CHAPTER

Differential Equations

- Let y = y(x) be the solution of the differential equation $\sin x \frac{dy}{dx} + y \cos x = 4x, x \in (0, \pi)$. If $y\left(\frac{\pi}{2}\right) = 0$, then $y\left(\frac{\pi}{6}\right)$
 - (a) $-\frac{4}{9}\pi^2$ (b) $\frac{4}{9\sqrt{3}}\pi^2$ (c) $\frac{-8}{9\sqrt{3}}\pi^2$ (d) $-\frac{8}{9}\pi^2$
- Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} + 2y = f(x), \text{ where } f(x) = \begin{cases} 1, & x \in [0, 1] \\ 0, & \text{otherwise.} \end{cases}$
 - (a) $\frac{e^2 1}{2e^3}$ (b) $\frac{e^2 1}{e^3}$ (c) $\frac{e^2 + 1}{2e^4}$ (d) $\frac{1}{2e}$
- The curve satisfying the differential equation, $(x^2 - y^2)dx + 2xydy = 0$ and passing through the point (1, 1) is
 - (a) A hyperbola
- (b) A circle of radius two
- (c) A circle of radius one (d) An ellipse
 - (Online 2018)
- The differential equation representing the family of ellipses having foci either on the x-axis or on the y-axis, centre at the origin and passing through the point (0, 3) is:
- (a) x + yy'' = 0 (b) $xyy' y^2 + 9 = 0$ (c) $xyy'' + x(y')^2 yy' = 0$ (d) $xyy' + y^2 9 = 0$

If $(2 + \sin x) \frac{dy}{dx} + (y+1)\cos x = 0$ and y(0) = 1,

then $y\left(\frac{\pi}{2}\right)$ is equal to

- (a) $-\frac{2}{3}$ (b) $-\frac{1}{3}$ (c) $\frac{4}{3}$ (d) $\frac{1}{3}$ (2017)
- The curve satisfying the differential equation, $ydx - (x + 3y^2)dy = 0$ and passing through the point (1, 1), also passes through the point
 - (a) $\left(\frac{1}{4}, \frac{1}{2}\right)$
- (b) $\left(\frac{1}{4}, -\frac{1}{2}\right)$
- (c) $\left(\frac{1}{2}, -\frac{1}{2}\right)$
- (d) $\left(-\frac{1}{3}, \frac{1}{3}\right)$ (Online 2017)

If a curve y = f(x) passes through the point (1, -1) and satisfies the differential equation, y(1 + xy)dx = xdy, then

 $\left(-\frac{6}{7}\right)$ is equal to

- (a) $-\frac{7}{\cdot}$ (b) $-\frac{9}{\cdot}$ (c) $\frac{7}{\cdot}$ (d) $\frac{9}{\cdot}$
- (2016)
- The solution of the differential equation

 $\frac{dy}{dx} + \frac{y}{2}\sec x = \frac{\tan x}{2y}$, where $0 \le x < \frac{\pi}{2}$,

- and y(0) = 1, is given by
- (a) $y^2 = 1 + \frac{x}{\sec x + \tan x}$ (b) $y = 1 + \frac{x}{\sec x + \tan x}$ (c) $y = 1 \frac{x}{\sec x + \tan x}$ (d) $y^2 = 1 \frac{x}{\sec x + \tan x}$

(Online 2016)

(Online 2015)

(Online 2015)

Let y(x) be the solution of the differential equation

 $(x \log x) \longrightarrow + = 7 \log x, (x \ge 1)$

Then y(e) is equal to

(a) 2

(b) 2e

- (c) e
- (d) 0 (2015)
- 10. If y(x) is the solution of the differential equation

- +7. — = $^{7} + 9$ ->, $x \ne -2$ and y(0) = 0, then y(-4) is

- equal to (a) 0
- (b) 1
- (c) -1
- (d) 2
- 11. The solution of the differential equation $ydx - (x + 2y^2)dy = 0$ is x = f(y). If f(-1) = 1, then f(1) is equal to
 - (a) 4

- (b) 3
- (c) 2

- (d) 1
- 12. Let the population of rabbits surviving at a time t be governed by the differential equation $\frac{dp(t)}{dt} = \frac{1}{2}p(t) - 200$.
 - If p(0) = 100 then p(t) equals (a) $300 - 200 e^{-t/2}$
 - (b) $600 500 e^{t/2}$
 - (c) $400 300 e^{-t/2}$
- (d) $400 300 e^{t/2}$
- (2014)

- 13. Solution of the differential equation $\cos x dy = y(\sin x - y) dx$, $0 < x < \pi/2$ is
 - (a) $\sec x = (\tan x + c)y$
 - (b) $v \sec x = \tan x + c$
 - (c) $y \tan x = \sec x + c$
- (d) $\tan x = (\sec x + c)y$ (2010)
- 14. The differential equation which represents the family of curves $y = c_1 e^{c_2 x}$, where c_1 and c_2 are arbitrary constants,
 - (a) y'' = y'y(c) $yy'' = (y')^2$
- (b) yy'' = y'(d) $y' = y^2$

(2009)

15. The solution of the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$

satisfying the condition y(1) = 1 is

- (a) $y = x \ln x + x$
- (b) $y = \ln x + x$
- (c) $v = x \ln x + x^2$
- (d) $v = x e^{(x-1)}$ (2008)
- 16. The differential equation of the family of circles with fixed radius 5 units and centre on the line y = 2 is
 - (a) $(x-2)^2 y'^2 = 25 (y-2)^2$
 - (b) (x-2) $v'^2 = 25 (y-2)^2$
 - (c) (y-2) $y'^2 = 25 (y-2)^2$
 - (d) $(v-2)^2$ $v'^2 = 25 (v-2)^2$
 - (2008)
- 17. The differential equation of all circles passing through the origin and having their centres on the x-axis is

 - (a) $y^2 = x^2 + 2xy\frac{dy}{dx}$ (b) $y^2 = x^2 2xy\frac{dy}{dx}$

 - (c) $x^2 = y^2 + xy \frac{dy}{dx}$ (d) $x^2 = y^2 + 3xy \frac{dy}{dx}$ (2007)
- 18. The differential equation whose solution is $Ax^2 + By^2 = 1$, where A and B are arbitrary constants is of
 - (a) second order and second degree
 - (b) first order and second degree
 - (c) first order and first degree
 - (d) second order and first degree
- 19. If $x \frac{dy}{dx} = y(\log y \log x + 1)$, then the solution of the

equation is

- (a) $x \log \left(\frac{y}{x}\right) = cy$ (b) $y \log \left(\frac{x}{y}\right) = cx$
- (c) $\log\left(\frac{x}{y}\right) = cy$ (d) $\log\left(\frac{y}{x}\right) = cx$ (2005) (e) $\frac{1}{4}e^{-2x} + cx^2 + d$ (d) $\frac{1}{4}e^{-2x} + c + d$

- 20. The differential equation representing the family of curves $v^2 = 2c(x + \sqrt{c})$, where c > 0, is a parameter, is of order and degree as follows
 - (a) order 1, degree 1
- (b) order 1, degree 2
- (c) order 2, degree 2
- (d) order 1, degree 3
- 21. The solution of the differential equation $ydx + (x + x^2y)dy = 0$ is

 - (a) $\frac{1}{rv} + \log y = C$ (b) $-\frac{1}{rv} + \log y = C$
 - (c) $-\frac{1}{xy} = C$
- (d) $\log y = Cx$ (2004)
- 22. The differential equation for the family of curves $x^2 + y^2$ -2ay = 0, where a is an arbitrary constant is
 - (a) $(x^2 y^2)y' = 2xy$
- (b) $2(x^2 + y^2)y' = xy$
- (c) $2(x^2 y^2)y' = xy$
- (d) $(x^2 + y^2)y' = 2xy$ (2004)
- **23.** If $x = e^{y + e^{y + \dots \text{ to } \infty}}$, x > 0 then $\frac{dy}{dx}$ is
 - (a) $\frac{1-x}{x}$ (b) $\frac{1}{x}$ (c) $\frac{x}{1+x}$ (d) $\frac{1+x}{x}$
- 24. The solution of the differential equation
 - $(1+y^2) + (x-e^{\tan^{-1}y})\frac{dy}{dx} = 0$ is
 - (a) $2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + k$ (b) $xe^{\tan^{-1}y} = \tan^{-1}y + k$
 - (c) $xe^{2\tan^{-1}y} = e^{\tan^{-1}y} + k$ (d) $(x-2) = ke^{-\tan^{-1}y}$
- - (2003)
- 25. The degree and order of the differential equation of the family of all parabolas whose axis is x-axis, are respectively
 - (a) 1, 2
- (b) 3, 2
- (c) 2, 3
- (d) 2, 1
- (2003)

(2002)

26. The order and degree of the differential equation

$$\left(1 + 3\frac{dy}{dx}\right)^{\frac{2}{3}} = 4\frac{d^3y}{dx^3} \text{ are}$$

- (a) $1, \frac{2}{3}$ (b) 3, 1 (c) 3, 3

- 27. The solution of the equation $\frac{d^2y}{dx^2} = e^{-2x}$

 - (a) $\frac{1}{4}e^{-2x}$ (b) $\frac{1}{4}e^{-2x} + cx + d$
- (2002)

(2006)

- 1. (d) **4.** (b) **5.** (d) (d) 7. (d) 8. (d) **9.** (a) 10. (a) 11. (b) 12. (d) 2. (a) **3.** (c) 6.
- 13. (a) 14. (c) 15. (a) 16. (d) 17. (a) 18. (d) 19. (d) **20.** (d) 21. (b) **22.** (a) 23. (a) 24. (a)
- 25. (a) 26. (c) 27. (b)

Explanations

1. **(d)**:
$$\frac{dy}{dx} + (\cot x)y = 4x \csc x$$

I.F. =
$$e^{\int \cot x \, dx} = e^{\log(\sin x)} = \sin x$$

Then the solution is given by $y \cdot \sin x = \int 4x \csc(x) \sin x \, dx + C$

$$i.e. \quad y \sin x = 2x^2 + C$$

As
$$y(\pi/2) = 0$$
, we have $C = -\pi^2/2$
So, $y\sin x = 2x^2 - \pi^2/2$

So,
$$y\sin x = 2x^2 - \pi^2/2$$

$$\therefore y(\pi/6) = 2\left\{\frac{2\pi^2}{36} - \frac{\pi^2}{2}\right\} = 2\pi^2 \left\{\frac{1}{18} - \frac{1}{2}\right\} = -\frac{8}{9}\pi^2$$

(a): We have, $\frac{dy}{dx} + 2y = f(x)$. It is a linear differential equation.

$$\therefore \text{ I.F.} = e^{\int 2dx} = e^{2x}$$

$$\therefore$$
 The required solution is $y \times (e^{2x}) = \int_0^x f(x) \times e^{2x} dx + c$...(i)

$$\Rightarrow y = e^{-2x} \int_0^x f(x) \times e^{2x} dx + ce^{-2x}$$

Now,
$$y(0) = 0 \Rightarrow c = 0$$

$$\therefore$$
 Solution becomes $y(x) = e^{-2x} \int_{0}^{x} f(x) \times e^{2x} dx$

Now,
$$y\left(\frac{3}{2}\right) = e^{-3} \int_{0}^{3/2} f(x)e^{2x} dx = e^{-3} \left[\int_{0}^{1} f(x)e^{2x} dx + \int_{1}^{3/2} f(x)e^{2x} dx \right]$$

$$= e^{-3} \left[\int_{0}^{1} e^{2x} dx + 0 \right] = e^{-3} \left| \frac{e^{2x}}{2} \right|_{0}^{1} = \frac{e^{-3}}{2} (e^{2} - 1) = \frac{e^{2} - 1}{2e^{3}}$$

3. (c): The given curve is
$$(x^2 - y^2)dx + 2xydy = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$$
, Put $y = vx \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}$

$$\therefore v + x \frac{dv}{dx} = \frac{v^2 x^2 - x^2}{2x^2 v} \implies v + x \cdot \frac{dv}{dx} = \frac{v^2 - 1}{2v}$$

$$\Rightarrow x \cdot \frac{dv}{dx} = \frac{v^2 - 1 - 2v^2}{2v} = \frac{-(v^2 + 1)}{2v} \Rightarrow \left(\frac{2v}{v^2 + 1}\right) dv = -\frac{1}{x} \cdot dx$$

$$\Rightarrow \log(v^2 + 1) = -\log x + \log C$$

$$\Rightarrow \log(v^2 + 1) = \log \frac{c}{r} \Rightarrow x(v^2 + 1) = C$$

$$\Rightarrow x \left(\frac{y^2}{x^2} + 1 \right) = C$$

Now, the curves passes through (1, 1) : $1(1 + 1) = C \Rightarrow C = 2$

$$\therefore$$
 Required equation of curve is $\frac{y^2}{x} + x = 2 \implies y^2 + x^2 = 2x$

$$\Rightarrow x^2 + y^2 - 2x = 0 \Rightarrow (x - 1)^2 + (y - 0)^2 = (1)^2$$

4. (b): Equation of ellipse is
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Since ellipse passes through point (0, 3)

So,
$$0 + \frac{9}{h^2} = 1 \implies b^2 = 9 : \frac{x^2}{a^2} + \frac{y^2}{9} = 1$$
 ...(i)

$$\frac{2x}{a^2} + \frac{2y}{9} \cdot \frac{dy}{dx} = 0 \implies \frac{x}{a^2} = -\frac{y}{9} \cdot \frac{dy}{dx} \implies \frac{x}{a^2} = -\frac{y}{9}y'$$

$$\implies \frac{1}{a^2} = -\frac{y}{9x}y' \qquad \dots(ii)$$

Using (ii) in (i), we get
$$x^2 \left(-\frac{y}{9x}y' \right) + \frac{y^2}{9} = 1$$

$$\Rightarrow -xyy' + y^2 = 9 \Rightarrow xyy' - y^2 + 9 = 0$$

5. (d): We have
$$\frac{dy}{dx} = -\frac{(y+1)\cos x}{2+\sin x}$$

$$\int \frac{dy}{y+1} = -\int \frac{\cos x}{2 + \sin x} \, dx$$

$$\Rightarrow \ln(y+1) = -\ln(2+\sin x) + \ln \lambda \Rightarrow (y+1)(2+\sin x) = \lambda$$

As $y(0) = 1 \Rightarrow 2 \cdot 2 = \lambda$ or $\lambda = 4$

At
$$x = \frac{\pi}{2}$$
, $y\left(\frac{\pi}{2}\right) = \frac{4}{2+1} - 1 = \frac{4}{3} - 1 = \frac{1}{3}$

6. (d): We have,
$$ydx - (x + 3y^2)dy = 0$$

$$\Rightarrow ydx = (x + 3y^2)dy \Rightarrow \frac{dx}{dy} = \frac{x}{y} + 3y \Rightarrow \frac{dx}{dy} - \frac{x}{y} = 3y$$

This is homogeneous linear differential equation.

$$\therefore \quad \text{I.F.} = e^{-\int \frac{1}{y} dy} = e^{-\ln y} = \frac{1}{y}$$

$$\therefore \text{ Solution is, } \frac{x}{y} = \int 3y \cdot \frac{1}{y} dy \implies \frac{x}{y} = 3y + c \qquad \dots (i)$$

Since (i) passes through
$$(1, 1)$$
 : $1 = 3 + c \Rightarrow c = -2$
: Required curve is $x = 3y^2 - 2y$

$$\therefore$$
 Required curve is $x = 3y^2 - 2y$

This curve also passes through the point $\left(-\frac{1}{3}, \frac{1}{3}\right)$

(d): The differential equation can be rewritten as

$$xdy = ydx + xy^2dx \implies \frac{xdy - ydx}{y^2} = xdx$$

On integrating, we get,
$$-\frac{x}{y} = \frac{x^2}{2} + C$$

As the curve passes through (1, -1), we have $1 = \frac{1}{2} + C$ \therefore $C = \frac{1}{2}$

Now the curve $f(x) = x^2 + 1 + \frac{2x}{y} = 0$

$$\Rightarrow y = -\frac{2x}{1+x^2} : f\left(-\frac{1}{2}\right) = \frac{-2(-1/2)}{1+\frac{1}{4}} = \frac{4}{5}$$

8. (d): We have,
$$\frac{dy}{dx} + \frac{y}{2} \sec x = \frac{\tan x}{2y}$$

$$\Rightarrow 2y\frac{dy}{dx} + y^2 \sec x = \tan x \qquad ...(i)$$

Put
$$y^2 = t \Rightarrow 2y \frac{dy}{dx} = \frac{dt}{dx}$$

$$\therefore \quad \text{Equation (i) becomes, } \frac{dt}{dx} + t \sec x = \tan x$$

I.F. =
$$e^{\int \sec x dx} = e^{\ln(\sec x + \tan x)} = \sec x + \tan x$$

:. Solution is given by

$$t(\sec x + \tan x) = \int \tan x (\sec x + \tan x) dx$$

$$\Rightarrow t(\sec x + \tan x) = \sec x + \tan x - x + c$$

$$\Rightarrow t = 1 - \frac{x}{\sec x + \tan x} + c \Rightarrow y^2 = 1 - \frac{x}{\sec x + \tan x} + c$$
Now, $y(0) = 1 \Rightarrow 1 = 1 - 0 + c \Rightarrow c = 0$

$$\therefore \text{ Particular solution is } ^7 = 6 - \frac{}{-\text{qo} + \mu \text{nz}}$$

9. (a): The equation can be written as
$$-+\left(\frac{6}{xz}\right) = 7$$

It is linear in y. Thus PMD $\int \frac{1}{x} = xx - xx = xx$.

The solution is $y = 1 - \frac{x}{\sec x + \tan x}$

At x = 1, we have $\lambda = 2$

The solution become $y \ln x = 2x(\ln x - 1) + 2$

Set x = e in the above to obtain y = 2e (lne – 1) + 2 = 2 The value of y at x = e, i.e. y(e) = 2

10. (a):
$$-+7. - = ^7 + 9 - > 1 \neq -7$$

$$\Rightarrow = \frac{7+9->}{+7} \Rightarrow \int = \int \frac{7+9->}{+7}$$

$$\Rightarrow = \int \left(+7-\frac{68}{+7}\right) \Rightarrow = \int -7+7 \cdot -68 \int \frac{6}{+7}$$

$$\Rightarrow = \frac{7}{-7}+7-68 \times 8 \cdot 8 \cdot 7+$$

Given that $y(0) = 0 \Rightarrow 0 = -13\log 2 + c$

$$\Rightarrow = \frac{7}{7} + 7 - 68x(s + 7 + 68x(s 7))$$

\Rightarrow y(-4) = 8 - 8 - 13 \log2 + 13 \log2 = 0

$$\Rightarrow$$
 $y(-4) = 8 - 8 - 13 \log 2 + 13 \log 2 = 0$

11. **(b)**: We have,
$$--+7^{-7}$$
. $--=5$

$$\Rightarrow$$
 =- +7 7 . \longrightarrow \longrightarrow = +7 7

$$\Rightarrow -+\left(-\frac{6}{-}\right) = 7 \qquad \dots (i)$$

$$P3MB = \int_{-6}^{6} = -xz = -6 = \frac{6}{2}$$

$$\therefore \land t \neq -\{x \neq \{z \mid r \neq q\} \times \text{mpl}\{z \mid u \mid u = \left(\frac{6}{2}\right) = \int_{-7}^{2} \cdot x \times \frac{6}{2} + \frac{6}{2} = \int_{-7}^{2} \cdot x \times \frac{6}{2} + \frac{6}{2} = \frac{6}{2} \cdot x \times \frac{6}{2} + \frac{6}{2} \cdot x \times \frac{6}{2} + \frac{6}{2} = \frac{6}{2} \cdot x \times \frac{6}{2} + \frac{6}{2} + \frac{6}{2} \cdot x \times \frac{6}{2} + \frac{6}{2}$$

$$\Rightarrow \frac{x}{y} = 2y + c \qquad ...(i)$$

When
$$x = 1$$
 and $y = -1$ we get, $c = 1$

The equation (ii) becomes
$$-=7+6$$
 ...(iii)

Put
$$y = 1$$
 in (iii), we get $x = 2 + 1 = 3$

12. (d):
$$\frac{dp}{dt} = \frac{1}{2}p(t) - 200$$

$$\Rightarrow \frac{dp}{p-400} = \frac{1}{2}dt$$

Integrating, we get,
$$\ln |p - 400| = \frac{1}{2}t + c$$

 $t = 0, p = 100 \implies \ln 300 = c$

$$t = 0, p = 100 \implies \ln 300 = c$$

Again,
$$\ln\left(\frac{p-400}{300}\right) = \frac{t}{2} \implies |p-400| = 300e^{t/2}$$

$$\therefore 400 - p = 300e^{t/2} \quad (p < 400) \therefore p = 400 - 300e^{t/2}$$

13. (a): 1st Solution:
$$\cos x \, dy = y(\sin x - y)dx$$

$$\Rightarrow \cos x \, dy = y \sin x \, dx - y^2 \, dx$$

$$\Rightarrow$$
 cos $x dy - y \sin x dx = -y^2 dx$

$$\Rightarrow d(y\cos x) = -y^2 dx \Rightarrow \frac{d(y\cos x)}{(y\cos x)^2} = -\frac{dx}{\cos^2 x}$$

On integration, we have

$$\Rightarrow$$
 - sec $x = -y \tan x + yk$

$$\Rightarrow$$
 sec $x = y(\tan x + c)$ where c is a constant

2nd Solution:

$$\frac{dy}{dx} = \frac{y(\sin x - y)}{\cos x} \Rightarrow \frac{dy}{dx} = y \tan x - y^2 \sec x$$

$$\Rightarrow \frac{dy}{dx} - y \tan x = -y^2 \sec x \Rightarrow \frac{1}{y^2} \frac{dy}{dx} - \frac{1}{y} \tan x = -\sec x$$

Setting,
$$-\frac{1}{y} = v$$
, we have

$$\frac{dv}{dx}$$
 + $(\tan x)v = -\sec x$, which is linear in v.

$$I.F. = e^{\int \tan x \, dx} = e^{\ln \sec x} = \sec x$$

The solution is $v \times \sec x = \int -\sec^2 x \, dx + k$

$$\Rightarrow v \sec x = -\tan x + k$$

$$\Rightarrow -\frac{\sec x}{y} = -\tan x - c \Rightarrow \sec x = y(\tan x + c)$$

14. (c):
$$y = c_1 e^{c_2 x}$$

Differentiating w.r.t. x, we get
$$y' = c_1c_2e^{c_2x} = c_2y$$
 ...(i)

Again differentiating w.r.t.
$$x$$
, $y'' = c_2y'$...(ii)

From (i) and (ii) upon division
$$\frac{y'}{y''} = \frac{y}{y'} \Rightarrow y''y = (y')^2$$

which is the desired differential equation of the family of curves.

15. (a): 1st Solution (Homogeneous equation):

Let
$$y = vx$$
, so that $\frac{dy}{dx} = v + x \frac{dv}{dx}$

We have
$$v + x \frac{dv}{dx} = \frac{x + vx}{x} = 1 + v$$

$$dx \qquad x$$

$$\Rightarrow x \frac{dv}{dx} = 1 \Rightarrow dv = \frac{dx}{x} \Rightarrow v = \ln x + \ln k$$
As $v = y/x$ we have $y = x \ln x + (\ln k)x$

As
$$v = y/x$$
 we have $y = x \ln x + (\ln k)x$

At
$$x = 1$$
, $y = 1$ giving

At
$$x = 1$$
, $y = 1$ giving
 $1 = 0 + (\ln k)$ \therefore $\ln k = 1$, Then $y = x \ln x + x$

2nd Solution (Inspection):

Rewriting the equation $\frac{dy}{dx} = \frac{x+y}{x}$ as xdy - ydx = xdx

We have
$$\frac{xdy - ydx}{x^2} = \frac{dx}{x}$$
 \Rightarrow $d\left(\frac{y}{x}\right) = \frac{dx}{x}$

On integration $\frac{y}{x} = \ln x + k \implies y = x \ln x + kx$

As before, evaluating constant, $y = x \ln x + x$

16. (d): The equation of circle is
$$(x-\alpha)^2 + (y-2)^2 = 25$$
 ...(1

Differentiating w.r.t. x

$$(x-\alpha) + (y-2)\frac{dy}{dx} = 0 \implies x-\alpha = -(y-2)\frac{dy}{dx} \qquad \dots (2)$$

From (1) and (2) on eliminating 'α

$$(y-2)^2 \left(\frac{dy}{dx}\right)^2 + (y-2)^2 = 25 \implies (y-2)^2 (y')^2 = 25 - (y-2)^2$$

17. (a): General equation of all such circles is $(x-h)^2 + (y-0)^2 = h^2$ (i) where h is parameter $\Rightarrow (x-h)^2 + y^2 = h^2$

Differentiating, we get $2(x-h) + 2y \frac{dy}{dx} = 0$

$$h = x + y \frac{dy}{dx}$$
 to eliminate h, putting value of h in

equation (i) we get $y^2 = x^2 + 2xy \frac{dy}{dx}$.

18. (d): Given $A x^2 + B y^2 = 1$

As solution having two constants, : order of differential equation is 2 so our choices (b) & (c) are discarded from the list, only choices (a) and (d) are possible

Again
$$A x^2 + B y^2 = 1$$
 ...(*)

Differentiating (*) w.r.t. x

$$-\frac{A}{B} = \frac{y}{x} \frac{dy}{dx} \qquad \dots (i)$$

Again on differentiating
$$-\frac{A}{B} = y \left(\frac{d^2 y}{dx^2}\right) + \left(\frac{dy}{dx}\right)^2$$
 ...(ii)

By (i) and (ii) we get $xy \frac{d^2y}{dx^2} + x \left(\frac{dy}{dx}\right)^2 = y \left(\frac{dy}{dx}\right)$

 \Rightarrow order 2 and degree 1

19. (d):
$$x \frac{dy}{dx} = y(\log y - \log x + 1)$$

$$\therefore \frac{dy}{dx} = \frac{y}{x} \left(\log \left(\frac{y}{x} \right) + 1 \right) \text{ Now put } \frac{y}{x} = v$$

$$\therefore v \log v \, dx = x \, dv \implies \frac{dv}{v \log v} = \frac{dx}{x} \implies \log \left(\frac{y}{x}\right) = cx.$$

20. (d):
$$y^2 = 2c(x+\sqrt{c})$$
 ...(

$$\therefore \quad 2yy_1 = 2c \ \therefore \ yy_1 = c$$

Now putting $c = yy_1$ in (i) we get

$$y^{2} = 2 \cdot yy_{1} \left(x + \sqrt{yy_{1}} \right) \Rightarrow \left(y^{2} - 2xyy_{1} \right)^{2} = 4 \left(yy_{1} \right)^{3}$$

\Rightarrow \left(y^{2} - 2xyy_{1} \right)^{2} = 4y^{3}y_{1}^{3} \Rightarrow \text{ order 1, degree 3.}

21. (b) :
$$y dx = -(x^2y + x) dy \Rightarrow ydx + xdy = -x^2y dy$$

$$\Rightarrow \frac{ydx + xdy}{(xy)^2} = \frac{-dy}{y} \Rightarrow \frac{d(xy)}{(xy)^2} = -\frac{dy}{y}$$

$$\Rightarrow d\left(-\frac{1}{xy}\right) = -\frac{dy}{y} \Rightarrow -\frac{1}{xy} = -\log y + C$$

$$\Rightarrow -\frac{1}{rv} + \log y = C$$

22. (a) : Given family of curve is $x^2 + y^2 - 2ay = 0$...(1)

$$\Rightarrow 2a = \frac{x^2 + y^2}{y}.$$

Also from (1), 2x + 2yy' - 2a y' = 0

$$\Rightarrow 2x + 2yy' - \left(\frac{x^2 + y^2}{y}\right)y' = 0$$

$$\Rightarrow$$
 2xy + y'(2y² - x² - y²) = 0 \Rightarrow y'(x² - y²) = 2xy

23. (a) :
$$x = e^{y + e^{y + e^{y - x}}} \Rightarrow x = e^{y + x}$$

Differentiate w.r.t. x after taking logarithm both sides

$$\therefore \quad \frac{1}{x} = 1 + \frac{dy}{dx} \quad \Rightarrow \quad \frac{dy}{dx} = \frac{1 - x}{x}$$

24. (a): From the given equation
$$(1 + y^2) \frac{dx}{dy} + 1x = e^{\tan^{-1} y}$$

$$\Rightarrow \frac{dx}{dy} + \frac{1}{1+y^2}x = \frac{e^{\tan^{-1}y}}{1+y^2} \Rightarrow x \cdot \text{I.F.} = \int y \cdot \text{I.F.} \, dy$$

where I.F. =
$$e^{\int \frac{1}{1+y^2} dy} = e^{\tan^{-1} y} \implies x e^{\tan^{-1} y} = \frac{e^{2 \tan^{-1} y}}{2} + c$$

$$\Rightarrow 2 x e^{\tan^{-1} y} = e^{2 \tan^{-1} y} + k$$

25. (a): As axis of parabola is x-axis which means focus lies on x-axis. Equation of such parabolas is given by

$$y^{2} = 4a(x - k)$$
.. (i)
$$\Rightarrow 2yy_{1} = 4a \text{ (by differentiating (i) w.r.t. } x)$$

$$\Rightarrow y \frac{dy}{dx} = 2a$$

$$y \frac{dy}{dx} = 2a$$

$$y \frac{dy}{dx} = a$$

$$y \frac{dy}{dx} = a$$

$$\Rightarrow \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$$
 (by differentiating (ii) w.r. to x)

⇒ Order 2 and degree 1 (Concept: Exponent of highest order derivative is called degree and order of that derivative is called order of the differential equation.)

26. (c) :
$$\left(1 + 3\frac{dy}{dx}\right)^{\frac{2}{3}} = 4\left(\frac{d^3y}{dx^3}\right) \Rightarrow \left(1 + 3\frac{dy}{dx}\right)^2 = \left[4\frac{d^3y}{dx^3}\right]^{\frac{2}{3}}$$

: Highest order is 3 whose exponent is also 3.

27. (b) : Given
$$\frac{d^2y}{dx^2} = e^{-2x}$$

$$\therefore \frac{dy}{dx} = \frac{e^{-2x}}{-2} + c \qquad \therefore \qquad \qquad y = \frac{e^{-2x}}{4} + cx + d$$