ADSORPTION

- **1.** Physical adsorption is appreciable at :-
 - (1) Higher temperature

(2) Lower temperature

(3) At room temperature

- (4) 100°C temperature
- **2.** The rate of physical adsorption:-
 - (1) Decreases with increase of pressure
 - (2) Is independent at high pressure
 - (3) Is maximum at one atmospheric pressure
 - (4) Always increases with increase of pressure
- **3.** Which of the following is not a characteristic of chemi-sorption:
 - (1) Adsorption is irreversible
 - (2) ΔH is of the order of 40 kJ
 - (3) Adsorption is specific
 - (4) Adsorption increases with increase of surface area
- **4.** Which one of the following is not a correct statement?
 - (1) Physical adsorption is reversible in nature
 - (2) Physical adsorption involves vander waals forces
 - (3) Rate of physical adsorption increases with increase of pressure on the adsorbate
 - (4) High activation energy is involved for physical adsorption
- 5. The amount of gas adsorbed on charcoal increases
 - (1) Temperature & pressure
 - (2) Temperature & decreases with pressure on:
 - (3) Pressure & decreases with temperature
 - (4) None
- **6.** Pd can adsorb 900 times its volume of hydrogen. This is called :-
 - (1) Absorption

(2) Adsorption

(3) Occlusion

(4) 2 & 3 both

- **7.** Which is correct:-
 - (1) Langmuir adsorption is highly specific
- (2) Vander-Waal's adsorption is reversible
- (3)Both 1 & 2 are exothermic
- (4) All are correct
- **8.** Adsorption is accompanied by :-
 - (1) Decrease in entropy of the system
- (2) Decrease in enthalpy of the system
- (3) $T\Delta S$ for the process is negative
- (4) All
- **9.** Which characteristic of adsorption is wrong:-
 - (1) Physical adsorption in general decreases with temperature
 - (2) Physical adsorption in general increases with
 - (3) Physical Adsorption is a reversible process
 - (4) Adsorption is limited to the surface only

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com Mob no.: +91-9350679141

10.	Graph between $log\left(\frac{x}{m}\right)$ and $log p$ is a straight line at an angle 45° with intercept on y-axis							
		• •		f the adsorbent when pressure				
	(1) 0.4	(2) 0.6	(3) 0.8	(4) 0.2				
11.	Sorption is the term used when: (1) Adsorption takes place (2) Absorption takes place (3) Both takes place (4) Desorption takes place							
12.	The volume of gases order:	s H ₂ , CH ₄ , CO ₂ and NH	I ₃ adsorbed by 1 g of	charcoal at 288K are in the				
	(1) $H_2 > CH_4 > CO_2$ (3) $CO_2 > NH_3 > H_2$		(2) $CH_4 > CO_2 > NH$ (4) $NH_3 > CO_2 > CH$					
13.		otion of a gas on a solid	•					
	(1) The nature of ga(3) Temperature of t		(2) Pressure of gas (4) All					
14.		molecular layers during						
	(1) Physical adsorpt(3) Freundlich adsor		(2) vander Waal's ads (4) All	sorption				
		COLLOIDA	I COLUTION					
15.	The number of phase	es present in colloidal s	L SOLUTION					
10.	(1) 2	(2) 4	(3) 3	(4) 1				
16.	Butter is a colloid for							
	(1) Fat is dispersed in		(2) Fat is dispersed in					
	(3) Water is disperse	zu III Tat	(4) Suspension of cas	sem m water				
17.	Lyophobic colloids	are :-						
	(1) Reversible	(2) Irreversible	(3) Water loving	(4) Solvent loving				
18.	• • • •	oitated Fe(OH) ₃ is boile ic hydroxide sol is obta		resence of few drops of dilute ermed as:-				
	(1) Dialysis	(2) Peptization	(3) Ultrafiltration	(4) Electrodispersion				
19.	Greater the valency, (1) Hardy-Schulze	the higher is the coag (2) Graham	ulating power of ion. 7 (3) Kossel & Lewis	This rule was introduced by :- (4) Faraday				
	•			•				
20.	• •	on to coagulate a colloi	dal solution depends or	n :-				
	(1) Its shape(2) The amount of it	s charge						
	(3) The sign of the c	_						
D 1	· VISIONat Info Solution Put							

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no.: +91-9350679141

	(4) Both, the amount and the sign of the charge									
21.	All colloidal solution (1) Very high osmotic (3) Low osmotic pre	ic pressure		(2) High osmotic pressure(4) No osmotic pressure						
22.	The charge of As ₂ S ₃ (1) H ⁺	sol is due to the abso (2) OH ⁻	orbed :- (3) O ²⁻	(4) S^{2-}						
23.	Brownian motion should (1) Optical	own by colloidal part (2) Electrical	icles is its(3) Kinetic	property :- (4) Chemical						
24.	•	Ge(OH) ₃ precipitate is due to preferential ac (2) Fe ⁺⁺⁺ ions		g FeCl ₃ solution. The ch (4) None	arge on the					
25.	In both dialysis and (1) Water	osmosis which partic (2) Small molecule	_	igh SPM : (4) All						
26.	The correct statement in case of milk:- (1) Milk is an emulsion of fat in water (2) Milk in an emulsion of protein in water (3) Milk is unstabilized by protein (4) Milk is unstabilized by fat									
27.	A colloidal system in (1) A state of dissolution (3) A state of suspen	ition	(2) A state of d (4) None	ispersion						
28.		ve towards opposite e owards opposite elec 2)								
29.	Detergent action of s (1) Interfacial area (3) Ionisation	synthetic detergents is	s due to:- (2) High molec (4) Emulsifying	•						
30.	Which is not shown (1) Adsorption (3) Flocculation	by sols:-	(2) Tyndall effe (4) Paramagnet							
31.	Which of the follows (1) Soap	ing is an emulsifier? (2) Water	(3) Oil	(4) NaCl						

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no.: +91-9350679141

32.	Emulsifiers are gene	rally :-								
	(1) Soaps		(2) Synthetic deterge	ents						
	(3) Lyophilic sols		(4) All of the above							
33.	Which of the follows	ng is most effective in	causing the coagulation	on of ferric hydroxide sol :-						
	(1) KCl	$(2) \text{ KNO}_3$	(3) K2SO4	(4) K3[Fe(CN)6]						
34.	The colloidal sol of S	SnCl ₄ prefers to adsorb	in excess of HCl							
	$(1) \operatorname{Sn}^{+4}$	$(2) K^{+}$	$(3) H^{+}$	(4) Cl ⁻						
35.	On adding AgNO ₃ solution into KI solution, a negatively charged colloidal sol is obtained									
	•	when they are mixed as: (1) 100 mL of 0.1 MAgNO. + 100 mL of 0.1 M KL								
		(1) 100 mL of 0.1 MAgNO ₃ + 100 mL of 0.1 M KI (2) 100 mL of 0.1 MAgNO ₃ + 50 mL of 0.2 M KI								
	* *	$AgNO_3 + 200 \text{ mL of } 0$								
	(4) 100 mL of 0.1 M	(4) 100 mL of 0.1 MAgNO ₃ + 100 mL of 0.15 MKI								
36.	Micelles are:									
	(1) Ideal solution		(2) Associated colloi	ds						
	(3) Adsorbed surface	ès .	(4) Adsorbent solutes							
37.	Micelles have:									
57.	(1) higher colligative properties as compared to common colloidal sols									
		(2) lower colligative properties								
	(3) same colligative properties									
	(4) All of the above									
38.	Which of the following sol is formed due to following reaction: - SnO ₂ + HCl (Excess):-									
	(1) $[SnCl_4] Cl^-$ (2) $[SnCl_4]O^{-2}$									
	(3) [SnCl4]H+		(4) None							
39.	Which of following	ion has minimum floco	culation value:							
	_		(3) PO_4^{3-}	(4) $[Fe(CN)_6]^{4-}$						
			•							
40.		d suspension of clay in	n water needs for preci	pitation the minimum amount						
	of: (1) Aluminium chlor	ide	(2) Potassium sulpha	te.						
	(3) Sodium hydroxid		(4) Hydrochloric acid							
41	****									
41.	Which is not a colloi (1) Smoke	(2) Ink	(3) Air	(4) Blood						
	(1) SHIOKE	(2) IIIK	(3) All	(4) D 100 u						
42.	Which one is natural	Which one is natural colloid:								
	(1) NaCl	(2) Blood	(3) RCOONa	(4) Sugar						
43.	Medicines are more	effective if they are use	ed in :							
	(1) Colloidal state	,	(2) Solid state							
	(3) Granular state		(4) All of the above							

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no.: +91-9350679141

44.	Egg albumin is: (1) Reversible colloi (3) Protective colloi		(2) Lyophilic collo (4) All	id					
45.	Gelatin protects:- (1) Gold sol	(2) As_2S_3 sol	(3) Fe(OH) ₃ sol	(4) All					
46.	The coagulating povillustrated by:- (1) Brownian mover		n carrying the charge o (2) Gold number	pposite to the particles has been					
	(3) Tyndall effect		(4) Hardy-schulze	rule					
47.	Hardy-Suhulze rule states that :- (1) Non-electrolytes have better coagulating action on colloids than electrolytes (2) Sols are coagulated by effective ions whose charge is opposite to that of sol and the ions higher charge are much more effective than the ions of lower charge (3) Charge of the ions has no effect on the coagulation of a sol (4) Sols are coagulated only by those ions whose charges is similar to that of the sol								
48.	An example of mice (1) As ₂ O ₃ sol (2) Ruby glass (3) Na ₂ CO ₃ solution (4) Sodium stearate								
49.	To coagulate gelatin (1) NaCl	sol, which of the fol (2) Na ₃ PO ₄	lowing is most effective (3) AlCl ₃	re :- (4) Alcohol					
50.	Which of the follow (1) Pb ²⁺	ing has minimum flo (2) Pb ⁴⁺	ecculation value:- (3) Sr ²⁺	(4) Na ⁺					
51.		of A, B, C & Dare and Dare in the order:		25 respectively. The protective					
	(3) D > C > B > A		(4) $C > A > B > D$						
52.			NaCl to 10 mL gold solld number of starch is: (3) 0.25	in presence of 0.025 g of starch, (4) 0.025					
53.	(2) The amount of g	old present in the col old required to break old required to protec	the colloid.						

I II	Rain	-11									
TT	1 (4111	cioua			Α	Sol					
11	Gela	tin			В	Aerosol Gel Foam					
III	Soap	lather			C						
IV	Boot	polish			D						
Co	rrect mate		:								
	I	II	III	IV							
(1)	A	В	C	D							
(2)		C	В	D							
(3)		A	D	C							
(4)		A	C	D							
55. Sil	t in water	is:									
(1)	Gel		(2) S	ol		(3) Aerosol	(4) Foam				
56. Op	al (miner	al with	liquid ii	nclusion	ns) is a:						
(1)	(1) Gel (liquid dispersed in solid phase)					(2) Solid sol (solid	d dispersed in solid phase)				
(3)	Sol (soli	d disper	sed in 1	iquid)		(4) Foam (gas dispersed in liquid)					
57. So:	me of the	followi	ng are t	rue solı	utions :						
I:	Air		II: S	ea wate	er	III : Gluco	se solution				
IV	: Gem sto	one	V: P	earl		VI: Blood					
Sel	ect true s	olutions	::								
(1)	I, II, III		(2) I	I, III, IV	7, V	(3) I, IV, V, VI	(4) II, IV, VI				
58. In 1	In multimolecular colloidal sols, atoms or molecules are held. together by:										
(1)	(1) H-bonding					(2) vand <mark>er-W</mark> aals	forces				
(3)	Ionic box	nding				(4) Polar covalent	bonding				
59. Ty:	ndall effe	ect is not	observ	ed in:							
•	Suspensi					(2) Starch sol					
	Gold sol					(4) NaCl solution					
60. Wh	nich is kir	netic phe	enomen	on?							
(1)	Brownia	n motio	n			(2) Tyndall effect					
(3)	Both (1)	and (2)				(4) None of these					
61. Wh	nich pair i	is correc	tly mat	ched?							
(1)	[Fe(OH)	$_{3}) \text{ Fe}^{3+}$:	Cl^-								
(2)	$[As_2S_3]$:	As^{3+}									
	(3) $[SnO_2]$: SnO_3^{2-} in acidic medium										
	[AgI] : I										
62. Go	ld numbe	er of hen	noglobi	n is 0 0	3 Hence	e. 100 mL of gold so	ol will require hemoglobin so the	1at			
			_			aCl solution.	require nemogroom so u				
	15 HOL C	Jugurun	•		. 10/011		(1)				
_	0.03 mg		(2) 3	0 mg		(3) 0.30 mg	(4) 3 mg				

Power by: VISIONet Info Solution Pvt. Ltd
Website: www.edubull.com Mob no.: +91-9350679141

(1) Milk: O/W (2) Cold cream: W/O (3) Butter: O/W (4) Vanishing cream: O/W

CATALYST

- **64.** Which of the following statement is correct:-
 - (1) Catalyst accelerates the rate of a chemical reaction
 - (2) A catalyst can retard the rate of a chemical reaction
 - (3) A catalyst can control the speed of a reaction
 - (4) A catalyst does not alters the speed of a reaction
- **65.** Which one of the following is not the example of homogeneous catalysis:
 - (1) Formation of SO₃ in the chamber process
 - (2) Formation of SO_3 in the contact process
 - (3) Hydrolysis of an ester in presence of acid
 - (4) Decomposition of KClO₃ in presence of MnO₂
- 66. The decomposition of hydrogen peroxide can be slowed down by the addition of a small amount of acetanilide. The later act as:-

(1) Inhibitor

(2) Promoter

(3) Moderator

(4) Poison

- **67.** Efficiency of the catalyst depends on its:
 - (1) Molecular weight

(2) Number of free valencies

(3) Physical state

(4) Amount of reactant used

- **68.** Which of the following types of metals make the most efficient catalysts:
 - (1) Transition metals

(2) Alkali metals

(3) Alkaline earth metals

(4) Radioactive metals

69. In the reaction

 $KMnO_4 + H_2SO_4 + H_2C2O_4 \rightarrow products$

Mn⁺⁺ ions act as:-

(1) Positive catalyst

(2) Negative catalyst

(3) Auto catalyst

(4) Enzyme catalyst

- **70.** In the Haber's process of synthesis of NH_3 :
 - (1) Mo acts as a catalyst and Fe as a promoter
 - (2) Fe acts as a catalyst and Mo as a promoter
 - (3) Fe acts as inhibitor and Mo as a catalyst
 - (4) Fe acts as promoter and Mo as auto-catalyst
- **71.** Which of the following statement is incorrect:
 - (1) Enzymes exist in colloidal state

(2) Enzymes are catalysts

(3) Enzymes can catalyse any reaction

(4) Urease is an enzyme

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com Mob no.: +91-9350679141

72.	Platinized asbestos is used as a cat (1) Homogeneous catalyst (3) Auto-catalyst	(2) Heterogeneous	the manufacture of H ₂ SO ₄ . It is an example of :- (2) Heterogeneous catalyst (4) Induced catalyst						
73.	In the Ostwald's process for the ma (1) Fe (2) Pt	anufacturing of HNO ₃ , the ca (3) V_2O_5	talyst used is:- (4) Mo						
74.	In a reversible reaction a catalyst: (1) Increases the rate of forward re (2) Increases the rate of forward re (3) Increases the rate of forward re (4) Increases the rate of forward ar	eaction only eaction to a greater extent that eaction and decreases that of t							
75.	Which is false for catalyst:- (1) A catalyst can initiate a reaction (2) It does not alter the position of equilibrium in a reversible reaction (3) A catalyst remains unchanged in quantity and composition at the end of reaction (4) Catalysts are sometimes very specific in respect of a reaction								
76.	Which acts as a catalyst in the hyd (1) Cu (2) Mo	rogenation of vegetable oils : (3) Fe	- (4) Pt						
77.	Air can oxidize sodium sulphite in aq. solution but cannot do so in the case of sodium arsenite. If however, air is passed through a solution containing both sodium sulphite & sodium arsenite then both are oxidized. This is an example of: (1) Positive catalysis (2) Negative catalysis (3) Induced catalysis (4) Auto catalysis								
78.	Zeolites are :- (1) Water softner (3) Cation exchanger	(2) Catalyst (4) All of these							
79.	Zeolites:- (1) Are microporous aluminosilicates (2) Have general formula M _{x/n} [(AlO ₂) _x (SiO ₂) _y]m H ₂ O (3) Have pore sizes between 260 pm to 7 40 pm (4) All								
80.	Zeolites are used as catalyst in: (1) Petrochemical industries during cracking (2) In the preparation of H ₂ SO ₄ (3) In the hydrolysis of ester (4) All								
81.	Which is not the correct statement (1) It does not alter activation ener (2) It provides an alternate mechan	·gy.	ectivation						

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no.: +91-9350679141

- (3) Catalyst may form intermediates with the reactants
- (4) Action of enzyme catalyst is always specific
- **82.** Shape selective catalysts are so called because of :
 - (1) The shape of the catalysts
 - (2) The specificity of the catalysts.
 - (3) The size of the pores of the catalysts which can trap only selective molecules
 - (4) Their use for only some selected reactions

ANSWER KEY

EXERCISE-I (Conceptual Questions)													
1.	(2)	2.	(2)	3.	(2)	4.	(4)	5.	(3)	6.	(4)	7.	(4)
8.	(4)	9.	(2)	10.	(1)	11.	(3)	12.	(4)	13.	(4)	14.	(4)
15.	(1)	16.	(3)	17.	(2)	18.	(2)	19.	(1)	20.	(4)	21.	(3)
22.	(4)	23.	(3)	24.	(2)	25.	(3)	26.	(1)	27.	(2)	28.	(1)
29.	(4)	30.	(4)	31.	(1)	32.	(4)	33.	(4)	34.	(4)	35.	(4)
36.	(2)	37.	(2)	38.	(1)	39.	(4)	40.	(1)	41.	(3)	42.	(2)
43.	(1)	44.	(4)	45.	(4)	46.	(4)	47.	(2)	48.	(4)	49.	(4)
50.	(2)	51.	(2)	52.	(1)	53.	(4)	54.	(3)	55.	(2)	56.	(1)
57.	(1)	58.	(2)	59.	(4)	60.	(1)	61.	(1)	62.	(3)	63.	(3)
64.	(1)	65.	(2)	66.	(1)	67.	(2)	68.	(1)	69.	(3)	70.	(2)
71.	(3)	72.	(2)	73.	(2)	74.	(4)	<i>75.</i>	(1)	76.	(4)	77.	(3)
78.	(4)	79.	(4)	80.	(1)	81.	(1)	82.	(3)				

Website: www.edubull.com Mob no.: +91-9350679141