CHAPTER 27

Polymers

1. The copolymer formed by addition polymerization of styrene and acrylonitrile in the presence of peroxide is

- 2. Which of the following statements is not true?
 - (a) Nylon-6 is an example of step-growth polymerisation.
 - (b) Chain growth polymerisation involves homopolymerisation only.
 - (c) Step-growth polymerisation requires a bifunctional monomer.
 - (d) Chain growth polymerisation includes both homopolymerisation and copolymerisation.

(Online 2018)

3. The formation of which of the following polymers involves hydrolysis reaction?

(c) Nylon 6 (d) Bakelite (2017)4. Which of the following is a biodegradable polymer?

(a)
$$[HN-(CH_{2})_{6}NHCO - (CH_{2})_{4} - C]_{n}$$

(b) $[HN - (CH_{2})_{5}CONH - CH_{2} - C]_{n}$
(c) $[HN - (CH_{2})_{5} - C]_{n}$
(d) $[C - (CH_{2})_{5} - COO - (CH_{2})_{2} - O]_{n}$
(Online 2017)

- 5. Which of the following statements about low density polythene is false?
 - (a) Its synthesis requires high pressure.
 - (b) It is a poor conductor of electricity.
 - (c) Its synthesis requires dioxygen or a peroxide initiator as a catalyst.
 - (d) It is used in the manufacture of buckets, dust-bins etc. (2016)
- 6. Assertion : Rayon is a semisynthetic polymer whose properties are better than natural cotton.

Reason : Mechanical and aesthetic properties of cellulose can be improved by acetylation.

- (a) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion.
- (b) Both assertion and reason are correct, and the reason is the correct explanation for the assertion.
- (c) Assertion is incorrect statement, but the reason is correct.
- (d) Both assertion and reason are incorrect.

(Online 2016)

- 7. Which of the following polymers is synthesized using a free radical polymerization technique?
 - (a) Terylene (b) Melamine polymer
 - (c) Nylon 6, 6 (d) Teflon (Online 2016)
- 8. Which polymer is used in the manufacture of paints and lacquers?
 - (a) Polypropene
 (b) Polyvinyl chloride
 (c) Bakelite
 (d) Glyptal (2015)
 - $\mathbf{Dakente} \qquad (\mathbf{u}) \mathbf{Otypian} \qquad (2015)$
- **9.** Match the polymers in column-A with their main uses in column-B and choose the correct answer.
 - Column-AColumn-B(A) Polystyrene(i) Paints and lacquers(B) Glyptal(ii) Rain coats
 - (C) Polyvinyl chloride (iii) Manufacture of toys
 - (D) Bakelite (iv) Computer discs (a) (A) - (ii), (B) - (i), (C) - (iii), (D) - (iv)
 - (a) (A) (ii), (B) (i), (C) (ii), (D) (iv) (b) (A) - (iii), (B) - (i), (C) - (ii), (D) - (iv)
 - (c) (A) (ii), (B) (iv), (C) (iii), (D) (i)
 - (d) (A) (iii), (B) (iv), (C) (ii), (D) (i) (Online 2015)
- **10.** Which one of the following structures represents the neoprene polymer?

(a)
$$-J O_7 - J = J O - J O_7 - (b) - J O_7 - O$$

	(c) $-J O_7 - J O_7$	(d) $-J O J O_7 \cdot O_7 \cdot J_5 O_5$	-		(c) $H_2C \equiv CH - CN$ and (d) $H_2C \equiv CH - CN$ and	$H_2C = CH - CH = CH$ $H_2C = CH - C = CH$	2 (2009)
11.	Which one is classified as (a) Acrylonitrile	<i>(Onlin</i> a condensation polyme (b) Dacron	e 2015) r?	15.	Bakelite is obtained from (a) HCHO (c) CH ₃ CHO	phenol by reaction wi (b) $(CH_2OH)_2$ (d) CH_3COCH_3	th (2008)
12.	(c) Neoprene The species which can bes cationic polymerization is	(d) Teflon st serve as an initiator	(2014) for the	16.	Which of the following is(a) Neoprene(c) Thiokol	fully fluorinated polyme (b) Teflon (d) PVC	er? (2005)
13.	 (a) HNO₃ (c) BuLi The polymer containing str 	 (b) AlCl₃ (d) LiAlH₄ ong intermolecular for 	(2012)	17.	Which of the following is(a) Teflon(c) Terylene	a polyamide? (b) Nylon-6,6 (d) Bakelite	(2005)
	hydrogen bonding is (a) natural rubber (c) nylon-6,6	(b) teflon (d) polystyrene.	(2010)	18.	Nylon threads are made o (a) polyvinyl polymer (c) polyamide polymer	f (b) polyester polymer (d) polyethylene poly	mer.
14.	4. Buna-N synthetic rubber is a co-polymer of (a) $H_2C = CH - C = CH_2$ and $H_2C = CH - CH = CH_2$			19.	(2) Polymer formation from monomers starts by (a) condensation reaction between monomers (b) coordinate reaction between monomers		

- (b) $H_2C = CH CH = CH_2$ and $H_5C_6 CH = CH_2$
- (c) conversion of monomer to monomer ions by protons(d) hydrolysis of monomers. (2002)
- (2002)

ANSWER KEY												
1.	(d)	2. (b)	3. (c)	4. (b)	5. (d)	6. (b)	7. (d)	8. (d)	9. (b)	10. (a)	11. (b)	12. (b)
13.	(c)	14. (c)	15. (a)	16. (b)	17. (b)	18. (c)	19. (a)					

1. (d) : Polymerisation of styrene with acrylonitrile occurs in presence of peroxide.

2. (b) : Chain-growth polymerisation is an addition polymerisation which involves homopolymeri-sation and copolymerisation both.

3. (c): (a) Nylon 6, 6 is prepared by the condensation polymerisation of hexamethyl-enediamine with adipic acid under high pressure and high temperature.

(b) Terylene is prepared by condensation polymerisation of ethylene glycol and terephthalic acid.

(c) Nylon 6 is prepared when caprolactam is hydrolysed to produce caproic acid which further undergoes condensation to produce nylon 6.

$$\bigcup_{\text{Caprolactam}}^{H} \bigcup_{H_2O}^{O} \xrightarrow{533-543 \text{ K}} [H_3N - (CH_2)_5 - COO]$$

$$\xrightarrow{\Delta/\text{polymerisation}}_{-(n-1)\text{H}_2\text{O}} \left[\text{NH} - (\text{CH}_2)_5 - \overset{\text{O}}{\text{C}} \right]_n$$

(d) Novolac on heating with formaldehyde undergoes crosslinkage to form bakelite.

It is a polymer of glycine and aminocaproic acid and is a biodegradable polymer.

5. (d): High density polythene is used to manufacture buckets, dust-bins, etc. while low density polythene is used for manufacturing flexible pipes, insulation of electrical wires etc. due to its poor conductivity and slight flexibility.

6. (b) : The strength of cellulose is improved by acetylation to form rayon, a semisynthetic polymer which is better than natural cotton.

7. (d) : Terylene, Melamine and Nylon-6,6 are condensation polymers. Teflon is an addition polymer which is formed by free radical polymerization of its monomer, $(CF_2 = CF_2)$. 8. (d)

•••	(4)					
9.	(b) : Polymer	Use				
	Polystyrene	Manufacture of toys				
	Glyptal	Paints and lacquers				
	PVC Rain coats					
	Bakelite	Computer discs				

10. (a) :

$$\begin{bmatrix} O_7 = J & -J & O = J & O_7 & \underline{6192nppuulz} \\ J & & & | \{x \ y \ q -u+npulz \\ J \ x & & -J & O_7 - J = J & O - J & O_7 \\ & & & J \ x \\ & & & Vq\{| -qzq \end{bmatrix}$$

11. (b) : Dacron or terylene is a polyester, consists of ester linkages formed by the condensation of —OH group of ethylene glycol and —COOH group of terephthalic acid with elimination of water molecules.

12. (b) : Cationic polymerisation is initiated by use of strong Lewis acids such as H_2SO_4 , HF, AlCl₃, SnCl₄ or BF₃ in H_2O .

13. (c) : Nylon-6,6 involves amide (CONH) linkage therefore, it will also have very strong inter molecular hydrogen bonding between

NH-----OC group of two polyamide chains.

14. (c) : Buna-N is a co-polymer of butadiene and acrylonitrile.

$$nCH_{2} = CH - CH = CH_{2} + nCH_{2} = CH \xrightarrow{I}$$

$$nCH_{2} = CH - CH_{2} = CH \xrightarrow{I}$$

$$Acrylonitrile$$

$$CN$$

$$H$$

$$CH_{2} - CH = CH - CH_{2} - CH_{2} - CH_{n}$$

Buna-N **15.** (a) : Bakelite is a thermosetting polymer which is made by reaction between phenol and HCHO.

16. (b): Neoprene : $\begin{array}{c} CI \\ CH_2 - CH = C - CH_2 \end{array} \right]_n$ Teflon : $\begin{array}{c} CF_2 - CF_2 \end{array} \right]_n$ Thiokol : $- CH_2 \end{array} \begin{array}{c} CH_2 - S - S - CH_2 \end{array} \right]_n CH_2 - S - S - CH_2CH_2 -$

$$PVC : \begin{bmatrix} CH_2 - CH \\ I \\ Cl \end{bmatrix}_n$$

17. (b) : Polymers having amide linkages (- CONH) are known as polyamides.

 $n(H_2N(CH_2)_6NH_2) + n(HOOC(CH_2)_4COOH) \longrightarrow$ Hexamethylene diamine Adipic acid

$$-+ HN - (CH_2)_6 - \overline{NHCO} - (CH_2)_4 - CO - \frac{1}{n}$$

Nylon-6, 6

18. (c) : Nylon threads are polyamides. They are the condensation polymers of diamines and dibasic acids.

$$n \operatorname{HOOC}(\operatorname{CH}_{2})_{4}\operatorname{COOH} + n \operatorname{H}_{2}\operatorname{N}(\operatorname{CH}_{2})_{6}\operatorname{NH}_{2} \xrightarrow{280^{\circ}\operatorname{C}}{\text{high pressure}}$$
Adipic acid Hexamethylene diamine
$$\operatorname{HO} \left[\operatorname{OC} - (\operatorname{CH}_{2})_{4} - \operatorname{CONH}(\operatorname{CH}_{2})_{6}\operatorname{NH}\right]_{n}$$
Nylon (polyamide)

19. (a) : Polymerisation takes place either by condensation or addition reactions.

~≻**≔⊙**≓~