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1. The set of all  R, for which
1 (1 8 )

1

z

z

   
  is a purely

imaginary number, for all z  C satisfying |z| = 1 and
Re z  1, is
(a) an empty set (b) equal to R

(c) {0} (d)
1 1

0, ,
4 4

  
  (Online 2018)

2 If |z – 3 + 2i|  4 then the difference between the greatest
value and the least value of |z| is

(a) 13 (b) 4 13 (c) 8 (d) 2 13
(Online 2018)

3. The least positive integer n for which
1 3

1, is :
1 3

n
i

i

    
(a) 3 (b)  5 (c)  2 (d)  6

(Online 2018)
4. Let  be a complex number such that 2 + 1 = z where

3.z    2 2

2 7

1 1 1

If 1 1 3 ,

1

k   

 

then k is equal to

(a) z (b) –1 (c) 1 (d) –z (2017)

5. Let z  C, the set of complex numbers. Then the equation,
2|z + 3i| – |z – i| = 0 represents

(a) a circle with radius 
8

.
3

(b) a circle with diameter 
10

.
3

(c) an ellipse with length of major axis
16

.
3

(d) an ellipse with length of minor axis 
16

.
9
(Online 2017)

6. The equation
2

Im 1 0, ,
iz

z C z i
z i

       
represents a

part of a circle having radius equal to

(a) 1 (b)
3

4
(c)

1

2
(d) 2

(Online 2017)

7. A value of  for which
 
 

2 3 sin

1 2 sin

i

i
 is purely imaginary is

(a) /3 (b) /6

(c)
  
  

1 3sin
4

(d)
  
  

1 1
sin

3
(2016)

8. The point represented by 2 + i in the Argand plane moves
1 unit eastwards, then 2 units northwards and finally from
there 2 2  units in the south-westwards direction. Then
its new position in the Argand plane is at the point
represented by
(a) 1 + i (b) 2 + 2i (c) –2 – 2i (d) –1 – i

(Online 2016)

9. Let z = 1 + ai be a complex number, a > 0, such that z3

is a real number. Then the sum 1 + z + z2 + ........ + z11 is
equal to

(a) 1365 3i (b) 1365 3i
(c) 1250 3i (d) 1250 3i (Online 2016)

10. A complex number z is said to be unimodular if |z| = 1.
Suppose z1 and z2 are complex numbers such that



1 2

1 2

2

2

z z

z z  is unimodular and z2 is not unimodular. Then

the point z1 lies on a

(a) circle of radius 2. (b) circle of radius 2 .
(c) straight line parallel to x-axis.

(d) straight line parallel to y-axis. (2015)

11. The largest value of r for which the region represented by
the set {  C : | – 4 – i|  r} is contained in the region
represented by the set {z  C : |z – 1|  |z + i|}, is equal
to

(a) 17 (b) 2 2 (c)
3

2
2

(d)
5

2
2

(Online 2015)

12. If z is a non-real complex number, then the minimum value

of 
5

5

Im

(Im )

z

z  is

(a) –1 (b) –2 (c) –4 (d) –5

(Online 2015)
13. If z is a complex number such that |z|  2, then the minimum

value of 
1

2
z 

(a) lies in the interval (1, 2)

(b) is strictly greater than 
5

2

(c) is strictly greater than 
3

2
but less than 

5

2

(d) is equal to 
5

2
(2014)
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14. If z is a complex number of unit modulus and argument ,

then
1

arg
1

 
  

z

z
equals

(a)
2

   (b)  (c)  –  (d) –  

15. If z  1 and
2

1

z

z 
 is real, then the point represented by the

complex number z lies
(a) either on the real axis or on a circle not passing through
the origin.
(b) on the imaginary axis.
(c) either on the real axis or on a circle passing through
the origin.
(d) on a circle with centre at the origin. (2012)

16. If ( 1) is a cube root of unity, and
(1 + )7 = A + B. Then (A, B) equals
(a) (1, 0) (b) (–1, 1)
(c) (0, 1) (d) (1, 1) (2011)

17. The number of complex numbers z such that

|z – 1| = |z + 1| = |z – i| equals

(a) 0 (b) 1 (c) 2 (d)  (2010)

18. If
4

2,Z
Z

  then the maximum value of | Z | is equal to

(a) 5 1 (b) 2 (c) 2 2 (d) 3 1
(2009)

19. The conjugate of a complex number is
1

1i 1
. Then that

complex number is

(a)
1

1i 1
(b)

1
1i

1
1

(c)
1

1i 1
(d)

1
1i

1
1

(2008)
20. If |z + 4|  3, then the maximum value of |z + 1| is

(a) 6 (b) 0 (c) 4 (d) 10 (2007)

21. The value of
10

1

2 2
sin cos

11 11k

k k
i



   
 

  is

(a) i (b) 1 (c) –1 (d) – i (2006)

22. If z2 + z + 1 = 0, where z is a complex number, then the

value of 
2 2

2
2

1 1
z z

z z
        
   

2 2
3 6

3 6

1 1
....z z

z z
          
   

is

(a) 18 (b) 54 (c) 6 (d) 12
(2006)

23. If z
1
 and z

2
 are two non-zero complex numbers such that

|z
1
 + z

2
| = |z

1
| + |z

2
|, then arg z

1
 – arg z

2
is equal to

(a) – (b) /2 (c) –/2 (d) 0 (2005)

24. If
(1/3)
z

z i
 


 and || = 1, then z lies on

(a) a circle (b) an ellipse
(c) a parabola (d) a straight line (2005)

25. If the cube roots of unity are 1, , 2 then the roots of the
equation (x – 1)3 + 8 = 0, are
(a) –1, –1, –1 (b) –1, –1 + 2, –1 – 22

(c) –1, 1 + 2, 1 + 22 (d) –1, 1 – 2, 1 – 22 (2005)

26. Let z,  be complex numbers such that 00z i
and z = . Then arg z equals
(a) 3/4 (b) /2 (c) /4 (d) 5/4 (2004)

27. If z = x – iy and z1/3 = p + iq, then
2 2( )2 2( )2 2( )2 2

yx
p q

p q
 is equal to

(a) 2 (b) –1 (c) 1 (d) –2 (2004)
28. If | z2 – 1 | = | z |2 + 1, then z lies on

(a) a circle (b) the imaginary axis
(c) the real axis (d) an ellipse (2004)

29. If  1 1
1

xi
i

 
 , then

(a) x = 2n, where n is any positive integer
(b) x = 4n + 1, where n is any positive integer
(c) x = 2n + 1, where n is any positive integer
(d) x = 4n, where n is any positive integer (2003)

30. If z and  are two non-zero complex numbers such that
|z| = 1, and Arg(z) – Arg() = /2, then z  is equal to

(a) –1 (b) i (c) – i (d) 1
(2003)

31. Let z
1
 and z

2
 be two roots of the equation z2 + az + b = 0,

z being complex further, assume that the origin, z
1
 and z

2

form an equilateral triangle, then
(a) a 2 = 2b (b) a 2 = 3b
(c) a 2 = 4b (d) a 2 = b (2003)

32. z and  are two nonzero complex number such that
| | | || | | |z  and Arg z + Arg  =  then z equals

(a) (b) – (c)  (d) –  (2002)

33. If 4 2 ,z z    its solution is given by

(a) Re(z) > 0 (b) Re(z) < 0

(c) Re(z) > 3 (d) Re(z) > 2 (2002)

34. The locus of the centre of a circle which touches the circle

1z z a   and 2z z b   externally (z, z1 & z2 are

complex numbers) will be
(a) an ellipse (b) a hyperbola
(c) a circle (d) none of these (2002)
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1. (c): Given,
1 (1 8 )

1

z

z

   


For  to be purely imaginary,  +   = 0
1 (1 8 ) 1 (1 8 )

. ., 0
1 1

z z
i e

z z

      
 

 [1 (1 8 ) ][1 ] [1 (1 8 ) ][1 ] 0z z z z         
 [1 (1 8 ) (1 8 ) ] [1 (1 8 )z z z z z z           

(1 8 ) ] 0z z   
 2 ( ) (1 8 )( ) 2(1 8 ) 0z z z z           ( 1)z z z 
 2 ( ) ( ) 8 ( ) 2 16 0z z z z z z          
 16 8 ( )z z   
Either 2 or  ={0}.z z   But 2 isnot possiblez z     = {0}

2. (d): Origin (O) lies inside the circle

Greatest value of |z| = OC + r  = 13 4
Least value of |z| = r – OC 4 13  C O

4

3 – 2i

(0, 0)

Required difference 13 4 4 13    2 13

3. (a):
1 3

1
1 3

n
i

i

    


1 3

2 1
1 3

2

n
i

i

 
 

  
 

 

2

1

n    


2

1 3

2

(1 3)
and

2

i

i

    
 
     



  ()n = 1

So, least positive integer value of n is 3.

4. (d): We have, z = 1 + 2
1 3

. ., 3 1 2
2

i
i e i

 
     

Then  is a cube root of unity.  Also, 1 +  + 2 = 0

2 2

2 7

1 1 1

Now 1 1 3

1

k   

 

2 2

2 2

1 1 1 3 1 1

1 3 0 3

1 0

k k       

   
 3(2 – 4) = 3k
 k = 2 –  = –1 –  –  = –1 – 2 = –z
5. (a): We have, 2|z + 3 i| – |z – i| = 0
 2|x + i(y + 3)| = |x + i(y –1)| ( )z x iy 

2 2 2 22 ( 3) ( 1)x y x y     
 4(x2 + (y + 3)2) = x2 + (y – 1)2

 3x2 = y2 – 2y + 1 – 4y2 – 24y – 36

 3x2 + 3y2 + 26y + 35 = 0 2 2 26 35
0

3 3
x y y    

This is the equation of circle with radius,

2
2 13 35

0
3 3

r
     

64 8

9 3
 

6. (b): Let z = x + iy

Im
2 ( 1)

1 0
( 1) ( 1)

ix y x i y

x i y x i y

                    

2

2 2

( 1)( 2)
1 0

( 1)

y y x

x y

    
 

 2x2 + 2y2 – y – 1 = 0  x2 + y2 – (1/2)y – (1/2) = 0

 Centre of circle is 
1

0,
4

 
  

 Radius =
2 1 1 1 9 31

0
2 16 2 16 44

        

7. (d) : Let 
  
 

2 3 sin

1 2 sin

i

i

     
   

(2 3 sin )(1 2 sin )

(1 2 sin )(1 2 sin )

i i

i i

   
 

2

2

(2 6sin ) (7sin )

1 4sin

i

As  is to be purely imaginary, we have

Re () = 0    2 = 6sin2    1
. . sin

3
i e

8. (a) :

Hence, the final position of the point is represented by
1 + i.
9. (b) : z = 1 + ai, z2 = 1 – a2 + 2ai

    2 2{(1 ) 2 }{1 }z z a ai ai = (1 – a2) + 2ai + (1 – a2)ai – 2a2

  z3 is real  2a + (1 – a2) a = 0

     2(3 ) 0 3 ( 0)a a a a

Now,    
 

 

12 12(1 3 ) 1 (1 3 ) 1
1 3 1 3

i i

i i

             

12 12
12 12 121 3(1 3 ) 2 2 cos sin

2 2 3 3
i i i

= 212(cos4 + isin4) = 212

 1 + z + z2 + .....+ z11 =
 

122 1 4095
3 3i i

   
4095 3 1365 3

3
i i

10. (a) : 1st solution :




1 2

1 2

2
We have, 1

2

z z

z z
 |z1 – 2z2|

2 = |2 – z1z
–
2|

2

 (z1 – 2z2)(z
–
1 – 2z–2) =  (2 – z1z

–
2)(2 – z–1z2)

 |z1|
2 – 4 – |z1|

2 |z2|
2 + 4|z2|

2 = 0
 {|z1|

2 – 4} – |z2|
2 {|z1|

2 – 4} = 0
 (1 – |z2|

2) (|z1|
2 – 4) = 0

Thus |z1| = 2 as |z2|  1     (given)
The point z lies on circle of radius 2.



2nd solution : Observe that if 
  


 

| |
1,

|1 |
two complex

numbers  and  of which ||  1, then || = 1

Since | – | = |1 – 
–
|   | – |2 = |1 – 

–
|2

 ||2 + ||2 – 2Re (
–
) = 1 + ||2 ||2 – 2 Re(

–
)

 1 – ||2 – ||2 – ||2 ||2 = 0
 (1 – ||2) (1 – ||2) = 0  As || 1    || = 1
In our case take  = z1/2 and  = z2

gives |z1/2| = 1     |z1| = 2
11. (d) : We have |z – 1|  |z + i|  x + y  0
The region shaded is of the line
x + y = 0 y

x

x y+ = 0

O
(0, –1)

A(4, 1)

Co-ordinates of centre of circle
| – 4 – i| = r is (4, 1) (say A)
The largest value of r would be
the length of  from
A(4, 1) on the line x + y = 0


 

4 1 5

2 2

12. (c): Let z = rei
5 5

5 5 5 5

Im (sin 5 ) sin 5
.

(Im ) (sin ) sin

z r

z r

   
 

5 4

5 2

sin 5cos5 5sin5 sin cos

(sin )

dz

d

      
 

Put 0
dz

d



 5sin4 (sin cos5 – cos sin5) = 0
 sin = 0  or  sin(–4) = 0

or
4

n
n

      , where n  Z

As z is non-real complex number.

 only 
4

n   is possible.

13. (a): 1st solution :
1 1

| |
2 2

z z 

As |z|  2 the minimum value of the expression occurs when
|z| = 2

Thus 
min

31
22

z 

2nd solution :

(–1/2, 0)
(2, 0)Geometrically |z| = 2 is a circle and |z|  2

is the boundary and exterior of the circle.
The minimum distance between z and point
(–1/2, 0) is realised at (2, 0) and is 3/2.

14. (b): Note that 1 1
11 1

z z
z

z
z

  
 

Observe that 2| | 1z zz 
Then the arg of the number 

1
1

z
z




 is just the argument of z and

that’s .

15. (c) : z  1,
2

1

z

z 
 is real.

If z is a real number, then 
2

1

z

z 
 is real.

Let z = x + iy


2 2

2 2
( 2 ) (( 1) )

( 1)

x y xiy x iy

x y

   
   is real

 – y(x2 – y2) + 2xy(x – 1) = 0
 y(x2 + y2 – 2x) = 0    y = 0  or x2 + y2 – 2x = 0
 z lies on real axis or on a circle passing through origin.

16. (d) : (1 + )7 = (–2)7 = –14 = –12 2

= –2 = 1 +  = A + B given
Hence, on comparison, we have (A, B) = (1, 1).

17. (b) : 1st solution :
|z – 1| = |z + 1| = |z – i| reads that the distance of desired complex
number z is same from three points in the complex plane –1, 1
and i. These points are non-collinear, hence the desired number
is the centre of the (unique) circle passing through these three
non-collinear points.
2nd solution :
We  resort to definition of modulus.

|z – 1| = |z + 1|       |z – 1|2 = |z + 1|2

 ( 1)( 1) ( 1)( 1)z z z z    
1 1zz z z zz z z       

0z z    (z being purely imaginary)

Thus x = 0

Again, |z – 1|2 = |z – i|2  (x – 1)2 + y2 = x2 + (y – 1)2

 1 + y2 = (y – 1)2 (because x = 0)
 1 + y2 = y2 – 2y + 1  y = 0
Thus, (0, 0) is the desired point.
18. (a): We have for any two complex numbers  and 
||| – |||  | – |

4 4 4
Now | | | | 2

| | | |
     Z Z Z

Z Z Z

Set |Z| = r > 0, then  
4

2r
r

  4
2 2r

r
    

The left inequality gives r2 + 2r – 4  0

The corresponding roots are 
2 20

1 5
2

r
    

Thus 5 1 or 1 5r r    
implies that 5 1 (As 0)r r   ...(i)

Again consider the right inequality
24

2 2 4 0r r r
r

     

The corresponding roots are 
2 20

1 5
2

r


  

Thus 1 5 1 5r   
But r > 0, hence 1 5r   ...(ii)

(i) and (ii) gives 5 1 5 1r   
So, the greatest value is 5 1.
19. (d) :

1
1

z
i

1
i 1

We have ( )z z( )( )z z( )z z( )   giving 
1 1 1

1 11
z

i ii
1 1 11 1 1

i
1 1 1

1 1i i1 1i i1 11 1i i1 1i i1 111
20. (a) : z lies on or inside the circle with

centre (–4, 0) and radius 3 units. 

(–4, 0)

(–1, 0)

O
Real

Im

Hence maximum distance of z
from (–1, 0) is 6 units.

21. (d) :
1

2 2sin cos
1 1

n

k

k ki
n n

     



10

1

2 2sin cos
1k

k ki i


        




22. (d) : z2 + z + 1 = 0      z = , 2


2 22

2 6
2 6

1 1 1.....z z z
z z z

                  
= 4 ( + 2)2 + 2(3 + 3)2 = 4 (– 1)2 + 2(22) = 4 + 8 = 12
23. (d) :  Let z

1
 = cos

1
 + i sin

1
,

z
2
 = cos

2
 + isin

2

 z
1
 + z

2
 = (cos

1
 + cos

2
) + i(sin

1
 + sin

2
)

Now |z
1
 + z

2
| = |z

1
| + |z

2
|

2 2
1 2 1 2(cos cos ) (sin sin ) 1 1         

 2(1 + cos(
1
 – 

2
)) = 4 (by squaring)

 cos(
1
 – 

2
) = 1  

1
 – 

2
 = 0  cos0 1 

 Arg z
1
 – Arg z

2
 = 0.

24. (d) : Given .
33

3 3

zz
z i z i

    
 

3 3z i z  

3( ) (3 1) 3( )x i y x iy     ( )z x iy( )z x iy( )z x iy( )
 (3x)2 + (3y – 1)2 = 9(x2 + y2)  6y – 1 = 0 which is straight line.

25. (d) :1st solution : (By making the equation from the given roots)
Let us consider x = –1, –1, –1
 Required equation from given roots is
(x + 1)(x + 1)(x + 1) = 0
(x + 1)3 = 0 which does not match with the given equation
(x – 1)3 + 8 = 0 so x = –1, –1, –1 cannot be the proper choice.
Again consider x = –1, –1 + 2, –1 –2

 Required equation from given roots is
 (x + 1)(x  + 1 – 2)(x + 1 + 22) = 0
 (x + 1)[(x  + 1)2 + (x + 1)(22 – 2) – 43]  = 0
 (x + 1)[(x + 1)2 + 2(x + 1)(2 – ) – 4 ] = 0
 (x + 1)3 + 2(x + 1)2(2 – ) – 4(x + 1) = 0
which cannot be expressed in the form of given equation
(x – 1)3 + 8 = 0. Now consider the roots x

i
 = –1, 1 – 2, 1 – 22

(i = 1, 2, 3) and the equation with these roots is given by
x3 – (sum of the roots)x2 + x(Product of roots taken two at a time)
– Product of roots taken all at a time = 0
Now sum of roots x

1
 + x

2
 + x

3
 =  –1 + 1 – 2 + 1 – 22 = 3

Product of roots taken two at a time
=  –1 + 2 – 1 + 22 + 1 + 2(2 + ) + 43 = 3

Product of roots taken all at a time =  (–1)[(1 – 2)(1 – 22)] = –7
 Required equation is x3 – 3x2 + 3x + 7 = 0
 x3 – 3x2 + 3x – 1 + 8 = 0  (x – 1)3 + 8 = 0  which matched
with given equation.
2nd solution : (by taking cross checking)
As (x – 1)3 + 8 = 0 ...(*)
and x = –1 satisfies (x – 1)3 + 8 = 0
i.e. (–2)3 + 8 = 0   0 = 0
Similarly for 1 – 2 we have (x – 1)3 + 8 = 0
 (1 – 2 – 1)3 + 8 = 0
 (–2)3 + 8 = 0  –8 + 8 = 0 and for 1 – 22

we have (1 – 22 – 1)3 + 8 = 0 6(–8) + (8) = 0  0 = 0
 – 1, 1 – 2, 1 – 22 are roots of (x – 1)3 + 8 = 0 and on
the other hand the other roots does not satisfy the equation
(x – 1)3 + 8 = 0.

26. (a) : z i   = 0
 z  = i    z = i   = –iz  arg (–iz2) = 
 arg (–i) + 2arg (z)= 
 2arg(z) =  + /2 = 3/2  arg(z) = 3/4
27. (d) : z1/3 = p + iq
 x – iy = (p + iq)3   x – iy = p3 – 3pq2 + i(3p2q – q3)
 x = p3 – 3pq2 and y = –(3p2q – q3)
x

p
 = p2 – 3q2 and 

y

q
 = –(3p2 – q2) ...(*)

Adding the equations of (*) we get 
x y

p q
 = –2(p2 + q2)

28. (b) : |z2 – 1| = |z|2 + 1

For real axis  = 0y

x 
=

 0
 I

m
ag

in
ar

y 
ax

is

 Let z = x + iy
 (x – 1)2 + y2 = (x2 + y2) + 1
 2x = 0
 x = 0
 z lies on imaginary axis.

29. (d) : Given
1

1

x
i

i

 
  

= 1 
2

2

x
i 

 
 

 = 1

 ix = 1    ix = (i)4n

 x = 4n, n  I+

30. (c) :
1

| | 1 | || | 1 So | |
| |
1

| | 1 | || | 1 So | |
| || || |

z z z ... (1)

Again ( ) – ( )
2

Arg z Arg  

 2z z i iz 
 

 from (1)

 z z z i
   

1 .z i
i

   

31. (b) : As z1, z2 are roots of z2 + az + b = 0
 z1 + z2 = –a, z1z2 = b
Again 0, z1, z2 are vertices of an equilateral triangle
 02 + z1

2 + z2
2 = 0z1 + z1z2 + z20 = 0

z1
2 + z2

2 = z1z2

0

z1 z2

 (z1 + z2)
2 = 3z1z2

a2 = 3b
32. (b) : Let |z| = || = r
 z = rei and  = rei where  +  =  (given)
Now z = rei = rei( – ) = rei  e–i  = – re–i = –
33. (c) : |z – 4| < |z – 2|
or |a – 4 + ib| < |(a – 2) + ib| by taking z = a+ib
 (a – 4)2 + b2 < (a – 2)2 + b2

 –8a + 4a < –16 + 4  4a > 12  a > 3  Re(z) > 3

34. (b) :

r
a

b

z3

z1
z2

z1z3 – z3 z2 = (a + r) – (b + r)

= a ba b = a constant, which represent a hyperbola
Since, A hyperbola is the locus of a point which moves in such
a way that the difference of its distances from two fixed points
(foci) is always constant.
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