CHAPTER

## Nuclear Chemistry\*

- 1. Which of the following nuclear reactions will generate an isotope?
  - (a)  $\beta$ -particle emission
  - (b) Neutron particle emission
  - (c) Positron emission
  - (d)  $\alpha$ -particle emission (2007)
- 2. A radioactive element gets spilled over the floor of a room. Its half-life period is 30 days. If the initial velocity is ten times the permissible value, after how many days will it be safe to enter the room?
  - (a) 100 days (b) 1000 days
  - (c) 300 days (d) 10 days (2007)
- 3. In the transformation of  $^{238}_{92}$ U to  $^{234}_{92}$ U, if one emission is an  $\alpha$ -particle, what should be the other emission(s)?
  - (a) Two β<sup>-</sup>
  - (b) Two  $\beta^-$  and one  $\beta^+$
  - (c) One  $\beta^-$  and one  $\gamma$
  - (d) One  $\beta^+$  and one  $\beta^-$  (2006)
- 4. A photon of hard gamma radiation knocks a proton out of  $^{24}_{12}$  Mg nucleus to form
  - (a) the isotope of parent nucleus
  - (b) the isobar of parent nucleus
  - (c) the nuclide  $\frac{23}{11}$  Na
  - (d) the isobar of  $^{23}_{11}$  Na (2005)
- 5. Hydrogen bomb is based on the principle of
  - (a) nuclear fission (b) natural radioactivity
  - (c) nuclear fusion (d) artificial radioactivity. (2005)

- 6. The half-life of a radioisotope is four hours. If the initial mass of the isotope was 200 g, the mass remaining after 24 hours undecayed is
  - (a) 1.042 g (b) 2.084 g (c) 3.125 g (d) 4.167 g (2004)
- 7. Consider the following nuclear reactions:
  - $^{238}_{92}M \rightarrow ^X_Y N + 2 ^4_2 \text{He} ; ^X_Y N \rightarrow ^A_B L + 2\beta^+$
  - The number of neutrons in the element L is(a) 142(b) 144
- 8. The half-life of a radioactive isotope is three hours. If the initial mass of the iosotope were 256 g, the mass of it remaining undecayed after 18 hours would be
  - (a) 4.0 g (b) 8.0 g (c) 12.0 g (d) 16.0 g (2003)

**9.** The radionucleide  $^{234}_{90}$  Th undergoes two successive  $\beta$ -decays followed by one  $\alpha$ -decay. The atomic number and the mass number respectively of the resulting radionucleide are

- (a) 92 and 234 (b) 94 and 230
- (c) 90 and 230 (d) 92 and 230 (2003)
- **10.**  $\beta$ -particle is emitted in radioactivity by
  - (a) conversion of proton to neutron
  - (b) form outermost orbit
  - (c) conversion of neutron to proton
  - (d)  $\beta$ -particle is not emitted. (2002)
- 11. If half-life of a substance is 5 yrs, then the total amount of substance left after 15 years, when initial amount is 64 grams is
  - (a) 16 g (b) 2 g (c) 32 g (d) 8 g (2002)

|    | ANSWER KEY |    |     |    |     |      |     |    |     |    |     |    |     |    |     |    |     |         |         |
|----|------------|----|-----|----|-----|------|-----|----|-----|----|-----|----|-----|----|-----|----|-----|---------|---------|
| 1. | (b)        | 2. | (a) | 3. | (a) | 4. ( | (c) | 5. | (c) | 6. | (c) | 7. | (b) | 8. | (a) | 9. | (c) | 10. (c) | 11. (d) |

GNot included in the syllabus of JEE Main since 2008.

## Explanations

1. (b) : The atoms of the some elements having same atomic number but different mass numbers are called isotopes.

$$\begin{array}{cccc} {}^{A}_{Z}X & \xrightarrow{-\alpha} & {}^{A-4}_{Z-2}Y; & {}^{A}_{Z}X & \xrightarrow{-\beta} & {}^{A}_{Z+1}Y \\ \\ {}^{A}_{Z}X & \xrightarrow{-1}_{0}{}^{n} & {}^{A-1}_{Z}X; & {}^{A}_{Z}X & \xrightarrow{+\beta^{+}} & {}^{A}_{Z-1}Y \end{array}$$

2. (a) : Let A be the activity for safe working. Given  $A_0 = 10 A$ ,  $A_0 \propto N_0$  and  $A \propto N$ 

$$t = \frac{2.303}{\lambda} \log \frac{N_0}{N} = \frac{2.303}{\lambda} \log \frac{A_0}{A}$$
$$= \frac{2.303}{0.693/30} \log \frac{10A}{A} = \frac{2.303 \times 30}{0.693} \log 10$$
$$= \frac{2.303 \times 30}{0.693} = 99.69 \text{ days} \approx 100 \text{ days}$$
**3.** (a) :  $\frac{238}{92} U \xrightarrow{-\alpha} \frac{234}{90} A \xrightarrow{-\beta} \frac{234}{91} B \xrightarrow{-\beta} \frac{234}{92} U$ 

Thus in order to get  $^{234}_{92}U$  as end product  $1\alpha$  and  $2\beta$  particles should be emitted.

4. (c): 
$${}^{24}_{12}Mg + \gamma \rightarrow {}^{23}_{11}Na + {}^{1}_{1}p$$

5. (c) : Hydrogen bomb is based on the principal of nuclear fusion. In hydrogen bomb, a mixture of deuterium oxide and tritium oxide is enclosed in a space surrounding an ordinary

atomic bomb. The temperature produced by the explosion of the atomic bomb initiates the fusion reaction between  ${}_{1}^{3}H$  and  ${}_{1}^{2}H$  releasing huge amount of energy.

6. (c) : 
$$t_{1/2} = 4$$
 hours  
 $n = \frac{T}{t_{1/2}} = \frac{24}{4} = 6$ ;  $N = N_0 \left(\frac{1}{2}\right)^n \implies N = 200 \times \left(\frac{1}{2}\right)^6 = 3.125 \text{ g}$   
7. (b) :  $\frac{238}{92} M \rightarrow \frac{230}{88} N + 2\frac{4}{2} \text{ He}$   
 $\frac{230}{88} N \rightarrow \frac{230}{86} L + 2\beta^+$   
Therefore, number of neutrons in element  $L = 230 - 86 = 144$   
8. (a) :  $t_{1/2} = 3$  hours,  $n = T/t_{1/2} = 18/3 = 6$   
 $N = N_0 \left(\frac{1}{2}\right)^n = 256 \left(\frac{1}{2}\right)^6 = 4.0 \text{ g}$ 

9. (c):  ${}^{234}_{90}$ Th $\xrightarrow{-2\beta}{}^{234}_{92}X\xrightarrow{-\alpha}{}^{230}_{90}$ Th Elimination of 1 $\alpha$  and 2 $\beta$  particles give isotope.

10. (c) : Since the nucleus does not contain  $\beta$ -particles, it is produced by the conversion of a neutron to a proton at the moment of emission.  ${}_{0}n^{1} \rightarrow {}_{+1}p^{1} + {}_{-1}e^{0}$ 

11. (d): 
$$t_{1/2} = 5$$
 years,  $n = \frac{T}{t_{1/2}} = \frac{15}{5} = 3$   
 $n = N_0 \left(\frac{1}{2}\right)^n = 64 \left(\frac{1}{2}\right)^3 = 8$  g

