (3) $\frac{MgL}{9}$ (4) $\frac{2MgL}{9}$

44. A 10 kg satellite completes one revolution around the earth at a height of 100 km in 108 minutes. The work done by the gravitational force of earth will be-

(l)
$$108 \times 100 \times 10$$
 J
(2) 0 J
(2) 0 J
(2) 0 J
(2) $\frac{108 \times 10}{100}$ J
(4) $\frac{100 \times 10}{108}$ J

45. A particle is moved from (0, 0) to (a, a) under a force $\mathbf{F} = (3\hat{i} + 4\hat{j})$ from two paths. Path 1 is OP and path 2 is QQP. Let W_1 and W_2 be the work done by this force in these two paths. Then :

(1) $W_1 = W_2$ (2) $W_1 = 2W_2$

(3)
$$W_2 = 2W_1$$
 (4) $W_2 = 4W_1$

46. A spring of force constant 800 N/m has an extension of 5 cm. The work

```
    Power by: VISIONet Info Solution Pvt. Ltd

    Website : www.edubull.com
    Mob no. : +91-9350679141
```

done in extending it from 5 cm to 15 cm is :-(1) 16 J (2) 8 J (3) 32 J (4) 24 J

47. If a spring extends by x on loading then energy stored by the spring is :- (T is tension in the spring, K = spring const.)

(1)
$$\frac{T^2}{2x}$$
 (2) $\frac{T^2}{2k}$ (3) $\frac{2k}{T^2}$ (4) $\frac{2T^2}{k}$

- **48.** A body of mass 2 kg falls from a height of 20 m. What is the loss in potential energy :-(1) 400 J (2) 300 J (3) 200 J (4) 100 J
- **49.** In stretching a spring by 2 cm energy stored is given by U, then stretching by 10 cm energy stored will be:-
 - (1) U (2) 5 U (3) $\frac{U}{25}$ (4) 25 U
- 50. If the potential energy of two molecules is give by,

$$U = \frac{A}{r^{12}} - \frac{B}{r^6}$$

then at equilibrium position, its potential energy is equal to :

- (1) $\frac{A^2}{4B}$ (2) $-\frac{B^2}{4A}$ (3) $\frac{2B}{A}$ (4) 3 A
- **51.** A 2 g ball of glass is released from the edge of a hemispherical cup whose radius is 20 cm. How much work is done on the ball by the gravitational force during the ball's motion to the bottom of the cup?

52. 4 J of work is required to stretch a spring through 10 cm beyond its unstretched length. The extra work required to stretch it through additional 10 cm shall be (1) 4 J (2) 8 J (3) 12 J (4) 16 J

53. A particle in a certain conservative force field has a potential energy given by $U = \frac{20xy}{z}$. The force exerted on it is

$$(1)\left(\frac{20y}{z}\right)\hat{i} + \left(\frac{20x}{z}\right)\hat{j} + \left(\frac{20xy}{z^2}\right)\hat{k} \qquad (2) - \left(\frac{20y}{z}\right)\hat{i} - \left(\frac{20x}{z}\right)\hat{j} + \left(\frac{20xy}{z^2}\right)\hat{k} \\ (3) - \left(\frac{20y}{z}\right)\hat{i} - \left(\frac{20x}{z}\right)\hat{j} - \left(\frac{20xy}{z^2}\right)\hat{k} \qquad (4)\left(\frac{20y}{z}\right)\hat{i} + \left(\frac{20x}{z}\right)\hat{j} - \left(\frac{20xy}{z^2}\right)\hat{k} \end{cases}$$

Edubull

54.	A body is dropped f The mass of the body	from a height h. When y is -	loss in its potential en	ergy is U then its velocity is v.
	(1) $\frac{\mathrm{U}^2}{\mathrm{2v}}$	$(2) \ \frac{2v}{U}$	$(3) \ \frac{2v}{U^2}$	$(4) \ \frac{2U}{v^2}$
55.	A ball of mass 1 kg falling through 10m	is released from the to will be-	ower of Pisa. The kine	etic energy generated in it after
	(1) 10 J	(2) 9.8 J	(3) 0.98 J	(4) 98 J
56.	A stone is projected	vertically up to reach	maximum height 'h'. T	he ratio of its kinetic energy to
	potential energy, at a	height $\frac{4h}{5}$ will be :-		
	(1) 5 : 4	(2) 4 : 5	(3) 1 : 4	(4) 4 : 1
57.	A block of mass 16 comes to rest after compression in the s	kg is moving on a fr pressing a spring. If the pring will be -	ictionless horizontal s he force constant of t	urface with velocity 4 m/s and he spring is 100 N/m then the
	(1) 3.2 m	(2) 1.6 m	(3 <mark>) 0.6 m</mark>	(4) 6.1 m
58.	A mass of 0.5 kg m smooth surface, coll constant $k = 50$ N/ would be :-	oving with a speed of lides with a nearly we m. The maximum cor	1.5 m/s on a horizont eightless spring of for mpression of the sprin	$ \begin{array}{c} \text{al} \\ \text{ce} \\ \text{ng} \end{array} \longrightarrow \qquad \qquad$
59.	A projectile is fired when it returns back (1) zero	at 30° with momentum to the ground, will be: (2) 30%	(3) 60%	(4) 0.15 m(4) the change in kinetic energy,(4) 100%
60.	An electric motor pr 2 m/s. The power of (1) 9 kW	roduces a tension of 4. the motor is- (2) 15 kW	500N in a load lifting (3) 225 kW	cable and rolls it at the rate of (4) 9×10^3 hp
61.	A motor of 1.00 hp exerted by the engine (1) 3.73×10^3 N	is moving a car with a e on the car is- (2) 3.73×10^2 N	a constant velocity of (3) 3.73×10^1 N	72 km/hour. The forward force(4) None of the above
62.	A crane lifts 300 kg power generated by	weight from earth's su it will be -	urface upto a height of	f 2m in 3 seconds. The average
	(1) 1960 W	(2) 2205 W	(3) 4410 W	(4) 0 w
63.	Two men with weigh Power of first to that	ht in the ratio 5 : 3 run of second is -	up a staircase in times	s in the ratio 11 : 9. The ratio of
	(1) $\frac{15}{11}$	(2) $\frac{11}{15}$	$(3) \frac{11}{9}$	(4) $\frac{9}{11}$
64	Δ car is moving with	a speed of 40 Km/hr	If the car engine gene	rates 7 kilowatt power, then the

64. A car is moving with a speed of 40 Km/hr. If the car engine generates 7 kilowatt power, then the resistance in the path of motion of the car will be-

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

(1) 360 newton (2) 630 newton	(3) Zero	(4) 280 newton
---	----------	----------------

65. Calculate power generated by tension in the string in first 2 seconds of motion :-

66. A body of mass m starting from rest from origin moves along x-axis with constant power (P). Calculate relation between velocity / distance :-(1) $x \propto v^{1/2}$ (2) $x \propto v^2$ (3) $x \propto v$ (4) $x \propto v^3$

67. A pump is used to deliver water at a certain rate from a given pipe. To obtain n times water from the same pipe in the same time, by what factor, the force of the motor should be increased?

(1) n times	(2) n^2 times	(3) n ³ times	$(4) \stackrel{1}{-} \text{times}$
			n

- 68. A body of mass 4 kg is moving up an inclined plane rising 1 in 40 with velocity 40 m/sec if efficiency is 50% the calculate power required.
 (1) 38.4 W
 (2) 55 W
 (3) 78.4 W
 (4) 108 W
- 69. A 1.0 hp motor pumps out water from a well of depth 20 m and fills a water tank of volume 2238 liters at a height of 10 m from the ground. The running time of the motor to fill the empty water tank is $(g = 10 \text{ m/s}^2)$ (1) 5 minutes (2) 10 minutes (3) 15 minutes (4) 20 minutes
- 70. Water is falling on the blades of a turbine at a rate of 100 kg/s from a certain spring. If the height of the spring be 100 meters, the power transferred to the turbine will be :(1) 100 kW
 (2) 10 kW
 (3) 1 kW
 (4) 1000 kW
- 71. If the force applied is F and the velocity gained is v, then the average power developed is :-(1) F (2) V (2) Fv (4) F^2
 - (1) $\frac{F}{v}$ (2) $\frac{v}{F}$ (3) $\frac{Fv}{2}$ (4) Fv^2
- 72. What average horsepower is developed by an 80 kg man while climbing in 10 s flight of stairs that rises 6 m vertically ?
 (1) 0.63 hp
 (2) 1.26 hp
 (3) 1.8 hp
 (4) 2.1 hp
- 73. A constant force F is acting on a body of mass m with constant velocity v as shown in the figure. The power P exerted is

	(1) F	v cosθ		(2) -	$\frac{1}{mg}$		(3) -	⁷ mg cos v	θ	(4) ⁿ	ng sin θ F		
						A	NSWE	R KEY					
				EX	ERCI	SE-I (C	oncept	ual Que	estions)				
1.	(1)	2.	(2)	3.	(3)	4.	(4)	5.	(1)	6.	(3)	7.	(2)
8.	(2)	9.	(3)	10.	(2)	11.	(3)	12.	(4)	13.	(3)	14.	(2)
15.	(1)	16.	(4)	17.	(4)	18.	(1)	19.	(3)	20.	(4)	21.	(1)
22.	(2)	23.	(1)	24.	(3)	25.	(1)	26.	(2)	27.	(3)	28.	(4)
29.	(2)	30.	(2)	31.	(2)	32.	(1)	33.	(1)	34.	(4)	35.	(2)
36.	(1)	37.	(3)	38.	(4)	39.	(1)	40.	(2)	41.	(1)	42.	(3)
43.	(4)	44.	(3)	45.	(1)	46.	(2)	47.	(2)	48.	(1)	49.	(4)
50.	(2)	51.	(2)	52.	(3)	53.	(2)	54.	(4)	55.	(4)	56.	(3)
57.	(2)	58.	(4)	59.	(1)	60.	(1)	61.	(1)	62.	(1)	63.	(1)
64.	(2)	65.	(3)	66.	(4)	67.	(2)	68.	(3)	69.	(3)	70.	(1)
71.	(3)	72.	(1)	73.	(1)								