

Sets, Relations and Functions

- 1. Two sets A and B as under : $A = \{(a, b) \in R \times R : |a - 5| < 1 \text{ and } |b - 5| < 1\};$ $B = \{(a, b) \in R \times R : 4(a - 6)^2 + 9(b - 5)^2 \le 36\}.$ Then (a) neither $A \subset B$ nor $B \subset A$ (b) $B \subset A$ (c) $A \subset B$ (d) $A \cap B = \phi(\text{an empty set})$ (2018)
- 2. Consider the following two binary relations on the set $A = \{a, b, c\}$:

 $R_1 = \{(c, a), (b, b), (a, c), (c, c), (b, c), (a, a)\} \text{ and } R_2 = \{(a, b), (b, a), (c, c), (c, a), (a, a), (b, b), (a, c)\}.$ Then

- (a) R_1 is not symmetric but it is transitive
- (b) both R_1 and R_2 are transitive
- (c) R_2 is symmetric but it is not transitive
- (d) both R_1 and R_2 are not symmetric (Online 2018)

3. Let
$$f: A \to B$$
 be a function defined as $f(x) = \frac{x-1}{x-2}$, where $A = R - \{2\}$ and $B = R - \{1\}$. Then f is

$$(2y-1)$$

- (a) Invertible and $f'(y) = \frac{1}{y-1}$
- (b) Not invertible
- (c) Invertible and $f^{-1}(y) = \frac{3y-1}{y-1}$ (d) Invertible and $f^{-1}(y) = \frac{2y+1}{y-1}$ (Online 2018)
- 4. Let N denote the set of all natural numbers. Define two binary relations on N as
 R₁ = {(x, y) ∈ N × N : 2x + y = 10}
 - and $R_2 = \{(x, y) \in N \times N : x + 2y = 10\}$. Then :
 - (a) Both R_1 and R_2 are symmetric relations
 - (b) Range of R_1 is {2, 4, 8}
 - (c) Both R_1 and R_2 are transitive relations
 - (d) Range of R_2 is $\{1, 2, 3, 4\}$ (Online 2018)

5. The function
$$f: R \to \left[-\frac{1}{2}, \frac{1}{2}\right]$$
 defined as $f(x) = \frac{x}{1+x^2}$, is

- (a) injective but not surjective
- (b) surjective but not injective
- (c) neither injective nor surjective
- (d) invertible (2017)
- 6. Let $f(x) = 2^{10} \cdot x + 1$ and $g(x) = 3^{10} \cdot x 1$. If (fog)(x) = x, then x is equal to

(a)
$$\frac{3^{10}-1}{3^{10}-2^{-10}}$$
 (b) $\frac{2^{10}-1}{2^{10}-3^{-10}}$
(c) $\frac{1-3^{-10}}{2^{10}-3^{-10}}$ (d) $\frac{1-2^{-10}}{3^{10}-2^{-10}}$ (Online

- 7. The function $f: N \to N$ defined by $f(x) = x 5 \left[\frac{x}{5} \right]$ where N is the set of natural numbers and [x] denotes the greatest
 - integer less than or equal to x, is

2017)

- (a) one-one and onto.
- (b) onto but not one-one.
- (c) neither one-one nor onto.

- If $-.+7 \left(\frac{6}{-}\right) = 8 \ 1 \neq 51 \text{ mz p}$ $S = \{x \in R : f(x) = f(-x)\}; \text{ then } S$
 - (a) is an empty set

8.

- (b) contains exactly one element
- (c) contains exactly two elements
- (d) contains more than two elements (2016)

9. For
$$x \in R$$
, $x \neq 0$, $x \neq 1$, let $f_0(x) = \frac{1}{1-x}$ and $f_{n+1}(x) = f_0(f_n(x))$,
 $n = 0, 1, 2$ Then the value of $f_{100}(3) + f_1\left(\frac{2}{3}\right) + f_2\left(\frac{3}{2}\right)$
is equal to

(a)
$$\frac{8}{3}$$
 (b) $\frac{4}{3}$ (c) $\frac{5}{3}$ (d) $\frac{1}{3}$
(Online 2016)

- 10. In a certain town, 25% of the families own a phone and 15% own a car, 65% families own neither a phone nor a car and 2000 families own both a car and a phone. Consider the following three statements :
 - (1) 5% families own both a car and a phone.
 - (2) 35% families own either a car or a phone.
 - (3) 40,000 families live in the town.

Then	l
------	---

(a) only (1) and (2) are correct

- (b) only (1) and (3) are correct
- (c) only (2) and (3) are correct

(d) all (1), (2) and (3) are correct (Online 2015)

11. Let A and B be two sets containing 2 elements and 4 elements respectively. The number of subsets of $A \times B$ having 3 or more elements is

(a) 211 (b) 256 (c) 220 (d) 219 (2013)

12. Let $X = \{1, 2, 3, 4, 5\}$. The number of different ordered pairs (Y, Z) that can be formed such that $Y \subseteq X, Z \subseteq X$ and $Y \cap Z$ is empty is (a) 2^5 (b) 5^3 (c) 5^2 (d) 2^5

(a)
$$2^3$$
 (b) 5^3 (c) 5^2 (d) 3^3 (201

13. Let R be the set of real numbers. Statement-1 : $A = \{(x, y) \in R \times R : y - x \text{ is an integer}\}$ is an equivalence relation on R.

Statement-2: $B = \{(x, y) \in R \times R : x = \alpha y \text{ for some rational number } \alpha\}$ is an equivalence relation on *R*.

- (a) Statement-1 is true, Statement-2 is false.
- (b) Statement-1 is false, Statement-2 is true.
- (c) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (d) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. (2011)

14. The domain of the function
$$f(x) = \frac{1}{\sqrt{|x| - x}}$$
 is
(a) $(-\infty, 0)$ (b) $(-\infty, \infty) - \{0\}$
(c) $(-\infty, \infty)$ (d) $(0, \infty)$ (2011)

15. Consider the following relations:

 $R = \{(x, y)|x, y \text{ are real numbers and } x = wy \text{ for some rational number } w\};$

$$S = \left\{ \left(\frac{m}{n}, \frac{p}{q}\right) \mid m, n, p \text{ and } q \text{ are integers such that} \right\}$$

 $n, q \neq 0$ and $qm = pn_f^3$. Then

- (a) *R* is an equivalence relation but *S* is not an equivalence relation
- (b) neither R nor S is an equivalence relation
- (c) S is an equivalence relation but R is not an equivalence relation
- (d) R and S both are equivalence relations (2010)

16. Let $f(x) = (x + 1)^2 - 1$, $x \ge -1$. Statement-1 : The set $\{x : f(x) = f^{-1}(x)\} = \{0, -1\}$. Statement-2 : f is bijection.

- (a) Statement-1 is true, Statement-2 is false.
- (b) Statement-1 is false, Statement-2 is true.
- (c) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (d) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1 (2009)

- 17. If A, B and C are three sets such that $A \cap B = A \cap C$ and $A \cup B = A \cup C$, then (a) A = C (b) B = C(b) A = C (c) A = B
 - (c) $A \cap B = \phi$ (d) A = B (2009)
- 18. For real x, let $f(x) = x^3 + 5x + 1$, then (a) f is onto R but not one-one
 - (b) f is one-one and onto R
 - (c) f is neither one-one nor onto R
 - (d) f is one-one but not onto R
- 19. Let R be the real line. Consider the following subsets of the plane $R \times R$:
 - $S = \{(x, y) : y = x + 1 \text{ and } 0 < x < 2\}$
 - $T = \{(x, y) : x y \text{ is an integer}\}.$

2)

- Which one of the following is true?
- (a) T is an equivalence relation on R but S is not
- (b) Neither S nor T is an equivalence relation on R
- (c) Both S and T are equivalence relations on R
- (d) S is an equivalence relation on R but T is not

(2009)

20. Let
$$f: N \to Y$$
 be a function defined as
 $f(x) = 4x + 3$ where
 $Y = \{y \in N : y = 4x + 3 \text{ for some } x \in N\}.$
Show that f is invertible and its inverse is

(a)
$$g(y) = \frac{y-3}{4}$$
 (b) $g(y) = \frac{3y+4}{3}$
(c) $g(y) = 4 + \frac{y+3}{4}$ (d) $g(y) = \frac{y+3}{4}$ (2008)

21. The set $S = \{1, 2, 3, \dots, 12\}$ is to be partitioned into three sets A, B, C of equal size. Thus $A \cup B \cup C = S$, $A \cap B = B \cap C = A \cap C = \phi$. The number of ways to partition S is

(a)
$$\frac{12!}{(4!)^3}$$
 (b) $\frac{12!}{(4!)^4}$ (c) $\frac{12!}{3!(4!)^3}$ (d) $\frac{12!}{3!(4!)^4}$
(2007)

22. Let *W* denote the words in the English dictionary. Define the relation *R* by :

 $R = \{(x, y) \in W \times W | \text{ the words } x \text{ and } y \text{ have at least one letter in common} \}.$

Then R is

- (a) not reflexive, symmetric and transitive
- (b) reflexive, symmetric and not transitive
- (c) reflexive, symmetric and transitive
- (d) reflexive, not symmetric and transitive. (2006)
- **23.** Let $R = \{(3, 3) (6, 6) (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)\}$ be a relation on the set $A = \{3, 6, 9, 12\}$. The relation is
 - (a) reflexive and symmetric only
 - (b) an equivalence relation
 - (c) reflexive only
 - (d) reflexive and transitive only (2005)

24.	Let $f: (-1, 1) \rightarrow B$, be a	function defined by			(a) [1,2]		(b) [2, 3)		
	$f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right),$				(c) [2	2,3]		(d) [1, 2)		(2004)
	then f is both one-one and onto when B is the interval			32.	The f	function f	$f(x) = \log(x)$	$(x^{2} + \sqrt{x^{2} + 1})$	is	
	(a) $\left[0, \frac{\pi}{2}\right]$ (b) $\left(0, \frac{\pi}{2}\right)$				(a) a (b) a	n odd fun periodic	oction function			
	(c) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (d) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (2005)				(c) n (d) a	either an n even fu	even nor a nction	an odd func	tion	(2003)
25.	A function is matched below against an interval where it			22	A fur	nation f f	rom the se	t of natural	numbors t	o intogora
	is supposed to be increasing. Which of the following pairs			55.	A lui	iction j 1	(n-1)		numbers t	o integers
	is incorrectly matched?				define	d b y f(r)	$\frac{1}{2}, \frac{n}{2}$	when <i>n</i> 1s od	d is	
					aeriin		$\left -\frac{n}{2}\right $, w	hen <i>n</i> is even	n	
	(a) $[2, \infty)$ $2x^3 - 3x^3$	$x^2 - 12x + 6$			(2) 0	nto but n	12°	`		
	(b) $(-\infty, \infty)$ $x^3 - 3x^2 + 3x + 3$				(a) one-one and onto both					
	(c) $(-\infty, -4]$ $x^3 + 6x^2$	+ 6			(c) = 0	either one	e-one nor	onto		
	(d) $\left(-\infty, \frac{1}{2}\right) = 3x^2 - 2x$	c + 1	(2005)		(d) o	ne-one bu	it not onto)		(2003)
• -				34.	Domain of definition of the function					
26.	A real valued function $f(x)$ satisfies the functional equation			• …	20110	3 .				
	f(x - y) = f(x)f(y) - f(a - x)f(a + y) where a is a given constant and $f(0) = 1$, $f(2a - x)$ is equal to				f(x)	$=\frac{3}{4-x^2}+1$	$\log_{10}(x^3 - x)$	r), 18		
	constant and $f(0) = 1$. $f(2a - x)$ is equal to (a) $f(x)$ (b) $-f(x)$				(a) $(-1, 0) \cup (1, 2)$					
	(a) $f(x)$ (c) $f(-x)$	(d) $f(a) + f(a - x)$	(2005)		(b) ($(1, 2) \cup (2,$, ∞)			
27	Let $P = ((1, 2), (4, 2), (2, 4), (2, 2), (2, 1))$ be a relation on				(c) (-	$-1, 0) \cup (1,$	$2)\cup(2,\infty)$	(d) (1, 2)		(2003)
27.	Let $R = \{(1, 5), (4, 2), (2, 4), (2, 5), (5, 1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The relation R is			25	10.0	D. D. (1 0
	(a) not symmetric (b) transitive			35.	II f:	$R \to R$ sat	isfles $f(x +$	(y) = f(x) +	<i>f</i> (<i>y</i>), for a	$1 x, y \in R$
	(c) a function	(d) reflexive	(2004)		and f	(1) = 7, t	then $\sum_{n=1}^{n} f(x)$	r) is		
28	The range of the function	$F(\mathbf{x}) = 7 - \mathbf{x} \mathbf{P}$ is	()		-		r = 1			
20.	(a) $\{1, 2, 3, 4\}$	(b) $\{1, 2, 3, 4, 5, 6\}$			(a) $\frac{7}{-}$	$\frac{7(n+1)}{2}$		(b) 7 <i>n</i> (<i>n</i> +	- 1)	
	(c) $\{1, 2, 3\}$	(d) $\{1, 2, 3, 4, 5\}.$	(2004)			Z				
20	(f) (f, f) = (f, f) (f) (f)				(c) $\frac{7}{2}$	$\frac{7n(n+1)}{2}$		(d) $\frac{7n}{2}$.		(2003)
29.	If $f: R \to S$, defined by $f(x) = \sin x - \sqrt{3} \cos x + 1$, is onto the interval of S is					2		2		()
	(a) $\begin{bmatrix} 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} -1 & 1 \end{bmatrix}$			36.	Whie	h one is 1	not periodi	c?		
	(c) $[0, 3]$	(d) $[-1, 3]$.	(2004)		(a) s	$\sin 3x$ + si	n^2x	(b) \cos	$\overline{x} + \cos^2 x$	
30	The graph of the function	y = f(x) is symmetric	cal about		(c) c	os4x + tar	n^2x	(d) $\cos 2x$	$+ \sin x$.	(2002)
50.	the line $x = 2$, then	y = f(x) is symmetric	cal about	37.	The r	period of s	sin ² 0 is			
	(a) $f(x) = f(-x)$				(a) π	² (b) π	(c) π^3	(d) 7	t/2.
	(b) $f(2 + x) = f(2 - x)$, í		, ,			(2002)
	(c) $f(x+2) = f(x-2)$						_			
	(d) $f(x) = -f(-x)$		(2004)	38.	The c	domain of	sin ⁻¹ log	$\left \frac{x}{2} \right $ is		
		,					L	(3)]		
31.	The domain of the functi	on $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{2}}$	is		(a) [1,9]		(b) [-1, 9]]	
		$\sqrt{9-x^2}$			(c) [-	-9, 1]		(d) [-9, -	1].	(2002)
			ANSW	ER K	EY					
1.	(c) 2. (c) 3. (a)	4. (d) 5. (b)	6. (d)	7.	(c)	8. (c)	9. (c)	10. (d)	11. (d)	12. (d)
13.	(a) 14. (a) 15. (c)	16. (b) 17. (b)	18. (b)	19.	(a)	20. (a)	21. (a)	22. (b)	23. (d)	24. (c)
25.	(d) 26. (b) 27. (a)	28. (c) 29. (d)	30. (c)	31.	(b)	32. (a)	33. (b)	34. (c)	35. (c)	36. (b)
37.	(b) 38. (a)									

Now f can be graphed as under

Clearly function is surjective but not injective, as a horizontal line meet the curve in two points.

6. (d) : We have, f(g(x)) = x $f(3^{10}x - 1) = 2^{10}(3^{10} \cdot x - 1) + 1 = x$ $\Rightarrow 2^{10} \cdot 3^{10}x - 2^{10} + 1 = x \Rightarrow x(2^{10}3^{10} - 1) = 2^{10} - 1$ $\Rightarrow x = \frac{2^{10} - 1}{2^{10}3^{10} - 1} \Rightarrow x = \frac{2^{10}(1 - 2^{-10})}{2^{10}(3^{10} - 2^{-10})} \Rightarrow x = \frac{1 - 2^{-10}}{3^{10} - 2^{-10}}$ 7. (c) 8. (c) : Change x to 1/x in the equation

(c): Change x to
$$1/x$$
 in the equation

- .+7 $\left(\frac{6}{-}\right) = 8$ 1 ≠5 to obtain $\left(\frac{6}{-}\right) + 7$ - . = $\frac{8}{-}$ Eliminating $\left(\frac{6}{-}\right)$ between these two equations, we get

$$8 - . = \frac{1}{2} - 8 \quad 33 - . = \frac{7}{2}$$

Now to get the elements of *S*, we solve f(x) = f(-x) $\Rightarrow \frac{7}{7} = -\frac{7}{7} + \Rightarrow \frac{7}{7} = -\frac{5}{7} \Rightarrow \frac{7}{7} = 7 \Rightarrow \pm +\sqrt{7}$

9. (c) : We have,

$$f_1(x) = f_{0+1}(x) = f_0(f_0(x)) = \frac{1}{1 - \frac{1}{1 - x}} = \frac{x - 1}{x}$$

Similarly, $f_2(x) = f_{1+1}(x) = f_0(f_1(x)) = \frac{1}{1 - \frac{x - 1}{x}} = x$
and $f_3(x) = f_{2+1}(x) = f_0(f_2(x)) = f_0(x) = \frac{1}{1 - x}$
and $f_4(x) = f_{3+1}(x) = f_0(f_3(x)) = f_0(f_0(x)) = \frac{x - 1}{x}$
 $\therefore \quad f_0 = f_3 = f_6 = \dots = \frac{1}{1 - x}$
and $f_1 = f_4 = f_7 = f_{10} = \dots = \frac{x - 1}{x}$ and $f_2 = f_5 = f_8 = \dots = x$
So, $f_{100}(3) = \frac{3 - 1}{3} = \frac{2}{3}, f_1(\frac{2}{3}) = \frac{\frac{2}{3} - 1}{\frac{2}{3}} = -\frac{1}{2}$ and $f_2(\frac{3}{2}) = \frac{3}{2}$
 $\therefore \quad f_{100}(3) + f_1(\frac{2}{3}) + f_2(\frac{3}{2}) = \frac{5}{3}$

10. (d) : Let set P be the families who own a phone and set C be the families who own a car. n(P) = 25%, n(C) = 15%, $n(P' \cup C') = 65\%$ and $n(P \cup C) = 35\%$ Now, $n(P \cap C) = n(P) + n(C) - n(P \cup C) = 25 + 15 - 35 = 5\%$ $\Rightarrow x \times 5\% = 2000 \Rightarrow x = 40,000$ 11. (d) : $A \times B$ will have $2 \times 4 = 8$ elements. The number of subsets having atleast 3 elements $= {}^{8}C_{2} + {}^{8}C_{4} + {}^{8}C_{5} + {}^{8}C_{7} + {}^{8}C_{8}$

$$= 2^8 - (^8C_0 + ^8C_1 + ^8C_2) = 256 - 1 - 8 - 28 = 219$$

12. (d): $X = \{1, 2, 3, 4, 5\}$; $Y \subseteq X$, $Z \subseteq X$, $Y \cap Z = \phi$ Number of ways = 3^5 . 13. (a): y - x = integer and z - y = integer $\Rightarrow z - x =$ integer \therefore $(x, y) \in A$ and $(y, z) \in A \Rightarrow (x, z) \Rightarrow$ Transitive Also $(x, x) \in A$ is true \Rightarrow Reflexive As $(x, y) \in A \Rightarrow (y, x) \Rightarrow$ Symmetric Hence A is an equivalence relation but B is not. (0, y) is in B but (y, 0) is not in B.

14. (a):
$$f(x) = \frac{1}{\sqrt{|x| - x}}$$

 $|x| - x > 0 \implies |x| > x$ Thus x must be -ve. $\therefore x \in (-\infty, 0)$. **15.** (c) : We have $(x, x) \in R$ for w = 1 implying that R is reflexive. For $a \neq 0$, $(a, 0) \notin R$ for any w but $(0, a) \in R$. Thus R is not symmetric. Hence R is not an equivalence relation.

As $\left(\frac{m}{n}, \frac{m}{n}\right) \in S$ since mn = mn, S is reflexive. $\left(\frac{m}{n}, \frac{p}{q}\right) \in S \implies qm = pn$ But this can be written as nn = ma, giving $\left(\frac{p}{n}\right)$

But this can be written as np = mq, giving $\left(\frac{p}{q}, \frac{m}{n}\right) \in S$. Thus S is symmetric.

Again, $\left(\frac{m}{n}, \frac{p}{q}\right) \in S$ and $\left(\frac{p}{q}, \frac{a}{b}\right) \in S$ means am = nn and bn = aa

means qm = pn and bp = aq. *i.e.* $\frac{m}{n} = \frac{p}{q}$ and $\frac{p}{q} = \frac{a}{b}$. *i.e.* $\frac{m}{n} = \frac{a}{b}$ Thus $\left(\frac{m}{n}, \frac{a}{b}\right) \in S$ This means S is transitive.

16. (b) : The solution of $f(x) = f^{-1}(x)$ are given by f(x) = x, which gives $(x + 1)^2 - 1 = x$ $\Rightarrow (x + 1)^2 - (x + 1) = 0 \Rightarrow (x + 1)x = 0 \therefore x = -1, 0$ But as no co-domain of f is specified, nothing can be said about f being ONTO or not.

17. (b) : Let $x \in C$ Suppose $x \in A \implies x \in A \cap C$ $\implies x \in A \cap B \quad (\because A \cap C = A \cap B)$ Thus $x \in B$ Again suppose $x \notin A \implies x \in C \cup A$ $\implies x \in B \cup A \implies x \in B$ Thus in both cases $x \in C \implies x \in B$ Hence $C \subseteq B$ (1) Similarly we can show that $B \subseteq C$ (2) Combining (1) and (2) we get B = C. **18.** (b) : The function is $f : R \to R$

 $f(x) = x^3 + 5x + 1$ Let $y \in R$ then $y = x^3 + 5x + 1 \Rightarrow x^3 + 5x + 1 - y = 0$ As a polynomial of odd degree has always at least one real root, corresponding to any $y \in$ co-domain there \exists some $x \in$ domain such that f(x) = y. Hence f is ONTO.

Also f is continuous on R, because it is a polynomial function $f'(x) = 3x^2 + 5 > 0$

:. f is strictly increasing. Hence f is one-one also. **19.** (a) : To be an equivalence relation the relation must be all – reflexive, symmetric and transitive. $T = \{(x, y) : x - y \in Z\}$ is reflexive – for $(x, x) \in Z$ i.e. $x - x = 0 \in Z$

symmetric – for $(x, y) \in Z$ \Rightarrow $x - y \in Z$ \Rightarrow $y - x \in Z$ i.e. $(y, x) \in Z$ transitive – for $(x, y) \in Z$ and $(y, w) \in Z$

 $x - y \in Z$ and $y - w \in Z$, giving $x - w \in Z$ i.e. $(x, w) \in Z$. T is an equivalence relation on R. • $S = \{(x, y) : y = x + 1, 0 < x < 2\}$ is not reflexive for $(x, x) \in S$ would imply x = x + 10 = 1 (impossible). Thus S is not an equivalence relation \Rightarrow **20.** (a) : Let $f(x_1) = f(x_2), x_1, x_2 \in N$ $\Rightarrow 4x_1 + 3 = 4x_2 + 3 \Rightarrow x_1 = x_2$ Thus $f(x_1) = f(x_2) \implies x_1 = x_2$. Hence the function is one-one. Let $y \in Y$ be a number of the form y = 4k + 3, for some $k \in N$, then $y = f(x) \Rightarrow 4k + 3 = 4x + 3 \Rightarrow x = k \in N$ Thus corresponding to any $y \in Y$ we have $x \in N$. The function then is onto. The function, being both one-one and onto is invertible. y = 4x + 3 \Rightarrow $x = \frac{y-3}{4}$ \therefore $f^{-1}(x) = \frac{x-3}{4}$ or $g(y) = \frac{y-3}{4}$ is the inverse of the function. 21. (a) : Number of ways $= {}^{12}C_4 \times {}^8C_4 \times {}^4C_4 = \frac{12!}{(4!)^3}$. 22. (b) : Given relation R such that $R = \{(x, y) \in W \times W \mid \text{the word } x \text{ and } y \text{ have at least} \}$ one letter in common} where W denotes set of words in English dictionary Clearly $(x, x) \in R \ \forall x \in W$ \therefore (x, x) has every letter common \therefore R is reflexive Let $(x, y) \in R$ then $(y, x) \in R$ as x and y have at least one letter in common. $\Rightarrow R$ is symmetric. But R is not transitive \therefore Let x = DON, y = NEST, z = SHEthen $(x, y) \in R$ and $(y, z) \in R$. But $(x, z) \notin R$. \therefore R is reflexive, symmetric but not transitive. **23.** (d) : For $(3, 9) \in R$, $(9, 3) \notin R$: relation is not symmetric which means our choice (a) and (b) are out of court. We need to prove reflexivity and transitivity. For reflexivity $a \in R$, $(a, a) \in R$ which is hold *i.e.* R is reflexive. Again, for transitivity of $(a, b) \in R$, $(b, c) \in R \Rightarrow (a, c) \in R$ which is also true in $R = \{(3, 3)(6, 6), (9, 9), (12, 12), (6, 1$ (3, 9), (3, 12), (3, 6). 24. (c) : For $x \in (-1, 1)$, we have $f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ $\therefore f(\tan \theta) = \tan^{-1}\left(\frac{2\tan \theta}{1-\tan^2 \theta}\right)$ (By $x = \tan \theta$) $= \tan^{-1} (\tan 2\theta) \Rightarrow f(x) = 2 \tan^{-1} x$ $\Rightarrow -\frac{\pi}{2} < \tan^{-1}\left(\frac{2x}{1-x^2}\right) < \frac{\pi}{2}.$

25. (d): $f(x) = x^3 + 6x^2 + 6 \implies f'(x) = 3x^2 + 12x = 3x(x+4)$

 $\Rightarrow f'(x) > 0 \Rightarrow x < -4 \cup x > 0$ the interval x < -4 *i.e* $(-\infty, -4]$ is matched correctly and after checking others we find that $f(x) = 3x^2 - 2x + 1$ $\Rightarrow f'(x) > 0$ for x > 1/3 which is not given in the choice.

26. (b) : Given
$$f(x - y) = f(x)f(y) - f(a - x)f(a + y)$$
 ...(*)
let $x = 0 = y$

 $f(0) = (f(0))^{2} - (f(a))^{2}$ $1 = 1 - (f(a))^{2} \Rightarrow f(a) = 0$ $\therefore \quad f(2a - x) = f(a - (x - a)) = f(a) f(x - a) - f(a + x - a)f(0)$ By using (*), we get $f(2a - x) = 0 - f(x)(1) = -f(x) \quad (\because f(a) = 0, f(0) = 1)$

27. (a): R is a function as $A = \{1, 2, 3, 4\}$ and $(2, 4) \in R$ and $(2, 3) \in R$ R is not reflexive as $(1, 1) \notin R$ R is not symmetric as $(2, 3) \in R$ but $(3, 2) \notin R$ R is not transitive as $(1, 3) \in R$ and $(3, 1) \in R$ but $(1, 1) \notin R$. **28.** (c) : F(x) to be defined for $x \in N$. $\therefore 7 - x > 0 \Rightarrow x < 7$ (ii) $x - 3 \ge 0 \Rightarrow x \ge 3$ (i) (iii) $x - 3 \le 7 - x \Longrightarrow x \le 5$:. from (i), (ii), (iii) x = 3, 4, 5:. $F(3) = {}^{4}P_{0}, F(4) = {}^{3}P_{1}, F(5) = {}^{2}P_{2}$ \therefore {1, 2, 3} is required range **29.** (d): Let f(x) = g(x) + 1where $g(x) = 2 \left| \frac{1}{2} \sin x - \frac{\sqrt{3}}{2} \cos x \right| = 2 \sin (x - 60^\circ)$ $-2 \le 2 \sin (x - 60^\circ) \le 2 - 1 \le 2 \sin (x - 60^\circ) + 1 \le 3$ *:*.. **30.** (c): If y = f(x) is symmetrical about the line $x = \alpha$ then $f(x + \alpha) = f(x - \alpha)$ f(x+2) = f(x-2)÷ **31.** (b) : $f(x) = \frac{p(x)}{q(x)}$ (say) then Domain of f(x) is $D_f p(x) \cap D_f q(x), q(x) \neq 0$ now D_f of p(x) is $-\frac{\pi}{2} \le \sin^{-1}(x-3) \le \frac{\pi}{2}$ $\Rightarrow -\sin\frac{\pi}{2} \le x - 3 \le \sin\frac{\pi}{2}$ $\Rightarrow 2 \le x \le 4$ Again 9 - x² > 0 $\Rightarrow x^2 < 9$ |x| < 3*i.e.* -3 < x < 3...(ii) From (i) and (ii), we have $\therefore 2 \le x < 3$ **32.** (a) : $f(x) = \log \sqrt{x^2 + 1} + x$ $\therefore f(-x) = \log \left| \sqrt{1 + x^2} - x \right|$ $= -\log\left\lfloor\frac{1}{\sqrt{1+x^2}-x}\right\rceil = -\log\left\lfloor\frac{\sqrt{1+x^2}+x}{1}\right\rceil$ $= -f(x) \Rightarrow f(x) + f(-x) = 0 \Rightarrow f(x)$ is an odd function. **33.** (b) : If *n* is odd, let n = 2k - 1Let $f(2k_1 - 1) = f(2k_2 - 1)$ $\Rightarrow \frac{2k_1 - 1 - 1}{2} = \frac{2k_2 - 1 - 1}{2} \Rightarrow k_1 = k_2$ \Rightarrow f(n) is one-one functions if n is odd Again, If n = 2k (i.e. *n* is even) Let $f(2k_1) = f(2k_2)$ $\Rightarrow -\frac{2k_1}{2} = -\frac{2k_2}{2} \Rightarrow k_1 = k_2 \Rightarrow f(n)$ is one-one if n is even

Again $f(n) = \frac{n-1}{2}$; $f'(n) = \frac{1}{2} > 0$ $n \in N$ if n is odd and $f'(n) = \frac{-1}{2} < 0$ $n \in N$ if n is even

Now all such functions which are either increasing or decreasing in the stated domain are said to be onto function. Finally f(n)is one-one onto function.

34. (c) : Let
$$g(x) = \frac{3}{4 - x^2}$$
 ∴ $x \neq \pm 2$
∴ $D_f g(x) = R - \{-2, 2\}$
 $h(x) = \log_{10}(x^3 - x)$ ∴ $x^3 - x > 0$
 $x(x + 1) (x - 1) > 0$
 $\frac{- + - +}{-1 - 0 - 1}$ ∴ $x \in (-1, 0) \cup (1, \infty)$
∴ Domain of $f(x)$ is $(-1, 0) \cup (1, 2) \cup (2, \infty)$

35. (c) : Let $x = 0 = y \implies f(0) = 0$ and $x = 1, y = 0 \implies f(1 + 0) = f(1) + f(0) = 7$ (given) $x = 1, y = 1 \implies f(1 + 1) = 2f(1) = 2(7)$ $\implies f(2) = 2(7)$ $x = 1, y = 2 \therefore f(3) = f(1) + f(2) = 7 + 2(7) = 3(7)$ and so on.

$$\therefore \sum_{r=1}^{n} f(r) = f(1) + f(2) + f(3) + \dots + f(n)$$
$$= 7(1 + 2 + 3 + \dots + n) = \frac{7n(n+1)}{2}$$

36. (b) : Period of $|\sin 3x|$ is $\frac{\pi}{3}$ and period of $\sin^2 x$ is π

(a) Same as the period of $|\sin x|$ or $\frac{1 - \cos 2x}{2}$ whose period is π Now period of $|\sin 3x| + \sin^2 x$ is the L.C.M of their periods

: L.C.M of
$$\left(\frac{\pi}{3},\pi\right) = \frac{\text{LCM}(\pi,\pi)}{\text{HCF}(3,1)} = \pi$$

(c, d) Similarly we can say that $\cos 4x + \tan^2 x$ and $\cos 2x + \sin x$ are periodic function.

(b) Now $\cos^2 x$ is periodic with period π and for period of $\cos \sqrt{x}$ let us take.

$$f(x) = \cos \sqrt{x} \quad \text{Let } f(x + T) = f(x)$$

$$\Rightarrow \cos \sqrt{T + x} = \cos \sqrt{x} \quad \Rightarrow \quad \sqrt{T + x} = 2n\pi \pm \sqrt{x}$$

which gives no value of T independent of x

which gives no value of I independent of \therefore f(x) cannot be periodic

Now say $g(x) = \cos^2 x + \cos \sqrt{x}$ which is sum of a periodic and non periodic function and such function have no period. So, $\cos \sqrt{x} + \cos^2 x$ is non periodic function.

37. (b) : Let
$$f(\theta) = \sin^2 \theta = |\sin \theta|$$
 Period of $|\sin \theta|$ is π

38. (a): If
$$y = \sin^{-1}a$$
, then $-1 \le a \le 1$

$$\therefore -1 \le \log_3\left(\frac{x}{3}\right) \le 1 \quad \left[\text{as } y = \sin^{-1}\left[\log_3\left(\frac{x}{3}\right)\right] \\ \Rightarrow \frac{1}{3} \le \frac{x}{3} \le 3^1 \quad \Rightarrow \quad 1 \le x \le 9$$