CHAPTER

Mathematical Reasoning

- 1. The Boolean expression $\sim (p \lor q) \lor (\sim p \land q)$ is equivalent to
 - (a) $\sim q$ (b) $\sim p$ (d) *q* (2018)(c) *p*
- 2. If $(p \land \neg q) \land (p \land r) \rightarrow \neg p \lor q$ is false, then the truth values of p, q and r are respectively (b) F, F, F (a) T, T, T
 - (c) T, F, T (d) F, T, F (Online 2018)
- 3. If $p \to (\sim p \lor \sim q)$ is false, then the truth values of p and q are respectively :
 - (b) F, T (a) F, F
 - (c) T, T (d) T, F (Online 2018)
- 4. The following statement $(p \rightarrow q) \rightarrow [(\sim p \rightarrow q) \rightarrow q]$ is (a) equivalent to $\sim p \rightarrow q$ (b) equivalent to $p \rightarrow \sim q$ (2017) (c) a fallacy (d) a tautology
- 5. The proposition $(\sim p) \lor (p \land \sim q)$ is equivalent to (a) $p \wedge \sim q$ (b) $p \lor \sim q$ (c) $p \rightarrow \sim q$ (d) $q \rightarrow p$ (Online 2017)
- 6. Contrapositive of the statement 'If two numbers are not equal, then their squares are not equal', is
 - (a) If the squares of two numbers are not equal, then the numbers are equal.
 - (b) If the squares of two numbers are equal, then the numbers are not equal.
 - (c) If the squares of two numbers are equal, then the numbers are equal.
 - (d) If the squares of two numbers are not equal, then the numbers are not equal.

(Online 2017)

7. The Boolean expression $(p \land \neg q) \lor q \lor (\neg p \land q)$ is equivalent to

(a) $\sim p \wedge q$ (b) $p \wedge q$ (c) $p \lor q$ (d) $p \lor \sim q$ (2016)8. Consider the following two statements:

P: If 7 is an odd number, then 7 is divisible by 2. Q: If 7 is a prime number, then 7 is an odd number. If V_1 is the truth value of the contrapositive of P and V_2 is the truth value of contrapositive of Q, then the ordered pair (V_1, V_2) equals (a) (F, F)(b) (*F*, *T*) (c) (T, F)(d) (*T*, *T*)

(Online 2016)

- 9. The contrapositive of the following statement, "If the side of a square doubles, then its area increases four times", is
 - (a) If the area of a square increases four times, then its side is not doubled.
 - (b) If the area of a square increases four times, then its side is doubled.
 - (c) If the area of a square does not increase four times, then its side is not doubled.
 - (d) If the side of a square is not doubled, then its area does not increase four times.

(Online 2016)

10. The negation of $\sim s \lor (\sim r \land s)$ is equivalent to (a

a)
$$s \lor (r \lor \sim s)$$
 (b) $s \land r$

- (2015)(c) $s \wedge \sim r$ (d) $s \wedge (r \wedge \sim s)$
- 11. The contrapositive of the statement
 - "If it is raining, then I will not come", is
 - (a) if I will come, then it is not raining
 - (b) if I will not come, then it is raining
 - (c) if I will not come, then it is not raining
 - (d) if I will come, then it is raining (Online 2015)
- 12. Consider the following statements :
 - P: Suman is brilliant.
 - O: Suman is rich.
 - R : Suman is honest.
 - The negation of the statement,

"Suman is brilliant and dishonest if and only if Suman is rich" can be equivalently expressed as :

- (a) $\sim Q \leftrightarrow \sim P \wedge R$ (b) $\sim Q \leftrightarrow \sim P \vee R$ (c) $\sim Q \leftrightarrow P \vee \sim R$ (d) $\sim Q \leftrightarrow P \wedge \sim R$

- 13. The statement $\sim (p \leftrightarrow \sim q)$ is
 - (a) equivalent to $\sim p \leftrightarrow q$
 - (b) a tautology
 - (c) a fallacy
 - (d) equivalent to $p \leftrightarrow q$ (2014)

14. Consider :

Statement-1 : $(p \land \sim q) \land (\sim p \land q)$ is a fallacy.

- **Statement-2** : $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is a tautology.
- (a) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1.
- (b) Statement-1 is true, Statement-2 is false.
- (c) Statement-1 is false, Statement-2 is true.
- (d) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1. (2013)

- **15.** The negation of the statement "If I become a teacher, then I will open a school", is
 - (a) Neither I will become a teacher nor I will open a school.
 - (b) I will not become a teacher or I will open a school.
 - (c) I will become a teacher and I will not open a school.
 - (d) Either I will not become a teacher or I will not open a school.

(2012)

16. Let *S* be a non-empty subset of *R*. Consider the following statement:

P: There is a rational number $x \in S$ such that x > 0. Which of the following statements is the negation of the statement P?

- (a) There is a rational number $x \in S$ such that $x \leq 0$.
- (b) There is no rational number $x \in S$ such that $x \leq 0$.
- (c) Every rational number $x \in S$ satisfies $x \leq 0$.
- (d) $x \in S$ and $x \leq 0 \implies x$ is not rational.

(2010)

17. Statement-1 : ~ $(p \leftrightarrow \neg q)$ is equivalent to $p \leftrightarrow q$. Statement-2 : ~ $(p \leftrightarrow \neg q)$ is a tautology.

- (a) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- (b) Statement- 1 is true, Statement-2 is false
- (c) Statement-1 is false, Statement-2 is true
- (d) Statement-1 is true, Statement-2 is true; Statement-2 is correct explanation for Statement-1 (2009)
- **18.** The statement $p \rightarrow (q \rightarrow p)$ is equivalent to (a) $p \rightarrow (p \leftrightarrow q)$ (b) $p \rightarrow (p \rightarrow q)$ (c) $p \rightarrow (p \lor q)$ (d) $p \rightarrow (p \land q)$ (2008)
- **19.** Let p be the statement "x is an irrational number", q be the statement "y is a transcendental number", and r be the statement "x is a rational number iff y is a transcendental number".

Statement-1 : r is equivalent to either q or p.

- **Statement-2** : *r* is equivalent to ~ ($p \leftrightarrow \sim q$).
- (a) Statement-1 is true, Statement-2 is false
- (b) Statement-1 is false, Statement-2 is true
- (c) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (d) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1 (2008)

			ANSW	ER KEY					
		5. (c) 17. (b)			8. (b)	9. (c)	10. (b)	11. (a)	12. (d)

Explanations

1. (b) : ~ $(p \lor q) \lor (~ p \land q)$

- $= (\sim p \ \land \ \sim q) \lor (\sim p \ \land \ q) = \sim p \ \land (\sim q \lor q) = \sim p$
- 2. (c) : Given $(p \land \neg q) \land (p \land r) \rightarrow \neg p \lor q$ is false
- \Rightarrow $(p \land \neg q \land r) \rightarrow \neg p \lor q$ is false

 $\Rightarrow \sim (p \land \sim q \land r) \lor (\sim p \lor q)$ is false

- $\Rightarrow (\sim p \lor q \lor \sim r) \lor (\sim p \lor q) \text{ is false}$
- $\Rightarrow \sim p \lor q \lor \sim r$ is false

So, truth values of $\sim p$, q and $\sim r$ must be F, F, F.

Thus, truth values of p, q and r must be T, F, T.

3. (c) :

· · ·					
<i>p</i>	q	~p	$\sim q$	$\sim p \lor \sim q$	$p \rightarrow (\sim p \lor \sim q)$
Т	Т	F	F	F	F
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

So, truth values of p and q are T, T.

4. (d): We have

 $(p \to q) \to [(\sim p \to q) \to q]$ simplifying as

$$(p \to q) \to ((p \lor q) \to q)$$

 $(p \to q)((\sim p \land \sim q) \lor q)$

$$(p \to q) \to ((\sim p \lor q) \land (\sim q \lor q))$$

$$(p \rightarrow q) \rightarrow (p \rightarrow q)$$
 which is a tautology.

5. (c) :

	. × . /							
p	q	~p	$\sim q$	$p \wedge \neg q$	$(\neg p) \lor (p \land \neg q)$	$p \lor \sim q$	$p \rightarrow \sim q$	$q \rightarrow p$
Т	Т	F	F	F	F	Т	F	Т
Т	F	F	Т	Т	Т	Т	Т	Т
F	Т	T	F	F	Т	F	Т	F
F	F	Т	Т	F	Т	Т	Т	Т

6. (c) : Let p: Two numbers are not equal;

q: The squares of two numbers are not equal.

Then, given statement is $p \rightarrow q$

Contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$

i.e., If the squares of two numbers are equal, then the numbers are equal.

- 7. (c) : We have $(p \land \neg q) \lor q \lor (\neg p \land q)$
- $\equiv ((p \lor q) \land (\neg q \lor q)) \lor (\neg p \land q)$
- $\equiv (p \lor q) \land (t) \lor (\neg p \land q) \equiv (p \lor q) \lor (\neg p \land q) \equiv p \lor q$ 8. (b) : We have,

Contrapositive of P: If 7 is not divisible by 2, then 7 is not an odd number. $T \Rightarrow F : F(V_1)$

Contrapositive of Q: If 7 is not an odd number, then 7 is not a prime number. $F \Rightarrow F$: $T(V_2)$

9. (c) : Contrapositive of $p \rightarrow q$ is given by $\neg q \rightarrow \neg p$

10. (b) : Using the rules of logic, we have $\sim s \lor (\sim r \land s)$

 $= (\sim s \lor \sim r) \land (\sim s \land s) = (\sim s \lor \sim r) \land t = \sim s \lor \sim r$

Now the negation of above is $\sim (\sim s \lor \sim r) = s \land r$

11. (a) : The contrapositive of the statement is "If I will come, then it is not raining".

12. (d) : The negation of the statement "Suman is brilliant and dishonest iff suman is rich" is $\sim Q \leftrightarrow P \land \sim R$ 13. (d): See the following truth table.

 $p \leftrightarrow \sim q$ $\sim (p \leftrightarrow \sim q)$ q ~ q $p \leftrightarrow q$ Т Т F F Т Т Т F Т Т F F Τ Т F F F F F F Т F Т Т

As the truth table matches, we have the statement $\sim (p \leftrightarrow \sim q)$ is equivalent to $p \leftrightarrow q$

14. (a) : 1^{st} solution : Let's prepare the truth table for the statements.

p	q	$\sim p$	$\sim q$	$p \wedge \sim q$	$\sim p \land q$	$(p \land \sim q) \land (\sim p \land q)$
Т	T	F	F	F	F	F
Т	F	F	Т	Т	F	F
F	T	Т	F	F	Т	F
F	F	Т	T	F	F	F

Then Statement-1 is fallacy.

	р	q	$\sim p$	$\sim q$	$p \rightarrow q$	$\sim q \rightarrow p$	$(p \to q) \to (\sim q \to p)$		
	Т	Т	F	F	Т	Т	Т		
	Т	F	F	Т	F	F	Т		
	F	Т	Т	F	Т	Т	Т		
	F	F	Т	Т	Т	Т	Т		
. 1									

Then Statement-2 is tautology.

2nd solution : $\sim (\sim p \lor q) \land \sim (\sim q \lor p)$

 $\equiv \sim ((\sim p \lor q) \lor (\sim q \lor p)) \equiv \sim ((p \to q) \lor (q \to p)) \equiv \sim T$

Thus Statement-1 is true because its negation is false.

 $((p \to q) \to (\sim q \to \sim p)) \land ((\sim q \to \sim p) \to (p \to q))$

 $= ((\sim p \lor q) \to (q \lor \sim p)) \land ((q \lor \sim p) \to (\sim p \lor q))$ = $T \land T = T$. Then Statement-2 is true.

15. (c) : The given statement is

"If I become a teacher, then I will open a school"

Negation of the given statement is

" I will become a teacher and I will not open a school"

 $(\because \neg (p \to q) = p \land \neg q)$

16. (c) : The given statement is

P: at least one rational $x \in S$ such that x > 0.

The negation would be : There is no rational number $x \in S$ such that x > 0 which is equivalent to all rational numbers $x \in S$ satisfy $x \le 0$.

17. (b) : Let's prepare the truth table

. (0)	(b) · Det s prepare and train able									
р	q	$\sim q$	$p \leftrightarrow q$	$p \leftrightarrow \sim q$	$\sim (p \leftrightarrow \sim q)$					
Т	T	F	Т	F	Т					
Т	F	Т	F	Т	F					
F	Т	F	F	Т	F					
F	F	Т	Т	F	Т					

As the column for $\neg(p \leftrightarrow \neg q)$ and $(p \leftrightarrow q)$ is the same, we conclude that $\neg(p \leftrightarrow \neg q)$ is equivalent to $(p \leftrightarrow q)$.

 $\sim (p \leftrightarrow \sim q)$ is NOT a tautology because it's statement value is not always true.

18. (c) : Let's simplify the statement

 $p \to (q \to p) = \sim p \lor (q \to p) = \sim p \lor (\sim q \lor p)$

 $= \sim p \lor p \lor \sim q = p \to (p \lor q)$

19. (a) : The given statement $r \equiv -p \leftrightarrow q$

The Statement-1 is $r_1 \equiv (p \land \sim q) \lor (\sim p \land q)$

The Statement-2 is $r_2 \equiv (p \leftrightarrow q) = (p \land q) \lor (q \land p)$ we can establish that $r = r_1$

→===+