CHAPTER

Complex Numbers

1. The set of all $\alpha \in R$, for which $\omega = \frac{1 + (1 - 8\alpha)z}{1 - z}$ is a purely imaginary number, for all $z \in C$ satisfying |z| = 1 and Re $z \neq 1$, is (a) an empty set (b) equal to R

(c) {0} (d)
$$\left\{0, \frac{1}{4}, -\frac{1}{4}\right\}$$
 (Online 2018)

2 If |z - 3 + 2i| ≤ 4 then the difference between the greatest value and the least value of |z| is
(a) √13
(b) 4+√13
(c) 8
(d) 2√13

 $\overline{13}$ (b) $4 + \sqrt{13}$ (c) 8
 (d) $2\sqrt{13}$

 (Online 2018)

3. The least positive integer *n* for which $\left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^n = 1$, is : (a) 3 (b) 5 (c) 2 (d) 6

- 4. Let ω be a complex number such that $2\omega + 1 = z$ where $z = \sqrt{-3}$. If $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \end{vmatrix} = 3k$, then k is equal to
 - $z = \sqrt{-3}. \text{ If } \begin{vmatrix} 1 & -\omega^2 & -1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k, \text{ then } k \text{ is equal to}$ (a) z (b) -1 (c) 1 (d) -z (2017)
- 5. Let $z \in C$, the set of complex numbers. Then the equation, 2|z + 3i| - |z - i| = 0 represents
 - (a) a circle with radius $\frac{8}{3}$. (b) a circle with diameter $\frac{10}{3}$. (c) an ellipse with length of major axis $\frac{16}{3}$. (d) an ellipse with length of minor axis $\frac{16}{9}$. (Online 2017)
- 6. The equation $\operatorname{Im}\left(\frac{iz-2}{z-i}\right)+1=0, z \in C, z \neq i$ represents a part of a circle having radius equal to
 - (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ (d) 2 (Online 2017) 7+8 - $\mathbf{z} \theta$
- 7. A value of θ for which $\frac{7+8}{6-7} \mathbf{uz} \theta$ is purely imaginary is (a) $\pi/3$ (b) $\pi/6$

(c)
$$-\mathbf{u}^{-6}\left(\frac{\sqrt{8}}{9}\right)$$
 (d) $-\mathbf{u}^{-6}\left(\frac{6}{\sqrt{8}}\right)$ (2016)

8. The point represented by 2 + i in the Argand plane moves 1 unit eastwards, then 2 units northwards and finally from there $2\sqrt{2}$ units in the south-westwards direction. Then its new position in the Argand plane is at the point represented by

(a)
$$1 + i$$
 (b) $2 + 2i$ (c) $-2 - 2i$ (d) $-1 - i$
(Online 2016)

9. Let z = 1 + ai be a complex number, a > 0, such that z^3 is a real number. Then the sum $1 + z + z^2 + \dots + z^{11}$ is equal to

(a)
$$1365\sqrt{3}i$$
 (b) $-1365\sqrt{3}i$
(c) $-1250\sqrt{3}i$ (d) $1250\sqrt{3}i$ (Online 2016)

10. A complex number z is said to be unimodular if |z| = 1. Suppose z₁ and z₂ are complex numbers such that ⁶⁻⁷/₇₋₆₇ is unimodular and z₂ is not unimodular. Then the point z₁ lies on a
 (a) circle of radius 2. (b) circle of radius √7.
 (c) straight line parallel to x-axis.
 (d) straight line parallel to y-axis. (2015)

11. The largest value of r for which the region represented by the set {ω ∈ C : |ω - 4 - i| ≤ r} is contained in the region represented by the set {z ∈ C : |z - 1| ≤ |z + i|}, is equal

(a)
$$\sqrt{6<}$$
 (b) $7\sqrt{7}$ (c) $\frac{8}{7}\sqrt{7}$ (d) $\frac{1}{7}\sqrt{7}$
(Online 2015)

(d) -5

(Online 2015)

12. If z is a non-real complex number, then the minimum value of $\frac{\text{Im } z^5}{(\text{Im } z)^5}$ is

(a)
$$-1$$
 (b) -2 (c) -4

to

- 13. If z is a complex number such that $|z| \ge 2$, then the minimum value of $\left|z + \frac{1}{2}\right|$
 - (a) lies in the interval (1, 2)
 - (b) is strictly greater than $\frac{5}{2}$ (c) is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$ (d) is equal to $\frac{5}{2}$ (2014)

14. If z is a complex number of unit modulus and argument θ , then $\arg\left(\frac{1+z}{1+\overline{z}}\right)$ equals (a) $\frac{\pi}{2} - \theta$ (b) θ (c) $\pi - \theta$ (d) $-\theta$ (2013) 15. If $z \neq 1$ and $\frac{z^2}{z-1}$ is real, then the point represented by the complex number z lies (a) either on the real axis or on a circle not passing through the origin. (b) on the imaginary axis. (c) either on the real axis or on a circle passing through the origin. (2012)(d) on a circle with centre at the origin. **16.** If $\omega \neq 1$ is a cube root of unity, and $(1 + \omega)^7 = A + B\omega$. Then (A, B) equals (a) (1, 0) (b) (-1, 1) (c) (0, 1) (d) (1, 1) (2011)17. The number of complex numbers z such that |z - 1| = |z + 1| = |z - i| equals (a) 0 (b) 1 (c) 2 (d) ∞ (2010) **18.** If $\left| Z - \frac{4}{Z} \right| = 2$, then the maximum value of |Z| is equal to (a) $\sqrt{5}+1$ (b) 2 (c) $2+\sqrt{2}$ (d) $\sqrt{3}+1$ (2009)19. The conjugate of a complex number is $\frac{1}{i-1}$. Then that complex number is (a) $\frac{1}{i-1}$ (b) $\frac{-1}{i-1}$ (c) $\frac{1}{i+1}$ (d) $\frac{-1}{i+1}$ (2008)**20.** If $|z + 4| \le 3$, then the maximum value of |z + 1| is (a) 6 (b) 0 (c) 4 (d) 10 (2007) **21.** The value of $\sum_{k=1}^{10} \left(\sin \frac{2k\pi}{11} + i \cos \frac{2k\pi}{11} \right)$ is (c) -1 (d) -i (2006) (a) *i* (b) 1 22. If $z^2 + z + 1 = 0$, where z is a complex number, then the value of $\left(z+\frac{1}{\tau}\right)^2 + \left(z^2+\frac{1}{\tau^2}\right)^2 + \left(z^3+\frac{1}{\tau^3}\right)^2 + \dots + \left(z^6+\frac{1}{\tau^6}\right)^2$ is (a) 18 (b) 54 (c) 6 (d) 12 (2006) **23.** If z_1 and z_2 are two non-zero complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then arg $z_1 - \arg z_2$ is equal to (a) $-\pi$ (b) $\pi/2$ (c) $-\pi/2$ (d) 0 (2005)

24.	If $\omega = \frac{z}{z - (1/3)i}$ and $ \omega $	= 1, then z lies on									
	(a) a circle	(b) an ellipse									
	(c) a parabola	(d) a straight line (2005)									
25.	If the cube roots of unity a	re 1, ω , ω^2 then the roots of the									
	equation $(x - 1)^3 + 8 = 0$,	are									
	(a) $-l$, $-l$, $-l$ (a) 1 1 $+$ $2n$ 1 $+$ $2n^2$	(b) -1 , $-1 + 2\omega$, $-1 - 2\omega^2$ (d) $1 + 2\omega + 2\omega^2(2005)$									
	(c) -1 , $1 + 2\omega$, $1 + 2\omega$	(d) -1 , $1 - 2\omega$, $1 - 2\omega$ (2005)									
26.	Let z, ω be complex n	umbers such that $z + i 0 = 0$									
	and $z\omega = \pi$. Then arg z e	quals (d) $5\pi/4$ (2004)									
	(a) $3\pi/4$ (b) $\pi/2$	(x y)									
~=	TC 1 1/3	$\left(\frac{x}{p} + \frac{y}{q}\right)$									
27.	If $z = x - iy$ and $z^{ij} = p + iy$	$\frac{1}{(p^2+q^2)}$ is equal to									
	(a) 2 (b) -1	(c) 1 (d) -2 (2004)									
28.	If $ z^2 - 1 = z ^2 + 1$, the	en z lies on									
	(a) a circle	(b) the imaginary axis									
	(c) the real axis	(d) an ellipse (2004)									
29.	If $\left(\frac{1+i}{1-i}\right)^x = 1$, then										
	(a) $x = 2n$, where <i>n</i> is an	y positive integer									
	(b) $x = 4n + 1$, where <i>n</i>	is any positive integer									
	(c) $x = 2n + 1$, where <i>n</i> is any positive integer										
	(d) $x = 4n$, where <i>n</i> is an	y positive integer (2003)									
30.	If z and ω are two non-zero complex numbers such that $ z_0 = 1$ and $Arg(z) = Arg(z) = -\frac{1}{2} dz_0 dz_0$										
	$ z\omega = 1$, and $\operatorname{Arg}(z) - \operatorname{Arg}(z)$	$(\omega) = \pi/2$, then $z\omega$ is equal to									
	(a) -1 (b) <i>i</i>	(c) $-i$ (d) 1 (2002)									
		(2003)									
31.	Let z_1 and z_2 be two roots	of the equation $z^2 + az + b = 0$,									
	form an equilateral triangl	e. then									
	(a) $a^2 = 2b$	(b) $a^2 = 3b$									
	(c) $a^2 = 4b$	(d) $a^2 = b$ (2003)									
32.	z and ω are two nonzer	o complex number such that									
	$ z = \omega $ and Arg $z + Arg$	$g \omega = \pi$ then z equals									
	(a) $\overline{\omega}$ (b) $-\overline{\omega}$	(c) ω (d) $-\omega$ (2002)									
33.	If $ z-4 < z-2 $, its solu	tion is given by									
	(a) $\operatorname{Re}(z) > 0$	(b) $\operatorname{Re}(z) < 0$									
	(c) $\text{Re}(z) > 3$	(d) $\operatorname{Re}(z) > 2$ (2002)									
34.	The locus of the centre of	a circle which touches the circle									
	$ z - z_1 = a$ and $ z - z_2 =$	b externally $(z, z_1 \& z_2)$ are									
	complex numbers) will be										
	(a) an ellipse	(b) a hyperbola									
	(c) a circle	(d) none of these (2002)									

ANSWER KEY																					
1.	(c)	2.	(d)	3.	(a)	4.	(d)	5.	(a)	6.	(b)	7.	(d)	8.	(a)	9.	(b)	10.	(a)	11. (d)	12. (c)
13.	(a)	14.	(b)	15.	(c)	16.	(d)	17.	(b)	18.	(a)	19.	(d)	20.	(a)	21.	(d)	22.	(d)	23. (d)	24. (d)
25.	(d)	26.	(a)	27.	(d)	28.	(b)	29.	(d)	30.	(c)	31.	(b)	32.	(b)	33.	(c)	34.	(b)		

6

(c): Given, $\omega = \frac{1 + (1 - 8\alpha)z}{1 - z}$ 1. For ω to be purely imaginary, $\omega + \overline{\omega} = 0$ $\frac{1+(1-8\alpha)z}{1-z} + \frac{1+(1-8\alpha)\overline{z}}{1-\overline{z}} = 0$ i.e., $[1+(1-8\alpha)z][1-\overline{z}]+[1+(1-8\alpha)\overline{z}][1-z]=0$ \Rightarrow $\left[1-\overline{z}+(1-8\alpha)z-(1-8\alpha)z\overline{z}\right]+\left[1-z+(1-8\alpha)\overline{z}\right]$ \Rightarrow $-(1-8\alpha)z\overline{z}]=0$ $2 - (z + \overline{z}) + (1 - 8\alpha)(z + \overline{z}) - 2(1 - 8\alpha) = 0 \quad (\because z \overline{z} = |z| = 1)$ \Rightarrow $2-(z+\overline{z})+(z+\overline{z})-8\alpha(z+\overline{z})-2+16\alpha=0$ \Rightarrow $16\alpha = 8\alpha(z+\overline{z})$ \Rightarrow Either $z + \overline{z} = 2$ or $\alpha = \{0\}$. But $z + \overline{z} = 2$ is not possible $\therefore \alpha = \{0\}$ (d): Origin (O) lies inside the circle 2. Greatest value of $|z| = OC + r = \sqrt{13} + 4$ Least value of $|z| = r - OC = 4 - \sqrt{13}$ ~2i Required difference = $\sqrt{13} + 4 - 4 + \sqrt{13} = 2\sqrt{13}$ 3. (a): $\left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^n = 1 \implies \left(\frac{\frac{1+i\sqrt{3}}{2}}{\frac{1-i\sqrt{3}}{2}}\right)^n = 1$ $\Rightarrow \left(\frac{-\omega^2}{-\omega}\right)^n = 1 \qquad \because \qquad \omega = -\frac{1-i\sqrt{3}}{2} \\ \text{and} \qquad \omega^2 = -\frac{(1+i\sqrt{3})}{2} \\ \Rightarrow (\omega)^n = 1$ So, least positive integer value of n is 3. 4. (d): We have, $z = 1 + 2\omega$ *i.e.*, $i\sqrt{3} = 1 + 2\omega$: $\omega = \frac{-1 + i\sqrt{3}}{2}$ Then ω is a cube root of unity. Also, $1 + \omega + \omega^2 = 0$ Now $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k \Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{vmatrix} = 3k \Rightarrow \begin{vmatrix} 3 & 1 & 1 \\ 0 & \omega & \omega^2 \\ 0 & \omega^2 & \omega \end{vmatrix} = 3k$ $\Rightarrow 3(\omega^2 - \omega^4) = 3k$ $\Rightarrow k = \omega^2 - \omega = -1 - \omega - \omega = -1 - 2\omega = -z$ 5. (a): We have, 2|z + 3i| - |z - i| = 0 $\Rightarrow 2|x + i(y + 3)| = |x + i(y - 1)| \quad (\because z = x + iy)$ $\Rightarrow 2\sqrt{x^2 + (y+3)^2} = \sqrt{x^2 + (y-1)^2}$ $\Rightarrow 4(x^2 + (y + 3)^2) = x^2 + (y - 1)^2$ $\Rightarrow 3x^2 = y^2 - 2y + 1 - 4y^2 - 24y - 36$ $\Rightarrow 3x^{2} + 3y^{2} + 26y + 35 = 0 \Rightarrow x^{2} + y^{2} + \frac{26}{3}y + \frac{35}{3} = 0$ This is the equation of circle with radius, $r = \sqrt{0^2 + \left(\frac{13}{3}\right)^2 - \frac{35}{3}} = \sqrt{\frac{64}{9}} = \frac{8}{3}$

6. (b): Let
$$z = x + iy$$

$$\operatorname{Im}\left[\left(\frac{ix - y - 2}{x + i(y - 1)}\right)\left(\frac{x - i(y - 1)}{x - i(y - 1)}\right)\right] + 1 = 0 \Rightarrow \frac{(y - 1)(y + 2) + x^2}{x^2 + (y - 1)^2} + 1 = 0$$

$$\Rightarrow 2x^2 + 2y^2 - y - 1 = 0 \Rightarrow x^2 + y^2 - (1/2)y - (1/2) = 0$$

$$\therefore \quad \text{Centre of circle is } \left(0, \frac{1}{4}\right)$$

$$\therefore \quad \text{Radius } = \sqrt{0 + \left(\frac{1}{4}\right)^2 + \frac{1}{2}} = \sqrt{\frac{1}{16} + \frac{1}{2}} = \sqrt{\frac{9}{16}} = \frac{3}{4}$$
7. (d) : Let $\alpha = \frac{7 + 8 - \mathbf{iz} \, \theta}{6 - 7 - \mathbf{iz} \, \theta}$

$$\Rightarrow \alpha = \frac{-7 + 8 - \mathbf{iz} \, \theta \cdot 6 + 7 - \mathbf{iz} \, \theta}{-6 - 7 - \mathbf{iz} \, \theta} = \frac{-7 - ; -\mathbf{iz}^7 \, \theta + - < -\mathbf{iz} \, \theta}{6 + 9 - \mathbf{iz}^7 \, \theta}$$
As α is to be purely imaginary, we have
$$\operatorname{Re} (\alpha) = 0 \Rightarrow 2 = 6 \sin^2 \theta \quad 33 - \mathbf{iz} \, \theta = \pm \frac{6}{\sqrt{8}}$$
8. (a) :
$$y = \frac{2\sqrt{2}}{(1, 1)} = \frac{\sqrt{2}}{(2, 1)} = \frac{\sqrt{3}}{2}$$

Hence, the final position of the point is represented by 1 + i.

9. (b) :
$$z = 1 + ai$$
, $z^2 = 1 - a^2 + 2ai$
 $z^2 \cdot z = \{(1 - a^2) + 2ai\}\{1 + ai\} = (1 - a^2) + 2ai + (1 - a^2)ai - 2a^2$
 $\therefore z^3$ is real $\Rightarrow 2a + (1 - a^2) = 0$
 $\Rightarrow a(3 - a^2) = 0 \Rightarrow a = \sqrt{3} \quad (\because a > 0)$
Now, $= \frac{(1 + \sqrt{3}i)^{12} - 1}{1 + \sqrt{3}i - 1} = \frac{(1 + \sqrt{3}i)^{12} - 1}{\sqrt{3}i}$
 $(1 + \sqrt{3}i)^{12} = 2^{12} \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{12} = 2^{12} \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{12}$
 $= 2^{12}(\cos 4\pi + i\sin 4\pi) = 2^{12}$
 $\therefore 1 + z + z^2 + \dots + z^{11} = \frac{2^{12} - 1}{\sqrt{3}i} = \frac{4095}{\sqrt{3}i}$
 $= -\frac{4095}{3}\sqrt{3}i = -1365\sqrt{3}i$
10. (a) : 1st solution : c qt mql $\left|\frac{6 - 7}{7 - 67}\right| = 6$
 $\Rightarrow |z_1 - 2z_2|^2 = |2 - z_1\bar{z}_2|^2$
 $\Rightarrow (z_1 - 2z_2)(\bar{z}_1 - 2\bar{z}_2) = (2 - z_1\bar{z}_2)(2 - \bar{z}_1z_2)$
 $\Rightarrow |z_1|^2 - 4 - |z_1|^2 |z_2|^2 + 4|z_2|^2 = 0$
 $\Rightarrow ||z_1|^2 - 4| - ||z_2|^2 ||z_1|^2 - 4| = 0$
 $\Rightarrow (1 - |z_2|^2) (|z_1|^2 - 4|) = 0$
Thus $|z_1| = 2$ as $|z_2| \neq 1$ (given)
The point z lies on circle of radius 2.

2nd solution : Observe that if $\frac{\alpha - \beta}{6 - \alpha \overline{\beta}} = 61$ two complex numbers α and β of which $|\beta| \neq 1$, then $|\alpha| = 1$ Since $|\alpha - \beta| = |1 - \alpha\beta| \implies |\alpha - \beta|^2 = |1 - \alpha\beta|^2$ $\Rightarrow |\alpha|^2 + |\beta|^2 - 2\operatorname{Re}(\alpha\bar{\beta}) = 1 + |\alpha|^2 |\beta|^2 - 2\operatorname{Re}(\alpha\bar{\beta})$ $1 - |\alpha|^2 - |\beta|^2 - |\alpha|^2 |\beta|^2 = 0$ $(1 - |\alpha|^2) (1 - |\beta|^2) = 0$ As $|\beta| \neq 1$ $\therefore |\alpha| = 1$ In our case take $\alpha = z_1/2$ and $\beta = z_2$ gives $|z_1/2| = 1$: $|z_1| = 2$ 11. (d): We have $|z - 1| \le |z + i| \Rightarrow x + y \ge 0$ The region shaded is of the line x + y = 0Co-ordinates of centre of circle $|\omega - 4 - i| = r$ is (4, 1) (say A) A(4, 1)The largest value of r would be the length of \perp from A(4, 1) on the line x + y = 0(0, -1) $\left|\frac{9+6}{\sqrt{7}}\right| = \frac{1}{\sqrt{7}}$ 12. (c): Let $z = re^{i\theta} \Rightarrow \frac{\mathrm{Im} z^5}{(\mathrm{Im} z)^5} = \frac{r^5(\sin 5\theta)}{r^5(\sin \theta)^5} = \frac{\sin 5\theta}{\sin^5 \theta}.$ $\Rightarrow \frac{dz}{d\theta} = \frac{\sin^5 \theta \cdot 5\cos 5\theta - 5\sin 5\theta \sin^4 \theta \cos \theta}{(\sin^5 \theta)^2} \quad \text{Put } \frac{dz}{d\theta} = 0$ $\Rightarrow 5\sin^4 \theta (\sin \theta \cos 5\theta - \cos \theta \sin 5\theta) = 50$ $\Rightarrow 5\sin^4\theta (\sin\theta \cos 5\theta - \cos\theta \sin 5\theta) = 0$ $\Rightarrow \sin\theta = 0 \text{ or } \sin(-4\theta) = 0$ $\Rightarrow \theta = n\pi \text{ or } \theta = \frac{n\pi}{4}, \text{ where } n \in Z$ As z is non-real complex number. $\therefore \quad \text{only } \theta = \frac{n\pi}{4} \text{ is possible.}$ 13. (a): 1st solution : $\left|z + \frac{1}{2}\right| \ge \left||z| - \frac{1}{2}\right|$ As $|z| \ge 2$ the minimum value of the expression occurs when |z| = 2Thus $\left|z + \frac{1}{2}\right|_{\min} = \frac{3}{2}$ 2nd solution Geometrically |z| = 2 is a circle and $|z| \ge 2$ is the boundary and exterior of the circle. / The minimum distance between z and point (-1/2, 0) is realised at (2, 0) and is 3/2. **14.** (b): Note that $\frac{1+z}{1+\overline{z}} = \frac{1+z}{1+\frac{1}{z}} = z$ Observe that $|z^2| = 1 = z\overline{z}$ Then the arg of the number $\frac{1+z}{1+\overline{z}}$ is just the argument of z and that's θ. 15. (c) : $z \neq 1$, $\frac{z^2}{z-1}$ is real. If z is a real number, then $\frac{z^2}{z-1}$ is real. Let z = x + iy z - 1 $\therefore \frac{(x^2 - y^2 + 2xiy)((x - 1) - iy)}{(x - 1)^2 + y^2}$ is real $\Rightarrow -y(x^2 - y^2) + 2xy(x - 1) = 0$ $\Rightarrow y(x^2 + y^2 - 2x) = 0 \Rightarrow y = 0 \text{ or } x^2 + y^2 - 2x = 0$ $\therefore \qquad \text{ or } x^2 + y^2 - 2x = 0$ z lies on real axis or on a circle passing through origin. *:*..

16. (d) :
$$(1 + \omega)^7 = (-\omega^2)^7 = -\omega^{14} = -\omega^{12} \omega^2$$

= $-\omega^2 = 1 + \omega = A + B\omega$ given

Hence, on comparison, we have
$$(A, B) = (1, 1)$$

17. (b) : 1^{st} solution :

|z-1| = |z+1| = |z-i| reads that the distance of desired complex number z is same from three points in the complex plane -1, 1 and *i*. These points are non-collinear, hence the desired number is the centre of the (unique) circle passing through these three non-collinear points.

2nd solution :

We resort to definition of modulus. $|z - 1| = |z + 1| \implies |z - 1|^2 = |z + 1|^2$

 $\Rightarrow (z-1)(\overline{z}-1) = (z+1)(\overline{z}+1)$ $\Rightarrow z\overline{z} - z - \overline{z} + 1 = z\overline{z} + z + \overline{z} + 1$

 \Rightarrow $z + \overline{z} = 0$ (z being purely imaginary)

Thus x = 0

Again, $|z - 1|^2 = |z - i|^2 \Rightarrow (x - 1)^2 + y^2 = x^2 + (y - 1)^2$ $\Rightarrow 1 + y^2 = (y - 1)^2$ (because x = 0) $\Rightarrow 1 + y^2 = y^2 - 2y + 1 \therefore y = 0$ Thus, (0, 0) is the desired point. **18.** (a): We have for any two complex numbers α and β

$$\begin{aligned} ||\alpha| - |\beta|| &\leq |\alpha - \beta| \\ \text{Now } \left| \left| Z \right| - \frac{4}{|Z|} \right| &\leq \left| Z - \frac{4}{Z} \right| \Rightarrow \left| \left| Z \right| - \frac{4}{|Z|} \right| &\leq 2 \end{aligned}$$
Set $|Z| = r > 0$, then $\left| r - \frac{4}{r} \right| &\leq 2 \Rightarrow -2 \leq r - \frac{4}{r} \leq 2$
The left inequality gives $r^2 + 2r - 4 \geq 0$
The corresponding roots are $r = \frac{-2 \pm \sqrt{20}}{2} = -1 \pm \sqrt{5}$
Thus $r \geq \sqrt{5} - 1$ or $r \leq -1 - \sqrt{5}$
implies that $r \geq \sqrt{5} - 1$ (As $r > 0$) ...(i)
Again consider the right inequality
 $r - \frac{4}{r} \leq 2 \Rightarrow r^2 - 2r - 4 \leq 0$
The corresponding roots are $r = \frac{2 \pm \sqrt{20}}{2} = 1 \pm \sqrt{5}$
Thus $1 - \sqrt{5} \leq r \leq 1 + \sqrt{5}$
But $r > 0$, hence $r \leq 1 + \sqrt{5}$...(ii)
(i) and (ii) gives $\sqrt{5} - 1 \leq r \leq \sqrt{5} + 1$
So, the greatest value is $\sqrt{5} + 1$.
19. (d) : $\overline{z} = \frac{1}{i-1}$
We have $z = (\overline{z})$ giving $z = \frac{1}{i-1} = \frac{-1}{i-1} = \frac{-1}{i+1}$
20. (a) : z lies on or inside the circle with Im

centre (-4, 0) and radius 3 units. Hence maximum distance of z from (-1, 0) is 6 units. (-4, 0) (-4, 0

21. (d):
$$\sum_{k=1}^{n} \left(\sin \frac{2k\pi}{n+1} + i \cos \frac{2k\pi}{n+1} \right)$$
$$\therefore = \sum_{k=1}^{10} \left(\sin \frac{2k\pi}{11} + i \cos \frac{2k\pi}{11} \right) = -i$$

22. (d) : $z^2 + z + 1 = 0 \implies z = \omega, \omega^2$ $\left(z+\frac{1}{z}\right)^2 + \left(z^2+\frac{1}{z^2}\right)^2 + \dots \left(z^6+\frac{1}{z^6}\right)^2$ $= 4 (\omega + \omega^2)^2 + 2(\omega^3 + \omega^3)^2 = 4 (-1)^2 + 2(2^2) = 4 + 8 = 12$ **23.** (d) : Let $z_1 = \cos \theta_1 + i \sin \theta_1$, $z_2 = \cos\theta_2 + i\sin\theta_2$ $\therefore \quad z_1^2 + z_2 = (\cos\theta_1 + \cos\theta_2) + i(\sin\theta_1 + \sin\theta_2)$ Now $|z_1 + z_2| = |z_1| + |z_2|$ $\Rightarrow \sqrt{(\cos\theta_1 + \cos\theta_2)^2 + (\sin\theta_1 + \sin\theta_2)^2} = 1 + 1$ $\Rightarrow 2(1 + \cos(\theta_1 - \theta_2)) = 4$ (by squaring) $\Rightarrow \cos(\theta_1 - \theta_2) = 1 \Rightarrow \theta_1 - \theta_2 = 0 \quad (\because \cos 0^\circ = 1)$ $\Rightarrow \operatorname{Arg} z_1 - \operatorname{Arg} z_2 = 0.$ 24. (d): Given $\omega = \frac{3z}{3z-i}$: $|\omega| = \frac{3|z|}{|3z-i|}$ $\Rightarrow |3z - i| = 3|z|$ $\Rightarrow |3(x) + i(3y-1)| = |3(x+iy)| \quad (\because z = x+iy)$ $\Rightarrow (3x)^2 + (3y-1)^2 = 9(x^2 + y^2) \Rightarrow 6y - 1 = 0$ which is straight line. 25. (d) :1st solution : (By making the equation from the given roots) Let us consider x = -1, -1, -1 \therefore Required equation from given roots is (x + 1)(x + 1)(x + 1) = 0 $(x + 1)^3 = 0$ which does not match with the given equation $(x-1)^3 + 8 = 0$ so x = -1, -1, -1 cannot be the proper choice. Again consider $x = -1, -1 + 2\omega, -1 - 2\omega^2$.: Required equation from given roots is $\Rightarrow (x + 1)(x + 1 - 2\omega)(x + 1 + 2\omega^2) = 0$ $(x + 1)[(x + 1)^{2} + (x + 1)(2\omega^{2} - 2\omega) - 4\omega^{3}] = 0$ \Rightarrow $(x + 1)[(x + 1)^{2} + 2(x + 1)(\omega^{2} - \omega) - 4] = 0$ \Rightarrow $(x + 1)^{3} + 2(x + 1)^{2}(\omega^{2} - \omega) - 4(x + 1) = 0$ \Rightarrow which cannot be expressed in the form of given equation $(x-1)^3 + 8 = 0$. Now consider the roots $x_i = -1, 1 - 2\omega, 1 - 2\omega^2$ (i = 1, 2, 3) and the equation with these roots is given by x^{3} – (sum of the roots) x^{2} + x(Product of roots taken two at a time) - Product of roots taken all at a time = 0Now sum of roots $x_1 + x_2 + x_3 = -1 + 1 - 2\omega + 1 - 2\omega^2 = 3$ Product of roots taken two at a time $= -1 + 2\omega - 1 + 2\omega^{2} + 1 + 2(\omega^{2} + \omega) + 4\omega^{3} = 3$ Product of roots taken all at a time = $(-1)[(1 - 2\omega)(1 - 2\omega^2)] = -7$ \therefore Required equation is $x^3 - 3x^2 + 3x + 7 = 0$ $\Rightarrow x^3 - 3x^2 + 3x - 1 + 8 = 0 \Rightarrow (x - 1)^3 + 8 = 0$ which matched with given equation. 2nd solution : (by taking cross checking) As $(x-1)^3 + 8 = 0$...(*) and x = -1 satisfies $(x - 1)^3 + 8 = 0$ *i.e.* $(-2)^3 + 8 = 0 \implies 0 = 0$ Similarly for $1 - 2\omega$ we have $(x - 1)^3 + 8 = 0$ $\Rightarrow (1 - 2\omega - 1)^3 + 8 = 0$ $\Rightarrow (-2\omega)^3 + 8 = 0 \Rightarrow -8 + 8 = 0$ and for $1 - 2\omega^2$ we have $(1 - 2\omega^2 - 1)^3 + 8 = 0 \Rightarrow \omega^6(-8) + (8) = 0 \Rightarrow 0 = 0$:. $-1, 1 - 2\omega, 1 - 2\omega^2$ are roots of $(x - 1)^3 + 8 = 0$ and on the other hand the other roots does not satisfy the equation

 $(x-1)^3 + 8 = 0.$

26. (a) : $\overline{z} + i\overline{\omega} = 0$ $\Rightarrow \quad \overline{z} = -i\overline{\omega} \Rightarrow z = i\omega \Rightarrow \quad \omega = -iz \quad \therefore \text{ arg } (-iz^2) = \pi$ \Rightarrow arg (-i) + 2arg (z)= π \Rightarrow 2arg(z) = $\pi + \pi/2 = 3\pi/2 \Rightarrow \arg(z) = 3\pi/4$ **27.** (d) : $z^{1/3} = p + iq$ $\begin{array}{l} x - iy = (p + iq)^3 \implies x - iy = p^3 - 3pq^2 + i(3p^2q - q^3) \\ x = p^3 - 3pq^2 \text{ and } y = -(3p^2q - q^3) \end{array}$ \Rightarrow $\frac{x}{p} = p^2 - 3q^2$ and $\frac{y}{q} = -(3p^2 - q^2)$...(*) Adding the equations of (*) we get $\frac{x}{p} + \frac{y}{q} = -2(p^2 + q^2)$ **28.** (b) : $|z^2 - 1| = |z|^2 + 1$ = 0 Imaginary axis Let z = x + iy \Rightarrow $(x-1)^2 + y^2 = (x^2 + y^2) + 1$ \Rightarrow 2x = 0 \Rightarrow \Rightarrow x = 0z lies on imaginary axis. \Rightarrow **29.** (d) : Given $\left(\frac{1+i}{1-i}\right)^x = 1 \Rightarrow \left(\frac{2i}{2}\right)^x = 1$ For real axis y = 0 $\Rightarrow i^x = 1 \Rightarrow i^x = (i)$ $\Rightarrow x = 4n, n \in I^+$ **30.** (c) : $|z\omega| = 1 \Rightarrow |z||\omega| = 1$ So $|z| = \frac{1}{|\omega|}$... (1) Again $Arg(z) - Arg(\omega) = \frac{\pi}{2}$ $\therefore \quad \frac{z}{\omega} = \left| \frac{z}{\omega} \right| i = |z|^2 i \text{ from (1)}$ $\therefore \quad \frac{z}{\omega} = z \,\overline{z} \,i \implies \overline{z} \,\omega = \frac{1}{i} = -i.$ **31.** (b) : As z_1, z_2 are roots of $z^2 + az + b = 0$ \therefore $z_1 + z_2 = -a, z_1 z_2 = b$ Again 0, z_1 , z_2 are vertices of an equilateral triangle $\therefore \quad 0^2 + z_1^2 + z_2^2 = 0z_1 + z_1z_2 + z_20 = 0$ $z_1^2 + z_2^2 = z_1 z_2$ $\Rightarrow (z_1 + z_2)^2 = 3z_1z_2$ $a^2 = 3b$ **32.** (b) : Let $|z| = |\omega| = r$ $\therefore z = re^{i\alpha}$ and $\omega = re^{i\beta}$ where $\alpha + \beta = \pi$ (given) Now $z = re^{i\alpha} = re^{i(\pi - \beta)} = re^{i\pi} \cdot e^{-i\beta} = -re^{-i\beta} = -\overline{\omega}$ 33. (c) : |z - 4| < |z - 2|or |a - 4 + ib| < |(a - 2) + ib| by taking z = a + ib $\Rightarrow (a-4)^2 + b^2 < (a-2)^2 + b^2$ \Rightarrow $-8a + 4a < -16 + 4 \Rightarrow 4a > 12 \Rightarrow a > 3 \Rightarrow \operatorname{Re}(z) > 3$ 34. (b): $z_1 z_3 - z_3 z_2 = (a + r) - (b + r)$

= a - b = a constant, which represent a hyperbola Since, A hyperbola is the locus of a point which moves in such a way that the difference of its distances from two fixed points (foci) is always constant.