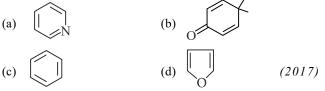
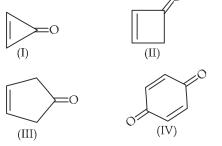

**CHAPTER** 

## Some Basic Principles of Organic Chemistry


The increasing order of nitration of the following compound is 1.



2. Which of the following compounds will form significant amount of meta product during mono-nitration reaction?




3. Which of the following molecules is least resonance stabilised?



3-Methylpent-2-ene on reaction with HBr in presence of 4. peroxide forms an addition product. The number of possible stereoisomers for the product is (a) two

Which of the following compounds will show highest dipole 5. moment?



The increasing order of the boiling points for the following 6. compounds is

- (IV) (I) (II) (III) (IV) < (III) < (I) < (II)(a)
- (b) (III) < (II) < (I) < (IV)(d) (III) < (IV) < (II) < (I)(c) (II) < (III) < (IV) < (I)

CO<sub>2</sub>H

The absolute configuration of  $\begin{array}{c} H \longrightarrow OH \\ H \longrightarrow Cl \end{array}$  is 7.

(a) 
$$(2R, 3S)$$
 (b)  $(2S, 3R)$ 

(c) 
$$(2S, 3S)$$
 (d)  $(2R, 3R)$  (2016)

8. Which of the following compounds will exhibit geometrical isomerism?

- (a) 2-Phenyl-1-butene (b) 1, 1-Diphenyl-1-propane 1-Phenyl-2-butene (c)
  - (d) 3-Phenyl-1-butene

(2015)

- 9. Which of the following pairs of compounds are positional isomers?
  - (a) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CHO and

(b) 
$$J O_8 \rightarrow O_7 \rightarrow O_7 \rightarrow O_7 \rightarrow O_8 \text{ nz p}$$
  
 $J O_8 \rightarrow O_7 \rightarrow O_7 \rightarrow O_8 \text{ nz p}$   
 $\downarrow O_8$ 

(c) 
$$J O_8 \rightarrow J O_7 \rightarrow J O_7 \rightarrow J O_8$$
 nz p  
 $J O_8 \rightarrow J O_7 \rightarrow J O_7 \rightarrow J O_8$  nz p  
 $M$   
 $J O_8 \rightarrow J O_7 \rightarrow J O_7 \rightarrow J O_8$ 

(d) J O<sub>8</sub>—J O<sub>7</sub>— -J — J O<sub>7</sub>— J O<sub>8</sub> nz p  $J O_8 \rightarrow J O_7 \rightarrow O_7 \rightarrow OW$ 

(Online 2015)

| 10. | The number of structural isomers for $C_6H_{14}$ is<br>(a) 3 (b) 4                                                   | <b>20.</b> The electrophile, $E^{\oplus}$ attacks the benzene ring to generate the intermediate $\sigma$ -complex. Of the following, which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
|     | (c) 5 (d) 6 (Online 201                                                                                              | $\sigma$ -complex is of lowest energy?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |
| 11. | The order of stability of the following carbocations is                                                              | 1 $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
|     | $\overset{\oplus}{\operatorname{CH}}_2$                                                                              | (a) $(+)$ $(+)$ $(+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
|     | $CH_2 = CH - CH_2; CH_3 - CH_2 - CH_2;$                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|     | $CH_2 = CH_2; CH_3 - CH_2 - CH_2;$                                                                                   | H E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |
|     | (a) $III > I > II$ (b) $III > II > I$                                                                                | NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|     | (a) $III > I > II$<br>(b) $III > II > I$<br>(c) $II > III > I$<br>(d) $I > II > III$<br>(201                         | 3) (c) $(+, +)$ (d) $(+, +)$ (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |
| 12. | How many chiral compounds are possible                                                                               | on Contraction of the second sec |  |  |  |  |  |  |  |  |  |  |  |
|     | monochlorination of 2-methyl butane?                                                                                 | <b>21.</b> The absolute configuration of (2008)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |
| 13  | Identify the compound that exhibits tautomerism.                                                                     | is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |
| 15. | (a) 2-Butene (b) Lactic acid                                                                                         | но н н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |
|     | (c) 2-Pentanone (d) Phenol (201                                                                                      | $\begin{array}{c} 1 \\ (a)  S, R \\ (b)  S, S \\ (c)  R, R \\ (d)  R, S \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |
| 14. | Out of the following, the alkene that exhibits optical isomeries                                                     | $m \qquad (a) \ \ 5, \ K \qquad (b) \ \ 5, \ 5 \qquad (c) \ \ K, \ K \qquad (d) \ \ K, \ 5 \qquad (2008)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |
|     | is<br>(a) 2-methyl-2-pentene (b) 3-methyl-2-pentene                                                                  | 22. Which one of the following conformations of cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |
|     | (c) 4-methyl-1-pentene (d) 3-methyl-1-pentene                                                                        | is chiral?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |
|     | (201                                                                                                                 | 0) (a) Boat (b) Twist boat<br>(c) Rigid (d) Chair (2007)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| 15. | The IUPAC name of <i>neo</i> -pentane is<br>(a) 2-methylbutane (b) 2,2-dimethylpropane                               | 23. Increasing order of stability among the three main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |
|     | (c) 2-methylpropane (d) 2,2-dimethylpropane                                                                          | conformations ( <i>i.e.</i> eclipse, anti, gauche) of 2-fluoroethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
|     | (200                                                                                                                 | is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |
| 16. | The number of stereoisomers possible for a compound of t<br>molecular formula $CH_3 - CH \equiv CH - CH(OH) - Me$ is |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|     | (a) 3 (b) 2                                                                                                          | (2006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |
|     | (c) 4 (d) 6 (200                                                                                                     | 9) <b>24.</b> The increasing order of stability of the following free radicals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |
| 17. | The alkene that exhibits geometrical isomerism is                                                                    | is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |
|     | <ul><li>(a) propene</li><li>(b) 2-methylpropene</li><li>(c) 2-butene</li><li>(d) 2-methyl-2-butene</li></ul>         | (a) $(CH_3)_2CH < (CH_3)_3C < (C_6H_5)_2CH < (C_6H_5)_3C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |
|     | (d) 2-internet (d) 2-internyi-2-butterie (200                                                                        | (b) $(C_6H_5)_3\dot{C} < (C_6H_5)_2\dot{C}H < (CH_3)_3\dot{C} < (CH_3)_2\dot{C}H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |
| 18. | Arrange the carbanions,                                                                                              | (c) $(C_6H_4)_2CH < (C_6H_4)_3C < (CH_4)_3C < (CH_4)_2CH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |
|     | $(CH_3)_3\overline{C}, \overline{C}Cl_3, (CH_3)_2\overline{C}H, C_6H_5\overline{C}H_2$                               | (d) $(CH_3)_2CH < (CH_3)_3C < (C_6H_5)_3C < (C_6H_5)_2CH$ (2006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |
|     | in order of their decreasing stability                                                                               | <b>25.</b> $CH_3Br + Nu^- \rightarrow CH_3 - Nu + Br^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |
|     | (a) $C_6H_5\overline{C}H_2 > \overline{C}Cl_3 > (CH_3)_3\overline{C} > (CH_3)_2\overline{C}H$                        | The decreasing order of the rate of the above reaction with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |
|     | (b) $(CH_3)_2\overline{C}H > \overline{C}Cl_3 > C_6H_5\overline{C}H_2 > (CH_3)_3\overline{C}$                        | nucleophiles (Nu <sup>-</sup> ) $A$ to $D$ is<br>[Nu <sup>-</sup> = ( $A$ ) PhO <sup>-</sup> , ( $B$ ) AcO <sup>-</sup> , ( $C$ ) HO <sup>-</sup> , ( $D$ ) CH <sub>3</sub> O <sup>-</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |
|     |                                                                                                                      | (a) $D > C > A > B$ (b) $D > C > B > A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |
|     | (c) $\overline{C}Cl_3 > C_6H_5\overline{C}H_2 > (CH_3)_2\overline{C}H > (CH_3)_3\overline{C}$                        | (c) $A > B > C > D$ (d) $B > D > C > A$ .<br>(2006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |
|     | (d) $(CH_3)_3\overline{C} > (CH_3)_2\overline{C}H > C_6H_5\overline{C}H_2 > \overline{C}Cl_3$ (200)                  | <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| 19. | The correct decreasing order of priority for the function                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|     | groups of organic compounds in the IUPAC system nomenclature is                                                      | ot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |
|     | (a) $-CONH_2$ , $-CHO$ , $-SO_3H$ , $-COOH$                                                                          | Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |
|     | (b) $-COOH, -SO_3H, -CONH_2, -CHO$                                                                                   | (a) 2-bromo-6-chlorocyclohex-1-ene<br>(b) 6 bromo 2 chlorocyclohexono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
|     | (c) $-SO_3H$ , $-COOH$ , $-CONH_2$ , $-CHO$                                                                          | <ul><li>(b) 6-bromo-2-chlorocyclohexene</li><li>(c) 3-bromo-1-chlorocyclohexene</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |
|     | (d) $-CHO_1 - COOH_2 - SO_2H_2 - CONH_2$ (200                                                                        | $\begin{pmatrix} (d) & 1 \\ brome & 2 \\ chlere evelekevene \\ \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |

(d) - CHO, - COOH, - SO<sub>3</sub>H, - CONH<sub>2</sub> (2008) (d) 1-bromo-3-chlorocyclohexene.

(2006)

27. The decreasing order of nucleophilicity among the nucleophiles is30. The nucleophiles is

- 0-

(2005)

(2005)

(2003)

(1)  $CH_{3}C - O^{-}$  (2)  $CH_{3}O^{-}$ O

(3) 
$$CN^{-}$$
 (4)  $H_3C - (2)$ 

(a) 1, 2, 3, 4 (b) 4, 3, 2, 1

c) 
$$2, 3, 1, 4$$
 (d)  $3, 2, 1, 4$ 

- 28. Due to the presence of an unpaired electron, free radicals are(a) chemically reactive
  - (b) chemically inactive
  - (c) anions
  - (d) cations.
- 29. Among the following four structures I to IV,

$$\begin{array}{cccc} CH_{3} & O & CH_{3} \\ I & I & I \\ C_{2}H_{5}-CH-C_{3}H_{7} & CH_{3}-C-CH-C_{2}H_{5} \\ (I) & (II) \\ H \end{array}$$

$$\begin{array}{ccc} H - C & & CH_{3} \\ H & & I \\ H & & C_{2}H_{5} - CH - C_{2}H_{5} \\ (III) & & (IV) \end{array}$$

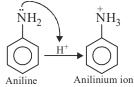
it is true that

- (a) all four are chiral compounds
- (b) only I and II are chiral compounds
- (c) only III is a chiral compound
- (d) only II and IV are chiral compounds.

**30.** The reaction :

$$(CH_3)_3C - Br \xrightarrow{H_2O} (CH_3)_3C - OH$$

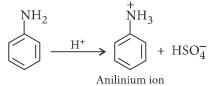
- (a) elimination reaction
- (b) substitution reaction
- (c) free radical reaction
- (d) displacement reaction. (2002)
- 31. Which of the following does not show geometrical isomerism?
  - (a) 1,2-dichloro-1-pentene
  - (b) 1,3-dichloro-2-pentene
  - (c) 1,1-dichloro-1-pentene
  - (d) 1,4-dichloro-2-pentene. (2002)
- 32. A similarity between optical and geometrical isomerism is that(a) each forms equal number of isomers for a given compound
  - (b) if in a compound one is present then so is the other
  - (c) both are included in stereoisomerism
  - (d) they have no similarity. (2002)
- **33.** Racemic mixture is formed by mixing two
  - (a) isomeric compounds
  - (b) chiral compounds
  - (c) meso compounds
  - (d) optical isomers. (2002)


**34.** Arrangement of  $(CH_3)_3C$ -,  $(CH_3)_2CH$ -,  $CH_3CH_2$  - when attached to benzyl or an unsaturated group in increasing order of inductive effect is

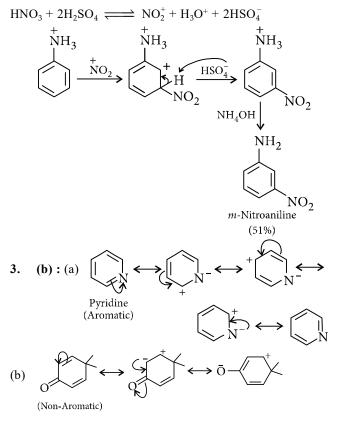
- (a)  $(CH_3)_3C < (CH_3)_2CH < CH_3CH_2 -$
- (b)  $CH_3CH_2 < (CH_3)_2CH < (CH_3)_3C -$
- (c)  $(CH_3)_2CH < (CH_3)_3C < CH_3CH_2 -$
- (d)  $(CH_3)_3C < CH_3CH_2 < (CH_3)_2CH -.$  (2002)

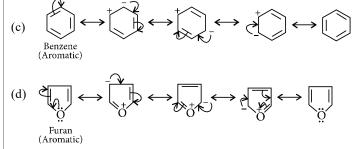
|     | ANSWER KEY |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1.  | (d)        | 2.  | (a) | 3.  | (b) | 4.  | (b) | 5.  | (a) | 6.  | (d) | 7.  | (b) | 8.  | (c) | 9.  | (c) | 10. | (c) | 11. | (a) | 12. | (a) |
| 13. | (c)        | 14. | (d) | 15. | (b) | 16. | (c) | 17. | (c) | 18. | (c) | 19. | (c) | 20. | (c) | 21. | (c) | 22. | (b) | 23. | (a) | 24. | (a) |
| 25. | (a)        | 26. | (c) | 27. | (d) | 28. | (a) | 29. | (b) | 30. | (b) | 31. | (c) | 32. | (c) | 33. | (d) | 34. | (b) |     |     |     |     |

## Explanations


1. (d) : Nitration is an electrophilic substitution reaction. Thus, groups which increase the electron density on benzene ring will have greater ease for nitration. — OCH<sub>3</sub> group shows + R effect but — CH<sub>3</sub> group shows inductive effect (+I). — Cl will have strong electron withdrawing effect (-I). In acidic medium, aniline undergoes protonation :




Thus, electron density on the benzene ring will be least in aniline. Therefore, aniline is least reactive.


Thus, increasing order of nitration is (A) < (B) < (D) < (C).

2. (a) : Conc.  $H_2SO_4$  + conc.  $HNO_3$  is a nitrating mixture. Aniline abstracts proton from sulphuric acid to give anilinium ion.

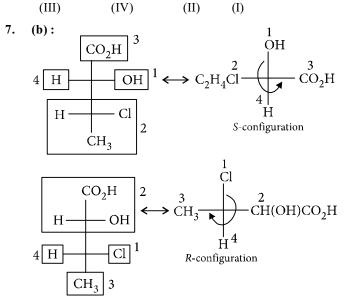


Due to electron withdrawing nature of anilinium ion, it acts as a *meta*-directing species in electrophilic aromatic substitution reactions.



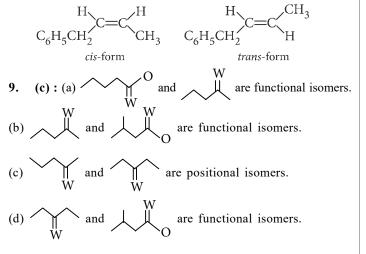


Greater the number of resonating structures, greater will be the stability of the compound. Aromatic compounds are resonance stabilised, hence, compound in option (b) is least resonance stabilised.


4. **(b)**: 
$$CH_3 - CH_2 - C = CH - CH_3 \xrightarrow{HBr}_{H_2O_2}$$
  
<sup>3-Methylpent-2-ene</sup>
 $CH_3 - CH_2 - C \xrightarrow{C}_{+} - C \xrightarrow{C}_{+} - CH_3$   
 $CH_3 - CH_2 - C \xrightarrow{L}_{+} - CH_3 \xrightarrow{H}_{+} Br$ 

There are two chiral carbon atoms present in the product. Therefore, total number of stereoisomers are  $= 2^n = 2^2 = 4$ 

O gives most stable carbocation due to the formation of aromatic compound thus, shows highest dipole moment.


6. (d) : B.P.  $\propto$  dipole moment  $\propto$  O2n{z puz s

 $\therefore \text{ The increasing order of boiling points will be :} \\ C_2H_5CH_3 < C_2H_5OCH_3 < C_2H_5Cl < C_2H_5OH \\ (III) \qquad (IV) \qquad (II) \qquad (I) \end{aligned}$ 



8. (c): For geometrical isomerism, the molecule must contain a double bond and each of the two carbon atoms of the double bond must have different substituents which may be same or different. Thus, alkenes of the type abC = Cab and abC = Cdeshow geometrical isomerism.

1-Phenyl-2-butene shows geometrical isomerism.



10. (c) : Structural isomers of  $C_6H_{14}$  are 11. (a) : Greater the number of resonating structures a

carbocation possess, greater is its stability.

12. (a): 
$$CH_3 - CH_2 - CH - CH_3 \rightarrow (I)$$
  $CH_3 - CH_2 - CH - CH_2 - CI_2 - CI_3$   
 $CH_3$   
2-methyl butane  
(II)  $CH_3 - CH_2 - C - CH_3$   
 $CH_3$   
(III)  $CH_3 - CH_2 - C - CH_3$   
 $CH_3$   
(III)  $CH_3 - CH_2 - CH - CH_3$   
 $H - CH_3$   
(IV)  $CH_2 - CH_2 - CH - CH_3$   
 $H - CH_3$   
CI  
 $CI_3$   
(IV)  $CH_2 - CH_2 - CH - CH_3$   
 $CI_3$   
 $CI_3$   
 $CH_3$   
 $CH_3$ 

Out of four possible isomers only I and III are chiral. 13. (c) : The type of isomerism in which a substance exists in two readily interconvertible different structures leading to a dynamic equilibrium is known as tautomerism. 2-pentanone exhibits tautomerism.

$$\begin{array}{c} O \\ H \\ CH_3 - C - CH_2 - CH_2 - CH_3 \Longrightarrow CH_3 - C = CH - CH_2 - CH_3 \\ Keto \ form \end{array}$$

14. (d): 3-Methyl-1-pentene exhibits optical isomerism as it has an asymmetric C-atom in the molecule.

$$C_{2}H_{5}-C^{*}-CH=CH_{2}$$

$$H$$
3-methyl-1-pentene

15. (b): 
$$H_3^3C \longrightarrow CH_3^{-1}$$
  
 $H_3C \longrightarrow CH_3^{-1}$   
 $H_3C \longrightarrow CH_3^{$ 

16. (c) : The given compound has a C = C group and one chiral (\*) carbon,

$$H_{3C} - HC = CH - CH(OH) - Me$$

$$H_{3C} = C - H - CH(OH)Me$$

$$H_{3C} = C - H - CH(OH)Me$$

$$H_{3C} = C - CH(OH)Me$$

$$H_{3C} = C$$

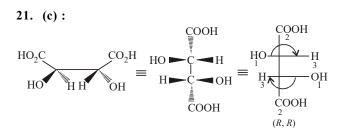
d, l isomers of trans-form

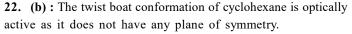
 $\therefore$  Total stereoisomers = 4.

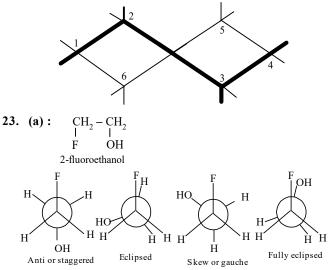
17. (c) : When two groups attached to a double bonded carbon atom are same, the compound does not exhibit geometrical isomerism.

Compounds in which the two groups attached to a double bonded carbon are different, exhibit geometrical isomerism, thus, only 2-butene exhibits cis-trans isomerism.

$$\underset{H_{3}C}{\overset{H_{3}C}{\underset{H_{3}C}{\xrightarrow{}}}} c = c \underbrace{\overset{H}{\underset{C}}_{CH_{3}}}_{trans-2-butene} + c = c \underbrace{\overset{H}{\underset{C}}_{CH_{3}}}_{cis-2-butene} + c \underbrace{\overset{H}{\underset{C}}_{cis-2-butene}}_{cis-2-butene} + c \underbrace{\overset{H}{\underset{C}}_{cis-2-butene}$$


18. (c) : The groups having +I effect decrease the stability while groups having -I effect increase the stability of carbanions. Benzyl carbanion is stabilized due to resonance. Also, out of 2° and 3° carbanions, 2° carbanions are more stable, thus the decreasing order of stability is :


$$\overline{C}Cl_3 > C_6H_5\overline{C}H_2 > (CH_3)_2\overline{C}H > (CH_3)_3\overline{C}.$$


19. (c) : The order of preference of functional groups is as follows:

$$-SO_{3}H > -COOH > -COOR > -COX > -COCl > -CONH_{2}$$
$$> -CHO > -CN > C = O > -OH > -SH > -NH_{2}$$
$$> C = C > -C = C - > -NO_{2} > -NO > -X$$
20. (c) : +

This structure will be of lowest energy due to resonance stabilisation of +ve charge. In all other three structures, the presence of electron-withdrawing NO2 group will destabilize the +ve charge and hence they will have greater energy.







The anti conformation is most stable in which F and OH groups are far apart as possible and minimum repulsion between two groups occurs.

In fully eclipsed conformation F and OH groups are so close that the steric strain is maximum, hence this conformation is most unstable. The order of stability of these conformations is anti > gauche > partially eclipsed > fully eclipsed

**24.** (a) : On the basis of hyperconjugation effect of the alkyl groups, the order of stability of free radical is as follows: tertiary > secondary > primary.

Benzyl free radicals are stabilised by resonance and hence are more stable than alkyl free radicals. Further as the number of phenyl group attached to the carbon atom holding the odd electron increases, the stability of a free radical increases

accordingly. *i.e.* 
$$(CH_3)_2CH < (CH_3)_3C < (C_6H_5)_2CH < (C_6H_5)_3C$$

**25.** (a) : If the nucleophilic atom or the centre is same, nucleophilicity parallels basicity, *i.e.* more basic the species stronger is the nucleophile.

 $CH_3O^- > HO^- > PhO^- > AcO^-$ 

Here, the nucleophilic atom *i.e.* O is the same in all these species. This order can be easily explained on the general concept that a weaker acid has a stronger conjugate base.

**26.** (c): 
$$(\stackrel{(6)}{(5)} \underbrace{(\stackrel{(1)}{(5)}}_{(4)} \stackrel{(2)}{(3)}_{(3)} Br$$
 3-bromo-1-chlorocyclohexene

**27.** (d) : Strong bases are generally good nucleophile. If the nucleophilic atom or the centre is the same, nucleophilicity parallels basicity, *i.e.*, more basic the species, stronger is the nucleophile. Hence basicity as well as nucleophilicity order is

$$CH_3O^- > CH_3 - C - O^- > H_3C - S - O^-$$

 $\cap$ 

0

Now  $CN^{-}$  is a better nucleophile than  $CH_3O^{-}$ . Hence decreasing order of nucleophilicity is

$$CN^- > CH_3O^- > CH_3 - C - O^- > H_3C - S = O^-$$

28. (a) : Free radicals are highly reactive due to presence of an unpaired electron. They readily try to pair-up the odd electrons.29. (b) : A chiral object or compound can be defined as the one that is not superimposable on its mirror image, or we can say that all the four groups attached to a carbon atom must be different. Only I and II are chiral compounds.

(I) 
$$C_2H_5 - C_1^{H_3} - C_3H_7$$
 (II)  $CH_3CO - C_1^{H_3} - C_2H_5$   
H H

30. (b) : This is an example of nucleophilic substitution reaction.

$$(CH_{3})_{3}C \longrightarrow Br + OH^{-} \longrightarrow (CH_{3})_{3}C \longrightarrow OH + Br^{-}$$
Substrate Nucleophile (CH<sub>3</sub>)<sub>3</sub>C — OH + Br<sup>-</sup>  
Leaving group  
(c) : C = C - CH<sub>2</sub> - CH<sub>2</sub> - CH<sub>3</sub>  
Cl

Condition for geometrical isomerism is presence of two different atoms of groups attached to each carbon atom containing double bond.

Identical groups (Cl) on C - l will give only one compound. Hence it does not show geometrical isomerism.

**32.** (c) : Both involves compounds having the same molecular and structural formulae, but different spatial arrangement of atoms or groups.

**33.** (d) : An equimolar mixture of two *i.e.* dextro and laevorotatory optical isomers is termed as racemic mixture or dl form or (±) mixture. **34.** (b) :  $-CH_3$  group has +I effect, as number of  $-CH_3$  group increases the inductive effect increases.

~**>===**\*

31.