CHAPTER

Matrices and Determinants

- If the system of linear equations 1. x + ky + 3z = 03x + ky - 2z = 02x + 4y - 3z = 0has a non-zero solutions (x, y, z), then $\frac{xz}{y^2}$ is equal to (d) -30 (2018)(a) 30 (b) -10 (c) 10 |x - 4|2x2x $2x = (A+Bx)(x-A)^2$, then 2xx - 42. If x - 42x2*x* the ordered pair (A, B) is equal to (a) (4, 5) (b) (-4, -5)(c) (-4, 3)(d) (-4, 5)(2018)3. Let A be a matrix such that $A \cdot \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$ is a scalar matrix and |3A|=108. Then A^2 equals : 36 -32 (b) (a) -32 36 0 4 (c) $\begin{bmatrix} 4 & -32 \\ 0 & 36 \end{bmatrix}$ (Online 2018) Let S be the set of all real values of k for which the system 4. of linear equations x + y + z = 2; 2x + y - z = 3; 3x + 2y + kz = 4 has a unique solution. Then S is (b) equal to R(a) an empty set (d) equal to $R - \{0\}$ (c) equal to $\{0\}$ (Online 2018) If the system of linear equations : 5. x + ay + z = 3, x + 2y + 2z = 6, x + 5y + 3z = bhas no solution, then (b) $a \neq -1, b = 9$ (a) a = -1, b = 9(d) $a = -1, b \neq 9$ (Online 2018) (c) $a = 1, b \neq 9$ Suppose A is any 3×3 non-singular matrix and 6 (A - 3I) (A - 5I) = O, where $I = I_3$ and $O = O_3$. If $\alpha A + \beta A^{-1} = 4I$, then $\alpha + \beta$ is equal to (d) 8 (Online 2018) (a) 13 (b) 7 (c) 12 $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ Let $A = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$ and $B = A^{20}$. Then the sum of the elements 7. 11 1 1 of the first column of B is :
- (a) 211 (b) 251 (c) 231 (d) 210 (Online 2018) 8. If $A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$, then adj $(3A^2 + 12A)$ is equal to (a) $\begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$ (b) $\begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}$ (c) $\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$ (d) $\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$ (2017) 9. If S is the set of distinct values of 'b' for which the following
- system of linear equations x + y + z = 1, x + ay + z = 1, ax + by + z = 0has no solution then S is (a) an infinite set (b) a finite set containing two or more elements (c) a singleton (d) an empty set (2017)0 $\cos x - \sin x$ **10.** If $S = \{x \in [0, 2\pi] : |\sin x|$ 0 $\cos x = 0$ 0 $|\cos x | \sin x$ then $\sum_{x \in S} \tan\left(\frac{\pi}{3} + x\right)$ is equal to (a) $-2 + \sqrt{3}$ (b) $4 + 2\sqrt{3}$
 - (a) $-2 + \sqrt{3}$ (b) $4 + 2\sqrt{3}$ (c) $-4 - 2\sqrt{3}$ (d) $-2 - \sqrt{3}$ (Online 2017)
- 11. The number of real values of λ for which the system of linear equations
 2x + 4y λz = 0, 4x + λy + 2z = 0, λx + 2y + 2z = 0
 - has infinitely many solutions, is (a) 0 (b) 1(c) 2 (d) 3 (Online 2017)
- 12. Let A be any 3×3 invertible matrix. Then which one of the following is not always true?
 - (a) adj (adj (A)) = $|A| \cdot (adj(A))^{-1}$ (b) adj (adj (A)) = $|A|^2 \cdot (adj(A))^{-1}$
 - (b) adj (adj (A)) = $|A| \cdot A^{-1}$ (c) adj (A) = $|A| \cdot A^{-1}$
 - (c) adj (A) = |A| |A|(d) adj $(adj (A)) = |A| \cdot A$ (Online 2017)
- 13. For two 3×3 matrices A and B, let A + B = 2B' and $3A + 2B = I_3$, where B' is the transpose of B and I_3 is 3×3 identity matrix. Then (a) $10A + 5B = 3I_3$ (b) $5A + 10B = 2I_3$
 - (c) $3A + 6B = 2I_3$ (d) $B + 2A = I_3$ (Online 2017)

14. If $W=\begin{bmatrix} : & -\\ 8 & 7 \end{bmatrix}$ and A adj $A = AA^{T}$, then 5a + b is equal (a) -1 (b) 5 (c) 4 (d) 13 (2016) 6 7 7 **21.** If $W= \begin{vmatrix} 7 & 6 & -7 \end{vmatrix}$ is a matrix satisfying the equation 7 $AA^{T} = 9I$, where I is a 3 × 3 identity matrix, then the ordered 15. The system of linear equations pair (a, b) is equal to $x + \lambda y - z = 0, \ \lambda x - y - z = 0, \ x + y - \lambda z = 0$ (a) (2, 1) (b) (-2, -1)has a non-trivial solution for (d) (-2, 1) (2015)(c) (2, -1)(a) infinitely many values of λ 22. The least value of the product xyz for which the determinant (b) exactly one value of λ (c) exactly two values of λ 6 6 (d) exactly three values of λ (2016)6 is non-negative is 6 16. The number of distinct real roots of the equation, 6 6 $\cos x \quad \sin x \quad \sin x$ (b) $-6; \sqrt{7}$ (d) -1(a) $-7\sqrt{7}$ (Online 2015) $\sin x \cos x \sin x = 0$ in the interval $\left| -\frac{\pi}{4}, \frac{\pi}{4} \right|$ is (c) -8 $\sin x \quad \sin x \quad \cos x$ 23. If $W = \begin{bmatrix} 5 & -6 \\ 6 & 5 \end{bmatrix}$, then which one of the following statements (d) 3 (Online 2016) (b) 4 (c) 2 (a) 1 is not correct? 17. If $P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^T$, then $P^T Q^{2015} P$ (a) $A^4 - I = A^2 + I$ (b) $A^3 - I = A(A - I)$ (c) $A^2 + I = A(A^2 - I)$ (d) $A^3 + I = A(A^3 - I)$ (Online 2015) **24.** If A is a 3×3 matrix such that $|5 \cdot adjA| = 5$, then |A| is equal is: to (a) $\pm \frac{6}{2}$ (b) ± 5 (c) ± 1 (d) $\pm \frac{6}{72}$ 2015 1 2015 0 0 (b) (a) (Online 2015) 2015 1 1 2015 **25.** If $\begin{vmatrix} 7 + & +6 & -7 \\ 7 + 8 & -6 & 8 & 8 & -8 \\ 7 + 7 & +8 & 7 & -6 & 7 & -6 \end{vmatrix} = -671$ then 'a' is equal (d) (c) (Online 2016) 18. Let A be a 3×3 matrix such that $A^2 - 5A + 7I = O$. to Statement - I : $A^{-1} = \frac{1}{7}(5I - A)$. (b) 24 (c) -12 (d) -24 (a) 12 Statement - II : The polynomial $A^3 - 2A^2 - 3A + I$ can be (Online 2015) reduced to 5(A - 4I). Then : **26.** If A is an 3×3 non-singular matrix such that AA' = A'A and (a) Both the statements are true. $B = A^{-1}A'$, then BB' equals (b) Both the statements are false. (a) I (b) B^{-1} (c) Statement-I is true, but Statement-II is false. (c) $(B^{-1})'$ (d) I + B(2014)(d) Statement-I is false, but Statement-II is true. **27.** If α , $\beta \neq 0$ and $f(n) = \alpha^n + \beta^n$ and (Online 2016) 3 1+f(1) 1+f(2)**19.** If $A = \begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix}$, then the determinant of the matrix $(A^{2016} - 2A^{2015} - A^{2014})$ is $\left|1+f(1) \quad 1+f(2) \quad 1+f(3)\right| = K(1-\alpha)^2 (1-\beta)^2 (\alpha-\beta)^2,$ 1+f(2) 1+f(3) 1+f(4)(a) -175 (b) 2014 (c) 2016 (d) -25 then K is equal to (Online 2016) (a) $\frac{1}{\alpha\beta}$ (b) 1 (c) -1 (d) $\alpha\beta$ **20.** The set of all values of λ for which the system of linear (2014)equations $2x_1 - 2x_2 + x_3 = \lambda x_1, \ 2x_1 - 3x_2 + 2x_3 = \lambda x_2,$ $\begin{bmatrix} 1 & \alpha & 3 \end{bmatrix}$ **28.** If $P = \begin{vmatrix} 1 & 3 & 3 \end{vmatrix}$ is the adjoint of a 3 \times 3 matrix A and $-x_1 + 2x_2 = \lambda x_3$ has a non-trivial solution, 2 4 4 (a) contains two elements. |A| = 4, then α is equal to (b) contains more than two elements. (a) 11 (b) 5 (c) 0 (d) 4 (2013)(c) is an empty set. (d) is a singleton. (2015)

29. The number of values of k, for which the system of equations (k + 1)x + 8y = 4k, kx + (k + 3)y = 3k - 1 has no solution, is (a) 1 (b) 2 (c) 3 (d) infinite (2013)

$$(1 \ 0 \ 0)$$

30. Let
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
. If u_1 and u_2 are column matrices such

that
$$Au_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 and $Au_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, then $u_1 + u_2$ is equal to

(a)
$$\begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ (c) $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ (d) $\begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ (2012)

- **31.** Let P and Q be 3×3 matrices with $P \neq Q$. If $P^3 = Q^3$ and $P^2Q = Q^2P$, then determinant of $(P^2 + Q^2)$ is equal to (a) 0 (b) -1 (c) -2 (d) 1 (2012)
- 32. Let A and B be two symmetric matrices of order 3.Statement-1 : A(BA) and (AB)A are symmetric matrices.Statement-2 : AB is symmetric matrix if matrix multiplication of A with B is commutative.
 - (a) Statement-1 is true, Statement-2 is false.
 - (b) Statement-1 is false, Statement-2 is true.
 - (c) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
 - (d) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. (2011)
- **33.** The number of values of k for which the linear equations 4x + ky + 2z = 0
 - kx + 4y + z = 0
 - 2x + 2y + z = 0

possess a non-zero solution is

(a) 1 (b) zero (c) 3 (d) 2
$$(2011)$$

34. Consider the system of linear equations

 $x_1 + 2x_2 + x_3 = 3$ $2x_1 + 3x_2 + x_3 = 3$ $3x_1 + 5x_2 + 2x_3 = 1$ The system has

- (a) infinite number of solutions
- (b) exactly 3 solutions
- (c) a unique solution
- (d) no solution (2010)
- **35.** The number of 3×3 non-singular matrices, with four entries as 1 and all other entries as 0, is
 - (a) less than 4 (b) 5

(c) 6 (d) at least 7
$$(2010)$$

36. Let A be a 2×2 matrix with non-zero entries and let $A^2 = I$, where I is 2×2 identity matrix. Define Tr(A) =sum of diagonal elements of A and |A| = determinant of matrix A.

Statement-1 : Tr(A) = 0.

- **Statement-2** : |A| = 1.
- (a) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

- (b) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- (c) Statement-1 is true, Statement-2 is false.
- (d) Statement-1 is false, Statement-2 is true. (2010)
- **37.** Let A be a 2×2 matrix **Statement-1:** adj (adj A) = A
 - **Statement-2:** |adj A| = |A|
 - (a) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
 - (b) Statement-1 is true, Statement-2 is false.
 - (c) Statement-1 is false, Statement-2 is true.
 - (d) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. (2009)
- **38.** Let a, b, c be such that $b(a + c) \neq 0$. If

$$\begin{vmatrix} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1 \end{vmatrix} + \begin{vmatrix} a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2}a & (-1)^{n+1}b & (-1)^n c \end{vmatrix} = 0,$$

then the value of n is

- (a) any even integer
 (b) any odd integer
 (c) any integer
 (d) zero
 (2009)
- **39.** Let A be a 2 × 2 matrix with real entries. Let I be the 2 × 2 identity matrix. Denote by tr(A), the sum of diagonal entries of A. Assume that $A^2 = I$.
 - **Statement-1 :** If $A \neq I$ and $A \neq -I$, then det A = -1.

Statement-2: If $A \neq I$ and $A \neq -I$, then $tr(A) \neq 0$.

- (a) Statement-1 is true, Statement-2 is false.
- (b) Statement-1 is false, Statement-2 is true.
- (c) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (d) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. (2008)
- 40. Let a, b, c be any real numbers. Suppose that there are real numbers x, y, z not all zero such that x = cy + bz, y = az + cx and z = bx + ay. Then $a^2 + b^2 + c^2 + 2abc$ is equal to (a) 1 (b) 2 (c) -1 (d) 0 (2008)
- **41.** Let *A* be a square matrix all of whose entries are integers. Then which one of the following is true?
 - (a) If det $A = \pm 1$, then A^{-1} need not exist
 - (b) If det $A = \pm 1$, then A^{-1} exists but all its entries are not necessarily integers
 - (c) If det $A \neq \pm 1$, then A^{-1} exists and all its entries are nonintegers
 - (d) If det $A = \pm 1$, then A^{-1} exists and all its entries are integers (2008)

42. If $D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix}$ for $x \neq 0, y \neq 0$ then D is

- (a) divisible by x but not y
- (b) divisible by y but not x
- (c) divisible by neither x nor y
- (d) divisible by both x and y. (2007)

$\begin{bmatrix} 5 & 5\alpha & \alpha \\ \alpha & -5 \end{bmatrix}$	50. Let $A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$. The only correct statement about the
43. Let $A = \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix}$. If $ A^2 = 25$, then $ \alpha $ equals	$ \begin{pmatrix} -1 & 0 & 0 \end{pmatrix} $ matrix A is
(a) $1/5$ (b) 5 (c) 5^2 (d) 1. (2007)	(a) A^{-1} does not exist
44. If A and B are square matrices of size $n \times n$ such that $A^2 - B^2 = (A - B)(A + B)$, then which of the following will	(b) $A = (-1)I$, where I is a unit matrix (c) A is a zero matrix (d) $A^2 = I$ (2004)
always be true?	$\begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$ $\begin{pmatrix} 4 & 2 & 2 \end{pmatrix}$
(a) $A = B$ (b) $AB = BA$	51. Let $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}$ and $10(B) = \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix}$. If B is the
(c) either A or B is a zero matrix	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & -2 & 3 \end{pmatrix}$ inverse of matrix A, then α is
(d) either A or B is an identity matrix (2006)	(a) 2 (b) -1 (c) -2 (d) 5 (2004)
45. Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $a, b \in N$. Then	52. If $a_1, a_2, a_3,, a_n,$ are G.P., then the value of the
(a) there cannot exist any B such that $AB = BA$	$\log a_n - \log a_{n+1} - \log a_{n+2}$
(b) there exist more than one but finite number B's such that $AB = BA$	determinant $\begin{vmatrix} \log a_n & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8} \end{vmatrix}$ is
(c) there exists exactly one B such that $AB = BA$	
(d) there exist infinitely many B's such that $AB = BA$	(a) 2 (b) 1 (c) 0 (d) -2 (2004)
(2006)	53. If 1, ω , ω^2 are the cube roots of unity,
46. If $A^2 - A + I = 0$, then the inverse of A is (a) A (b) $A + I$ (c) $I - A$ (d) $A - I$ (2005)	$1 \omega^{n} \omega^{2n} 1 \vdots 1 \vdots$
	then $\Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix}$ is equal to (a) 1 (b) ω (c) ω^2 (d) 0 (2003)
47. If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the	(a) 1 (b) ω (c) ω^2 (d) 0 (2003)
following holds for all $n \ge 1$, by the principle of mothematical induction	F i 7 F a 7
mathematical induction (a) $A^n = 2^{n-1} A - (n-1)I$	54. If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then
(b) $A^n = nA - (n-1)I$	(a) $\alpha = a^2 + b^2$, $\beta = 2ab$ (b) $\alpha = a^2 + b^2$, $\beta = a^2 - b^2$
(c) $A^n = 2^{n-1}A + (n-1)I$ (d) $A^n = nA + (n-1)I.$ (2005)	(c) $\alpha = 2ab, \beta = a^2 + b^2$
48. If $a^2 + b^2 + c^2 = -2$ and	(d) $\alpha = a^2 + b^2$, $\beta = ab$ (2003)
$1+a^2x$ $(1+b^2)x$ $(1+c^2)x$	55. If $a > 0$ and discriminant of $ax^2 + 2bx + c$ is -ve, then
	$\begin{vmatrix} a & b & ax+b \\ b & c & bx+c \end{vmatrix}$ is
$f(x) = \begin{cases} (1+a^2)x & 1+b^2x & (1+c^2)x \\ (1+a^2)x & (1+b^2)x & 1+c^2x \end{cases}$	ax+b $bx+c$ 0
then $f(x)$ is a polynomial of degree	(a) +ve (b) $(ac - b^2)(ax^2 + 2bx + c)$
(a) 0 (b) 1 (c) 2 (d) 3 (2005)	(c) -ve (d) 0. (2002) 5 (1) If $l_{\rm eff}$ is a set the sthe sthe sthe set with terms of a C.B. all positive
49. The system of equations $\alpha x + y + z = \alpha - 1$,	56. If <i>l</i> , <i>m</i> , <i>n</i> are the p^{th} , q^{th} and r^{th} term of a G.P., all positive,
$x + \alpha y + z = \alpha - 1$, $x + y + \alpha z = \alpha - 1$ has no solutions, if α is	$\log l p 1$
(a) either -2 or 1 (b) -2	then $\begin{vmatrix} \log m & q & 1 \\ \log n & r & 1 \end{vmatrix}$ equals
(c) 1 (d) not -2 (2005)	(a) -1 (b) 2 (c) 1 (d) 0 (2002)
ANSW	
1. (c) 2. (d) 3. (a) 4. (d) 5. (d) 6. (d) 13. (a) 14. (b) 15. (d) 16. (c) 17. (c) 18. (a)	7. (c)8. (a)9. (c)10. (d)11. (b)12. (a)19. (d)20. (a)21. (b)22. (c)23. (c)24. (a)
25. (b) 26. (a) 27. (b) 28. (a) 29. (a) 30. (b)	31. (a) 32. (d) 33. (d) 34. (d) 35. (d) 36. (c)
37. (a) 38. (b) 39. (a) 40. (a) 41. (d) 42. (d) 49. (b) 50. (d) 51. (d) 52. (c) 53. (d) 54. (a)	43. (a) 44. (b) 45. (d) 46. (c) 47. (b) 48. (c) 55. (c) 56. (d)
	· / · /

Explanations

 $|1 \ k \ 3|$ (c) : For non-zero solutions, we have $\begin{vmatrix} 3 & k & -2 \\ 2 & 4 & -3 \end{vmatrix} = 0$ 1. \Rightarrow 1(-3k + 8) - k(-9 + 4) + 3 (12 - 2k) = 0 which gives k = 11 Now, the system of equations become x + 11y + 3z = 0...(i) 3x + 11y - 2z = 0...(ii) 2x + 4y - 3z = 0...(iii) The equation (i) and (iii) gives 3x + 15y = 0 *i.e.* x = -5yPutting x = -5y in (i), we have -5y + 11y + 3z = 0 $\Rightarrow z = -2y \operatorname{Now} \frac{xz}{v^2} = \frac{(-5y)(-2y)}{v^2} = 10$ 2. (d) : As both sides are polynomial in x, let's set x = 0 to obtain 0 0 -4 $-4 \quad 0 = A^3$ 0 0 -40 which gives $A^3 = -64$ \therefore A = -4Taking x common from all rows of given determinant, we get $\begin{vmatrix} 1 - \frac{1}{x} & 2 & 2 \\ 2 & 1 - \frac{4}{x} & 2 \\ 2 & 2 & 1 - \frac{4}{x} \end{vmatrix} = \left(B - \frac{4}{x} \right) \left(1 + \frac{4}{x} \right)^2$ Take the limit as $x \to \infty$ to obtain $\begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{vmatrix} = B \Rightarrow B = 5$ Alternative solution : Alternative solution : The most efficient way to obtain the result is to use this result $\begin{vmatrix} b & a & b \\ b & b & a \end{vmatrix} = (a+2b)(a-b)^2$ $b \ b \ a$ This result gives A = -4, B = 5Note that the determinant, when a = b, vanish and all the three rows become identical hence $(a - b)^2$ is a factor.

3. (a): Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
; $a, b, c, d \in R$...(i)

According to given condition, we have

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \text{ for some scalar } \lambda.$$

$$\Rightarrow \quad a = \lambda \quad \dots(\text{ii}); \quad 2c + 3d = \lambda \qquad \dots(\text{iii}); \quad a + 3b = 0 \qquad \dots(\text{v}); \quad 2a + 3b = 0$$

Using (ii), (iii), (iv) and (v), we get

 $a = \lambda, b = \frac{-2\lambda}{3}, c = 0, d = \frac{\lambda}{3}$ Also, $|3A| = 108 \Rightarrow 3^2|A| = 108$ $\Rightarrow |A| = 12$...(vi)
Putting the values of a, b, c and d in (i), we get

$$A = \begin{bmatrix} \lambda & \frac{-2\lambda}{3} \\ 0 & \frac{\lambda}{3} \end{bmatrix} \Rightarrow |A| = \frac{\lambda^2}{3} \qquad \dots (vii)$$

From (vi) and (vii), we have
$$\frac{\lambda^2}{3} = 12 \Rightarrow \lambda^2 = 36 \Rightarrow \lambda = \pm 6$$

Put $\lambda = 6$, we get $A = \begin{bmatrix} 6 & -4 \\ 0 & 2 \end{bmatrix}$
 $\therefore A^2 = \begin{bmatrix} 6 & -4 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 6 & -4 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 36 & -24 - 8 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 36 & -32 \\ 0 & 4 \end{bmatrix}$
4. (d) : For unique solution $\begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & k \end{vmatrix} \neq 0$
 $\Rightarrow 1(k+2) - 1(2k+3) + 1(4-3) \neq 0$
 $\Rightarrow -k+2 - 3 + 1 \neq 0 \Rightarrow k \neq 0 \therefore S = R - \{0\}$

5. (d) : The given system of equations has no solution $\begin{vmatrix} 1 & a \\ a & 1 \end{vmatrix}$

$$\therefore \begin{vmatrix} 1 & a & 1 \\ 1 & 2 & 2 \\ 1 & 5 & 3 \end{vmatrix} = 0$$

Applying $R_1 \rightarrow R_1 - R_2, R_2 \rightarrow R_2 - R_3$ $\begin{vmatrix} 0 & a-2 & -1 \end{vmatrix}$

$$\Rightarrow \begin{vmatrix} 0 & -3 & -1 \\ 1 & 5 & 3 \end{vmatrix} = 0 \Rightarrow a = -1$$

Now, for no solution, (adj A) $B \neq O$

$$\therefore \quad \operatorname{adj}(A) = \begin{bmatrix} -4 & 8 & -4 \\ -1 & 2 & -1 \\ 3 & -6 & 3 \end{bmatrix}$$
$$\Rightarrow \quad (\operatorname{adj} A)(B) = \begin{bmatrix} -4 & 8 & -4 \\ -1 & 2 & -1 \\ 3 & -6 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \\ b \end{bmatrix} \neq O$$
$$\Rightarrow \quad -12 + 48 - 4b \neq 0 \Rightarrow b \neq 9$$

6. (d): Given, $(A - 3I)(A - 5I) = O :: A^2 - 8A + 15I = O$ Post multiplying by A^{-1} on both sides, we have $A \cdot AA^{-1} - 8A \cdot A^{-1} + 15I \cdot A^{-1} = O$ $\Rightarrow A - 8I + 15A^{-1} = O \Rightarrow A + 15A^{-1} = 8I$ $\Rightarrow \frac{1}{2}A + \frac{15}{2}A^{-1} = 4I$...(i)

Comparing (i) with $\alpha A + \beta A^{-1} = 4I$, we get $\alpha = \frac{1}{2}$ and $\beta = \frac{15}{2}$ $\therefore \quad \alpha + \beta = \frac{1}{2} + \frac{15}{2} = 8$ 7. (c): $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ $A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}; A^{3} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 6 & 3 & 1 \end{bmatrix}; A^{4} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 10 & 4 & 1 \end{bmatrix}$ $A^{5} = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 15 & 5 & 1 \end{bmatrix}, \dots, A^{20} = \begin{bmatrix} 1 & 0 & 0 \\ 20 & 1 & 0 \\ 210 & 20 & 1 \end{bmatrix}$ Given, $B = A^{20} \left\{ \because \quad a_{31} \text{ in } A^n = \sum_{i=1}^3 a_{i1} \text{ of } A^{n-1} \right\}$ and a_{21} in $A^n = a_{32}$ in $A^n = n$ Sum of the elements of the first column of B = 1 + 20 + 210 = 231*.*•. (a) : Given, $A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$ 8. Then, A satisfies the characteristic equation $A^2 - 3A - 10I = 0$ Now $3A^2 + 12A = 3(3A + 10I) + 12A = 21A + 30I$ $= \begin{bmatrix} 42 & -63 \\ -84 & 21 \end{bmatrix} + \begin{bmatrix} 30 & 0 \\ 0 & 30 \end{bmatrix} = \begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$ $\begin{bmatrix} -84 & 21 \end{bmatrix} \begin{bmatrix} 0 & -84 \end{bmatrix}$ $\therefore \text{ adj} (3A^2 + 12A) = \begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$ 9. (c) : The equation can be written as $\begin{bmatrix} 1 & 1 & 1 \\ 1 & a & 1 \\ a & b & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ Let $\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & a & 1 \\ a & b & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & a - 1 & 0 \\ a & b & 1 \end{vmatrix} = -(1-a)^2$ The necessary condition is $\Delta = 0 \Rightarrow a = 1$ But for a = 1 the equation becomes x + y + z = 1x + y + z = 1x + by + z = 0For no solution b = 1. Then S is a singleton set. 0 $\cos x - \sin x$ **10.** (d) : Let $A = \sin x$ 0 $\cos x$ $\cos x \quad \sin x$ 0 $|A| = 0(0 - \cos x \sin x) - \cos x(0 - \cos^2 x) - \sin x(\sin^2 x - 0) = 0$ *.*.. $\Rightarrow \cos^3 x - \sin^3 x = 0$ $\tan^3 x = 1 \implies \tan x = 1$ \Rightarrow $\sum_{x \in S} \frac{\sqrt{3} + \tan x}{1 - \sqrt{3} \tan x} = \frac{\sqrt{3} + 1}{1 - \sqrt{3}} \times \frac{1 + \sqrt{3}}{1 + \sqrt{3}} \quad (\because \tan x = 1)$ $\frac{1+3+2\sqrt{3}}{-2} = \frac{4}{-2} - \frac{2\sqrt{3}}{2} = -2 - \sqrt{3}$

11. (b): Let
$$A = \begin{bmatrix} 2 & 4 & -\lambda \\ 4 & \lambda & 2 \\ \lambda & 2 & 2 \end{bmatrix}$$

For the system of linear equations to have infinitely many solutions, |A| = 0

$$\Rightarrow \begin{vmatrix} 2 & 4 & -\lambda \\ 4 & \lambda & 2 \\ \lambda & 2 & 2 \end{vmatrix} = 0$$

$$\Rightarrow 2(2\lambda - 4) - 4(8 - 2\lambda) -\lambda(8 - \lambda^{2}) = 0$$

$$\Rightarrow \lambda^{3} + 4\lambda - 40 = 0$$

$$\therefore \text{ Number of solutions} = 1 \text{ (lies between 3 and 4)}$$

12. (a)
13. (a) : $A + B = 2B' \Rightarrow (A + B)' = (2B')' \Rightarrow A' + B' = 2B$

$$\Rightarrow B = \frac{A' + B'}{2}$$

Now, $A + \left(\frac{B' + A'}{2}\right) = 2B' [\because A + B = 2B']$

$$\Rightarrow 2A + B' + A' = 4B' \Rightarrow 2A + A' = 3B' \Rightarrow A = \frac{3B' - A'}{2}$$

Also, $3A + 2B = I_{3}$...(1)

$$\Rightarrow 3\left(\frac{3B' - A'}{2}\right) + 2\left(\frac{A' + B'}{2}\right) = I_{3}$$

$$\Rightarrow \left(\frac{9B' + 2B'}{2}\right) + \left(\frac{2A' - 3A'}{2}\right) = I_{3}$$

$$\Rightarrow 11B' - A' = 2I_{3} \Rightarrow (11B' - A')' = (2I_{3})'$$

$$\Rightarrow 11B - A = 2I_{3}$$
 ...(2)
Multiplying (2) by 3 and then adding (1) and (2), we get
 $35B = 7I_{3} \Rightarrow B = \frac{I_{3}}{5}$
From (2), $11\frac{I_{3}}{5} - A = 2I_{3} \Rightarrow 11\frac{I_{3}}{5} - 2I_{3} = A \Rightarrow A = \frac{I_{3}}{5}$

$$\therefore 5A = 5B = I_{3} \Rightarrow 10A + 5B = 3I_{3}$$

14. (b) : We have $WW^{q} = \begin{bmatrix} \vdots & -\\ 8 & 7 \end{bmatrix} \begin{bmatrix} \vdots & 8\\ - & 7 \end{bmatrix}$

$$= \begin{bmatrix} 7: & 7 + & 7 & 6: & -7\\ 6: & -7 & 68 \end{bmatrix}$$

 $A \text{ (adj } A) = AA^{T}$ is known, so equating the two expressions,

$$\begin{bmatrix} 7: & 7 + & 7 & 6: & -7 \\ 6: & -7 & & 68 \end{bmatrix} = \begin{bmatrix} 65 & +8 & 5 \\ 5 & 65 & +8 \end{bmatrix}$$

We have, 10a + 3b = 13 and 15a - 2b = 0On solving, we get a = 2/5, b = 3Then, 5a + b = 2 + 3 = 5

15. (d) : The system AX = 0 has non-trivial solution iff detA = 0 $\begin{vmatrix} 6 & \lambda & -6 \end{vmatrix}$

$$\begin{array}{c|cc} 3 \ 3 \ 1 \\ 6 & 6 \\ 6 & -\lambda \end{array} = 5$$

 $\Rightarrow (\lambda + 1) - \lambda(-\lambda^2 + 1) - (\lambda + 1) = 0$ $\lambda^3 - \lambda = 0 \implies \lambda(\lambda^2 - 1) = 0 \therefore \lambda = 0, 1, -1$ $\cos x \sin x \sin x$ **16.** (c) : We have, $|\sin x| \cos x \sin x| = 0$ $\sin x \quad \sin x \quad \cos x$ Applying $R_1 \rightarrow R_1 - R_3$, $R_2 \rightarrow R_2 - R_3$ 0 $\cos x - \sin x$ $\sin x - \cos x$ 0 $\cos x - \sin x$ $\sin x - \cos x = 0$ $\sin x$ $\sin x$ $\cos x$ Applying $C_3 \rightarrow C_3 + C_2$ $\cos x - \sin x$ $\sin x - \cos x$ 0 0 0 $\cos x - \sin x$ = 0 $\sin x$ $\sin x$ $\sin x + \cos x$ Expanding along first column, we get $(\sin x - \cos x)^2 (2 \sin x + \cos x) = 0$ $\cos x = -2 \sin x$ or $\cos x = \sin x$ \Rightarrow $\tan x = \frac{-1}{2}$ or $\tan x = 1 \implies x = -\tan^{-1}\left(\frac{1}{2}\right), \frac{\pi}{4}$ \Rightarrow Two solutions. *:*.. 17. (c): $P = \begin{vmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{vmatrix}$, $P^{T} = \begin{vmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{vmatrix}$ $PP^T = P^T P = I$ $Q^{2015} = (PAP^T) (PAP^T) \dots (2015 \text{ terms}) = PA^{2015} P^T$ $P^T O^{2015} P = A^{2015}$ $A^{2} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \implies A^{3} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$ $\therefore A^{2015} = \begin{bmatrix} 1 & 2015 \\ 0 & 1 \end{bmatrix} \text{ So, } P^T Q^{2015} P = \begin{bmatrix} 1 & 2015 \\ 0 & 1 \end{bmatrix}$ **18.** (a) : We have, $A^2 - 5A = -7I$ $\Rightarrow AAA^{-1} - 5AA^{-1} = -7IA^{-1} \Rightarrow AI - 5I = -7A^{-1}$ $\Rightarrow A^{-1} = \frac{1}{7}(5I - A)$ Also, $A^3 - 2A^2 - 3A + I = A(5A - 7I) - 2A^2 - 3A + I$ $= 5A^2 - 7A - 2A^2 - 3A + I = 3A^2 - 10A + I$ = 3(5A - 7I) - 10A + I = 5A - 20I = 5(A - 4I)**19.** (d) : We have, $A = \begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix} \Longrightarrow A^2 = \begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 13 & 3 \\ -9 & -2 \end{bmatrix}$ Also, |A| = -1Now, $A^{2016} - 2A^{2015} - A^{2014} = A^{2014} (A^2 - 2A - I)$ $\therefore |A^{2016} - 2A^{2015} - A^{2014}| = |A^{2014}||A^2 - 2A - I|$ $= |A|^{2014} \begin{vmatrix} 20 & 5 \\ -15 & -5 \end{vmatrix} = -25$

20. (a) : The system is $(2 - \lambda)x_1 - 2x_2 + x_3 = 0$ $2x_1 - (3 + \lambda)x_2 + 2x_3 = 0$ $-x_1 + 2x_2 - \lambda x_3 = 0$

For non-trivial solution, the determinant of the coefficient matrix must vanish. Then

$$\begin{vmatrix} 7-\lambda & -7 & 6\\ 7 & -8-\lambda & 7\\ -6 & 7 & -\lambda \end{vmatrix} = 5$$

$$\Rightarrow (2-\lambda)\{\lambda(3+\lambda)-4\} + 2\{-2\lambda-3\} + 1\{4-(3+\lambda)\} = 0$$

$$\Rightarrow (2-\lambda)(\lambda^{2}+3\lambda-4) - 4\lambda - 6 + 1 - \lambda = 0$$

$$\Rightarrow (2-\lambda)(\lambda^{2}+3\lambda-4) - 5\lambda - 5 = 0$$

$$\Rightarrow (2-\lambda)(\lambda-1)(\lambda+4) - 5(\lambda+1) = 0$$

$$\Rightarrow (\lambda-1)(\lambda^{2}+2\lambda-3) = 0 \Rightarrow (\lambda-1)^{2}(\lambda+3) = 0$$

Thus, $\lambda = 1, 1, -3$ \therefore Set of all λ 's contain 2 elements.
21. (b) : As $AA^{T} = 9I$, we have $\left(\frac{W}{8}\right)\left(\frac{W}{8}\right)^{q} = f$
Hence, $\frac{6}{8}W$ is an orthogonal matrix. $V\{$ $\frac{6}{8}W=$

$$\begin{bmatrix} \frac{6}{8} & \frac{7}{8} & \frac{7}{8} \\ \frac{7}{8} & \frac{6}{8} & -\frac{7}{8} \\ \frac{7}{8} & \frac{6}{8} & \frac{7}{8} \end{bmatrix}$$

We know that row (column) form mutually orthogonal unit vectors. Then $\left(\frac{-17}{8} \cdot \frac{1}{8} \cdot \frac{1}{8}\right)$ is a unit vector, gives $a^2 + 4 + b^2 = 9$ Also, a + 2b + 4 = 0 and 2a - 2b + 2 = 0The solution is (-2, -1), which is consistent with all the equations.

22. (c):
$$\begin{vmatrix} 6 & 6 \\ 6 & 6 \\ 6 & 6 \end{vmatrix} = --++.+7$$

Since A.M. \geq G.M. $\Rightarrow \frac{+}{8} \geq - ...^{648} \Rightarrow x + y + z \geq 3(xyz)^{1/3}$ For least value of xyz, xyz - 3 $(xyz)^{1/3} + 2 \geq 0$ $\Rightarrow t^3 - 3t + 2 \geq 0$ (Put $t = (xyz)^{1/3}$) $\Rightarrow (t+2) (t^2 - 2t + 1) \geq 0 \Rightarrow t = -2, 1$ So, least value of $t^3 = xyz$ is -823. (c) : Given that $W = \begin{bmatrix} 5 & -6 \\ 6 & 5 \end{bmatrix}$ So, $W^7 = \begin{bmatrix} -6 & 5 \\ 5 & -6 \end{bmatrix} \Rightarrow W^7 = -f$

$$W^{\$} = \begin{bmatrix} 5 & -6 \end{bmatrix} \quad B \quad W^{\$} = \begin{bmatrix} 6 & 5 \\ -6 & 5 \end{bmatrix} = f$$

If we check, then options (a), (b), and (d) are correct. $\begin{bmatrix} 5 & 5 \end{bmatrix} \begin{bmatrix} 5 & 7 \end{bmatrix}$

Now, for option (c),
$$A^2 + I = \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix}$$
, $A(A^2 - I) = \begin{bmatrix} 5 & 7 \\ -7 & 5 \end{bmatrix}$

24. (a) : Given that |5 adjA| = 5 $5^{3}|adjA| = 5 \implies mpvW = \frac{o}{.7}$ $\Rightarrow W^{8-6} = \frac{6}{7} \qquad (\because |\text{adj } A| = |A|^{n-1}) \\ \Rightarrow W = \pm \frac{6}{7} \qquad (\because |\text{adj } A| = |A|^{n-1}) \\ 25. \text{ (b) : Put } x = 1 \text{ on both sides, we get } \begin{vmatrix} 7 & 7 & -6 \\ 9 & 8 & 5 \\ 7 & 6 & 6 \end{vmatrix} = -67 \qquad \text{Let } u_2 = \begin{bmatrix} p \\ q \\ r \end{bmatrix} Au_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \Rightarrow p = 0, 2p + q = 1 \Rightarrow q = 1, \\ 3p + 2q + r = 0 \Rightarrow r = -2 \\ u_1 + u_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$ $\Rightarrow a = 24$ **26.** (a) : $BB^T = (A^{-1}A^T) (A^{-1}A^T)^T$ $= (A^{-1}A^T) ((A^T)^T (A^{-1})^T) = (A^{-1}A^T)(A(A^{-1})^T)$ $= A^{-1}(A^{T}A)(A^{T})^{-1} = A^{-1}(AA^{T})(A^{T})^{-1} = (A^{-1}A)(A^{T})(A^{T})^{-1} = I \cdot I = I$ Recall that $(AB)^T = B^T A^T$ and that the matrix multiplication is associative. $1+\alpha+\beta$ $1+\alpha^2+\beta^2$ **27.** (b): $1+\alpha+\beta$ $1+\alpha^2+\beta^2$ $1+\alpha^3+\beta^3$ $1+\alpha^2+\beta^2$ $1+\alpha^3+\beta^3$ $1+\alpha^4+\beta^4$ $= \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \beta & \beta^2 \end{vmatrix}$ (By multiplication of determinants) $= [(1 - \alpha)(1 - \beta)(\beta - \alpha)]^2$ On comparison, K = 1**28.** (a) : $P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ det $P = 1(12 - 12) - \alpha(4 - 6) + 3(4 - 6) = 2\alpha - 6$ Also, det(adj P) = (det P)² $2\alpha - 6 = 16 \implies 2\alpha = 22$. $\therefore \alpha = 11$ \Rightarrow **Remark :** det(adj A) = (det A)ⁿ⁻¹, where A is a matrix of order n. **29.** (a) : The equation is $\begin{bmatrix} k+1 & 8 \\ k & k+3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4k \\ 3k-1 \end{bmatrix}$ For no solution of AX = B a necessary condition is det A = 0. $\begin{vmatrix} k+1 & 8 \\ k & k+3 \end{vmatrix} = 0$

 $\Rightarrow (k+1)(k+3) - 8k = 0 \Rightarrow k^2 + 4k + 3 - 8k = 0$ \Rightarrow $k^{2} - 4k + 3 = 0 \implies (k - 1)(k - 3) = 0 \therefore k = 1, 3$ For k = 1, the equation becomes 2x + 8y = 4, x + 4y = 2which is just a single equation in two variables. x + 4y = 2 has infinite solutions. For k = 3, the equation becomes 4x + 8y = 12, 3x + 6y = 8which are parallel lines. So no solution in this case.

30. (b):
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
, $Au_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $Au_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Let $u_1 = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ $Au_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \Rightarrow a = 1, 2a + b = 0$ $\Rightarrow b = -2, 3a + 2b + c = 0 \Rightarrow c = 1$ $u_1 + u_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$ **31.** (a): $P^3 = Q^3$, $P^2Q = Q^2P$, $PQ^2 = P^2Q$ $\Rightarrow P(P^2 + Q^2) = (Q^2 + P^2) \Rightarrow P(P^2 + Q^2) = (P^2 + Q^2)Q$ $P \neq Q \Rightarrow P^2 + Q^2$ is singular. Hence, $|P^2 + Q^2| = 0$ **32.** (d) : Let A(BA) = PThen $P^T = (ABA)^T = A^T B^T A^T$ (Transversal rule) = ABA = PThus P is symmetric. Again, A(BA) = (AB)A by associativity. Also $(AB)^T = B^T A^T = BA = AB$ (:: A and B are commutative) \Rightarrow AB is also symmetric. 33. (d) : For the system to possess non-zero solution, we have $\begin{vmatrix} k & 4 & 2 \end{vmatrix} = 0$ which on expansion gives $k^2 - 6k + 8 = 0$ \Rightarrow (k-2)(k-4) = 0. \therefore k = 2, 4**34.** (d) : $x_1 + 2x_2 + x_3 = 3$ $2x_1 + 3x_2 + x_3 = 3$ $3x_1 + 5x_2 + 2x_3 = 1$ A quick observation tells us that the sum of first two equations yields $(x_1 + 2x_2 + x_3) + (2x_1 + 3x_2 + x_3) = 3 + 3$ \Rightarrow 3x₁ + 5x₂ + 2x₃ = 6 But this contradicts the third equation, *i.e.*, $3x_1 + 5x_2 + 2x_3 = 1$ As such the system is inconsistent and hence it has no solution. **35.** (d): $A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$ det $A = (a_1b_2c_3 + a_2c_1b_3 + a_3b_1c_2) - (a_1c_2b_3 + a_2b_1c_3 + a_3c_1b_2)$ If any of the terms be non-zero, then det A will be non-zero and all the elements of that term will be 1 each.

Number of non-singular matrices = ${}^{6}C_{1} \times {}^{6}C_{1} = 36$ We can also exhibit more than 6 matrices to pick the right choice.

36. (c) : Let
$$A = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} \alpha^{2} + \beta\gamma & \beta(\alpha + \delta) \\ \gamma(\alpha + \delta) & \delta^{2} + \beta\gamma \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
Which gives $\alpha + \delta = 0$ and $\alpha^{2} + \beta\gamma = 1$

So we have Tr(A) = 0det $A = \alpha \delta - \beta \gamma = -\alpha^2 - \beta \gamma = -(\alpha^2 + \beta \gamma) = -1$ Thus statement-1 is true but statement-2 is false. **37.** (a) : We have $adj(adj A) = |A|^{n-2}A$ Here n = 2, which gives adj(adj A) = AThe statement-1 is true. Again $|adj A| = |A|^{n-1}$

Here n = 2, which gives |adj A| = |A|

Thus statement-2 is also true. But statement-2 doesn't explain statement-1.

38. (b):
$$\begin{vmatrix} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1 \end{vmatrix} + \begin{vmatrix} a+1 & b+1 & c-1 \\ a-1 & b-1 & c-1 \\ (-1)^{n+2}a & (-1)^{n+1}b & (-1)^n c \end{vmatrix} = 0$$
$$\Rightarrow \begin{vmatrix} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1 \end{vmatrix} + (-1)^n \begin{vmatrix} a+1 & b+1 & c-1 \\ a-1 & b-1 & c-1 \\ a & -b & c \end{vmatrix} = 0$$
$$\Rightarrow D + (-1)^n \begin{vmatrix} a+1 & a-1 & a \\ b+1 & b-1 & -b \\ c+1 & c-1 & c \end{vmatrix} = 0$$

(Changing rows to columns) $\begin{vmatrix} a & a+1 & a-1 \end{vmatrix}$

$$\Rightarrow D + (-1)^n \begin{vmatrix} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c+1 & c-1 \end{vmatrix} = 0$$

(Changing columns in cyclic order doesn't change the determinant)

$$\Rightarrow D + (-1)^{n}D = 0 \Rightarrow \{1 + (-1)^{n}\}D = 0$$

Now $D = \begin{vmatrix} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1 \end{vmatrix} = \begin{vmatrix} a & 2 & a-1 \\ -b & 2 & b-1 \\ c & -2 & c+1 \end{vmatrix} (C_{2} \rightarrow C_{2} - C_{3})$
$$= \begin{vmatrix} a+c & 0 & a+c \\ -b+c & 0 & b+c \\ c & -2 & c+1 \end{vmatrix} (R_{1} \rightarrow R_{1} + R_{3}, R_{2} \rightarrow R_{2} + R_{3})$$

Expanding along 2nd column

 $D = 2\{(a + c)(b + c) - (a + c)(c - b)\}$ $= 2(a + c)2b = 4b(a + c) \neq 0$ (By hypothesis) Now $\{1 + (-1)^n\} D = 0 \implies 1 + (-1)^n = 0$ Which means n = odd integer.

39. (a) : Let
$$A = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$
. We have
 $A^2 = \begin{bmatrix} \alpha^2 + \beta\gamma & \beta(\alpha + \delta) \\ \gamma(\alpha + \delta) & \delta^2 + \beta\gamma \end{bmatrix}$
 $A^2 = I = \begin{bmatrix} \alpha^2 + \beta\gamma & \beta(\alpha + \delta) \\ \gamma(\alpha + \delta) & \delta^2 + \beta\gamma \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
giving $\alpha^2 + \beta\gamma = 1 = \delta^2 + \beta\gamma$ and $\gamma(\alpha + \delta) = \beta(\alpha + \delta) = 0$
As $A \neq I$, $A \neq -I$, we have $\alpha = -\delta$
det $A = \begin{vmatrix} \sqrt{1 - \beta\gamma} & \beta \\ \gamma & -\sqrt{1 - \beta\gamma} \end{vmatrix} = -1 + \beta\gamma - \beta\gamma = -1$

Statement-1 is therefore true. tr (A) = $\alpha + \delta = 0$ { $\alpha = -\delta$ } Statement-2 is false because tr (A) = 040. (a) : System of equations x - cy - bz = 0cx - y + az = 0bx + ay - z = 0has non trivial solution if the determinant of coefficient matrix is zero $\Rightarrow \begin{vmatrix} 1 & -c & -b \\ c & -1 & a \\ b & a & -1 \end{vmatrix} = 0 \Rightarrow 1(1 - a^2) + c(-c - ab) - b(ca + b) = 0$ $\Rightarrow a^2 + b^2 + c^2 + 2abc = 1$ 41. (d) : Each entry of A is an integer, so the cofactor of every entry is an integer. And then each entry of adjoint is integer. Also det $A = \pm 1$ and we know that $A^{-1} = \frac{1}{\det A} (adj A)$ This means all entries in A^{-1} are integers. **42.** (d) : $D = \begin{vmatrix} 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix}$ (Apply $C_2 \rightarrow C_2 - C_1, C_3 \rightarrow C_3 - C_1$) $= \begin{vmatrix} 1 & 0 & 0 \\ 1 & x & 0 \\ 1 & 0 & y \end{vmatrix} = 1(xy - 0) = xy$ Hence D is divisible by both x and y. **43.** (a): $A^2 = \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix}$ $A^{2} = \begin{bmatrix} 25 & 25\alpha + 5\alpha^{2} & 5\alpha + 5\alpha + 25\alpha^{2} \\ 0 & \alpha^{2} & 25\alpha + 5\alpha^{2} \\ 0 & 0 & 25 \end{bmatrix}$ Given $|A^2| = 25$, $625\alpha^2 = 25 \implies |\alpha| = \frac{1}{5}$. **44.** (b) : Give $A^2 - B^2 = (A + B)(A - B)$ $\Rightarrow 0 = BA - AB \Rightarrow BA = AB$ **45.** (d) : $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ Now $AB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} a & 2b \\ 3a & 4b \end{pmatrix}$... (i) and $BA = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} a & 2a \\ 3b & 4b \end{pmatrix}$... (ii) As $AB = BA \Rightarrow 2a = 2b \Rightarrow a = b$ $\therefore \quad B = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = aI_2 \Longrightarrow \exists \text{ infinite value of } a = b \in N$ **46.** (c) : $A^2 - A + I = 0 \Rightarrow I = A - A \cdot A$ $IA^{-1} = AA^{-1} - A(AA^{-1})$, $A^{-1} = I - A$.

47. (b) : $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ $\therefore A^2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, A^3 = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$ so $A^n = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$ and $nA - (n-1)I = \begin{pmatrix} n & 0 \\ n & n \end{pmatrix} - \begin{pmatrix} n-1 & 0 \\ 0 & n-1 \end{pmatrix}$ $= \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} = A^n.$ **48.** (c) : Applying $C_2 \to C_2 + C_3 + C_1$ $1 + a^2 x = 1 (1 + c^2) x$ $f(x) = 1 + 2x + x(a^2 + b^2 + c^2) \left| (1 + a^2)x + 1 + (1 + c^2)x \right|$ $(1+a^2)x \quad 1 \quad 1+c^2x$ Applying $R_1 \rightarrow R_1 - R_2$, $R_2 \rightarrow R_2 - R_3$ and using $a^{2} + b^{2} + c^{2} = -2$ we have $(1+2x-2x)\begin{vmatrix} 1-x & 0 & 0\\ 0 & 0 & x-1\\ (1+a^2)x & 1 & 1+c^2x \end{vmatrix} = (1-x)^2$ $= x^2 - 2x + 1$ \therefore degree of f(x) is 2. **49.** (b) : For no solution |A| = 0 and $(\operatorname{adj} A)(B) \neq 0$ Now $|A| = 0 \Rightarrow \begin{vmatrix} \alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha \end{vmatrix} = 0$ $\Rightarrow \alpha^3 - 3\alpha + 2 = 0 \Rightarrow (\alpha - 1)^2 (\alpha + 2) = 0$ $\Rightarrow \alpha = 1, -2.$ But for $\alpha = 1$, |A| = 0 and $(\operatorname{adj} A)(B) = 0$ \Rightarrow for $\alpha = 1$ there exist infinitely many solution. Also each equation becomes x + y + z = 0 again for $\alpha = -2$ |A| = 0 but $(adj A)(B) \neq 0 \implies \exists$ no solution. 50. (d): (i) |A| = 1 \therefore A^{-1} does not exist is wrong statement (ii) (-1) $I = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \neq A \Rightarrow$ (b) is false (iii) A is clearly a non zero matrix \therefore (c) is false. We are left with (d) only. **51.** (d) : Given $A^{-1} = B = 10 A^{-1} = 10 B$ $\Rightarrow \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix} = 10 \ A^{-1} \Rightarrow \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix} (A) = 10I$ $\Rightarrow \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{pmatrix} \dots (*)$ $= \begin{vmatrix} \log A - \log R & p & 1 \\ \log A - \log R & q & 1 \\ \log A - \log R & r & 1 \end{vmatrix} + \begin{vmatrix} p \log R & p & 1 \\ q \log R & q & 1 \\ r \log R & r & 1 \end{vmatrix}$ $C_1 \approx C_3 \qquad C_1 \approx C_2$ = 0 + 0 = 0

 $\Rightarrow -5 + \alpha = 0$ (equating A_{21} entry both sides of (*)) $\Rightarrow \alpha = 5$ 52. (c) : $\frac{a_2}{a_1} = \frac{a_3}{a_2} = \dots = \frac{a_n}{a_{n-1}} = r$ which means $a_n, a_{n+1}, a_{n+2} \in G.P.$ $\Rightarrow a_{n+1}^2 = a_n a_{n+2}$ $\Rightarrow 2 \log a_{n+1} - \log a_n - \log a_{n+2} = 0$...(i) Similarly 2 log $a_{n+4} - \log a_{n+3} - \log a_{n+5} = 0$...(ii) and 2 log $a_{n+7} - \log a_{n+6} - \log a_{n+8} = 0$...(iii) Using $C_1 \rightarrow C_1 + C_3 - 2C_2$ we get $\Delta = 0$ **53.** (d) : As ω is cube root of unity $\therefore \omega^3 = \omega^{3n} = 1$ $\therefore \begin{vmatrix} 1 & \omega & \omega \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix} = (\omega^{3n} - 1) - \omega^n (\omega^{2n} - \omega^{2n}) + \omega^{2n} (\omega^n - \omega^n) = 0$ **54.** (a) : $A^2 = AA = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} a & b \\ b & a \end{pmatrix}$ $= \begin{pmatrix} a^2 + b^2 & 2ab \\ 2ab & a^2 + b^2 \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}$ **55.** (c) : $C_1 \rightarrow xC_1 + C_2 - C_3$ $=\frac{1}{x} \begin{vmatrix} 0 & b & ax+b \\ 0 & c & bx+c \\ ax^{2} + 2bx + c & bx+c & 0 \end{vmatrix}$ $= \frac{(ax^2 + 2bx + c)}{x} [b^2x + bc - acx - bc]$ $= (b^2 - ac) (ax^2 + 2bx + c)$ = (+ve) (-ve) < 056. (d) : Let A be the first term and R be the common ratio of G.P. $\therefore \quad l = t_p = AR^{p-1}$ $\Rightarrow \log l = \log A + (p - 1) \log R$ Similarly, $\log m = \log A + (q - 1) \log R$ and $\log n = \log A + (r - 1) \log R$ $\begin{vmatrix} \log l & p & 1 \\ \log m & q & 1 \\ \log n & r & 1 \end{vmatrix} = \begin{vmatrix} \log A + (p-1)\log R & p & 1 \\ \log A + (q-1)\log R & q & 1 \\ \log A + (r-1)\log R & r & 1 \end{vmatrix}$ ÷