

Some Basic Concepts in Chemistry

The ratio of mass percent of C and H of an organic compound 1. $(C_{y}H_{y}O_{z})$ is 6 : 1. If one molecule of the above compound $(C_{y}H_{y}O_{z})$ contains half as much oxygen as required to burn one molecule of compound $C_{y}H_{y}$ completely to CO₂ and H_2O . The empirical formula of compound $C_xH_yO_z$ is

(a)
$$C_{3}H_{6}O_{3}$$
 (b) $C_{2}H_{4}O$
(c) $C_{3}H_{4}O_{2}$ (d) $C_{2}H_{4}O_{3}$ (2018)

A sample of NaClO₃ is converted by heat to NaCl with a loss 2. of 0.16 g of oxygen. The residue is dissolved in water and precipitated as AgCl. The mass of AgCl (in g) obtained will be

(Given : Molar mass of AgCl = 143.5 g mol^{-1})

- (a) 0.54 (b) 0.35
- (c) 0.48 0.41 (Online 2018) (d)
- For per gram of reactant, the maximum quantity of N₂ gas is 3. produced in which of the following thermal decomposition reactions?

(Given : Atomic wt. Cr = 52 u, Ba = 137 u)

- (a) $2NH_4NO_{3(s)} \rightarrow 2N_{2(g)} + 4H_2O_{(g)} + O_{2(g)}$ (b) $Ba(N_3)_{2(s)} \rightarrow Ba_{(s)} + 3N_{2(g)}$ (c) $(NH_4)_2Cr_2O_{7(s)} \rightarrow N_{2(g)} + 4H_2O_{(g)} + Cr_2O_3(s)$
- (d) $2NH_{3(g)} \rightarrow N_{2(g)} + 3H_{2(g)}$ (Online 2018)
- 4. An unknown chlorohydrocarbon has 3.55% of chlorine. If each molecule of the hydrocarbon has one chlorine atom only, chlorine atoms present in 1 g of chlorohydrocarbon are

(Atomic wt. of Cl = 35.5 u; Avogadro constant = 6.023×10^{23} mol^{-1})

(a)
$$6.023 \times 10^{21}$$
 (b) 6.023×10^{23}
(c) 6.023×10^{20} (d) 6.023×10^{9}

(Online 2018)

- 5. The most abundant elements by mass in the body of a healthy human adult are : oxygen (61.4%), carbon (22.9%), hydrogen (10.0%) and nitrogen (2.6%). The weight which a 75 kg person would gain if all ¹H atoms are replaced by ²H atoms is
 - (a) 7.5 kg (b) 10 kg (c) 15 kg (d) 37.5 kg (2017)
 - 1 gram of a carbonate (M_2CO_2) on treatment with excess HCl
- 6. produces 0.01186 mole of CO₂. The molar mass of M_2 CO₃ in g mol⁻¹ is (a) 118.6 (b) 11.86
 - 84.3 (2017)(c) 1186 (d)

7. Excess of NaOH_(aq.) was added to 100 mL of FeCl_{3(aq.)} resulting into 2.14 g of Fe(OH)₃. The molarity of FeCl_{3(aa.)} is (Given : molar mass of $Fe = 56 \text{ g mol}^{-1}$ and molar mass of Cl $= 35.5 \text{ g mol}^{-1}$) (a) 0.2 M (b) 1.8 M

- 8. What quantity (in mL) of a 45% acid solution of a monoprotic strong acid must be mixed with a 20% solution of the same acid to produce 800 mL of a 29.875% acid solution? (a) 330 (b) 316 (c) 320 (d) 325 (Online 2017)
- 9. At 300 K and 1 atm, 15 mL of a gaseous hydrocarbon requires 375 mL air containing 20% O2 by volume for complete combustion. After combustion the gases occupy 330 mL. Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is

(a)
$$C_3H_6$$
 (b) C_3H_8

(c)
$$C_4H_8$$
 (d) C_4H_{10} (2016)

- 10. 5 L of an alkane requires 25 L of oxygen for its complete combustion. If all volumes are measured at constant temperature and pressure, the alkane is
 - (a) isobutane (b) ethane
 - (c) butane (d) propane. (Online 2016)
- 11. An organic compound contains C, H and S. The minimum molecular weight of the compound containing 8% sulphur is (atomic weight of S = 32 amu)
 - (a) 600 g mol^{-1} (b) 200 g mol⁻¹
 - (c) 400 g mol^{-1} (d) 300 g mol⁻¹ (Online 2016)
- 12. The amount of arsenic pentasulphide that can be obtained when 35.5 g arsenic acid is treated with excess H_2S in the presence of conc. HCl (assuming 100% conversion) is (a) 0.25 mol (b) 0.50 mol
 - (c) 0.333 mol (d) 0.125 mol (Online 2016)
- 13. The volume of 0.1 N dibasic acid sufficient to neutralize 1 g of a base that furnishes 0.04 mole of OH- in aqueous solution is
 - 400 mL 600 mL (a) (b)
 - 200 mL 800 mL (Online 2016) (c) (d)

- 14. 3 g of activated charcoal was added to 50 mL of acetic acid solution (0.06 N) in a flask. After an hour it was filtered and the strength of the filtrate was found to be 0.042 N. The amount of acetic acid adsorbed (per gram of charcoal) is
 - (a) 42 mg(b) 54 mg (c)

15. A sample of a hydrate of barium chloride weighing 61 g was heated until all the water of hydration is removed. The dried sample weighed 52 g. The formula of the hydrated salt is (atomic mass Ba = 137 amu, Cl = 35.5 amu)

(a) BaCl₂·H₂O (b) BaCl₂·2H₂O

- (c) $BaCl_2 \cdot 3H_2O$ (d) $BaCl_2 \cdot 4H_2O$ (Online 2015)
- **16.** $A + 2B + 3C \implies AB_2C_3$

Reaction of 6.0 g of A, 6.0×10^{23} atoms of B, and 0.036 mol of C yields 4.8 g of compound AB_2C_3 . If the atomic mass of A and C are 60 and 80 amu, respectively, the atomic mass of Bis (Avogadro no. = 6×10^{23})

- (a) 70 amu (b) 60 amu (c) 50 amu (d) 40 amu (Online 2015)
- 17. The ratio of masses of oxygen and nitrogen in a particular gaseous mixture is 1:4. The ratio of number of their molecules is
 - (a) 3:16 (b) 1:4
 - (c) 7:32 (d) 1:8(2014)
- 18. The molarity of a solution obtained by mixing 750 mL of 0.5 M HCl with 250 mL of 2 M HCl will be
 - (a) 0.975 M (b) 0.875 M
 - (c) 1.00 M (d) 1.75 M (2013)

19. In the reaction,

 $2\mathrm{Al}_{(s)}+6\mathrm{HCl}_{(aq)}\rightarrow 2\mathrm{Al}^{3+}{}_{(aq)}+6\mathrm{Cl}^{-}{}_{(aq)}+3\mathrm{H}_{2(g)}$

- (a) 11.2 L H_{2(g)} at STP is produced for every mole HCl_(aq) consumed
- (b) 6 L HCl_(aq) is consumed for every 3 L H_{2(g)} produced

- (c) 33.6 L $H_{2(g)}$ is produced regardless of temperature and pressure for every mole Al that reacts
- 67.2 L H_{2(g)} at STP is produced for every mole Al that (d) reacts.

(2007)

- 20. How many moles of magnesium phosphate, Mg₃(PO₄)₂ will contain 0.25 mole of oxygen atoms?
 - (a) 0.02 3.125×10^{-2} (b) (c) 1.25×10^{-2} 2.5×10^{-2} (2006) (d)
- **21.** If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will
 - (a) decrease twice
 - (b) increase two fold
 - (c) remain unchanged
 - (d) be a function of the molecular mass of the substance. (2005)
- 22. What volume of hydrogen gas, at 273 K and 1 atm. pressure will be consumed in obtaining 21.6 g of elemental boron (atomic mass = 10.8) from the reduction of boron trichloride by hydrogen?
 - (a) 89.6 L (b) 67.2 L 22.4 L (2003)(c) 44.8 L (d)

23. With increase of temperature, which of these changes?

- (a) Molality
- Weight fraction of solute (b)
- (c) Fraction of solute present in water
- (d) Mole fraction (2002)
- 24. Number of atoms in 558.5 gram Fe (at. wt. of $Fe = 55.85 \text{ g mol}^{-1}$) is
 - (a) twice that in 60 g carbon
 - 6.023×10^{22} (b)
 - half that in 8 g He (c)
 - (d) $558.5 \times 6.023 \times 10^{23}$ (2002)

ANSWER KEY												
1.	(d)	2. (c)	3. (d)	4. (c)	5. (a)	6. (d)	7. (a)	8. (b)	9. (b)	10. (d)	11. (c)	12. (d)
13.	(a)	14. (c)	15. (b)	16. (c)	17. (c)	18. (b)	19. (a)	20. (b)	21. (a)	22. (b)	23. (c)	24. (a)

...(i)

1. (d) : Mass of carbon in the given compound = 12X Mass of hydrogen in the given compound = Y $\frac{12X}{Y} = \frac{6}{1} \implies 2X = Y$ Combustion of $C_X H_Y$ $C_X H_Y + \left(X + \frac{Y}{4}\right) O_2 \longrightarrow X CO_2 + \frac{Y}{2} H_2O$ Oxygen atoms required = $2\left(X + \frac{Y}{4}\right)$

As given, $\frac{1}{2} \times 2\left(X + \frac{Y}{4}\right) = Z$

Substituting the value of *Y* from eqn (i)

$$X + \frac{2X}{4} = Z \implies X + \frac{X}{2} = Z \implies \frac{3X}{2} = Z$$

$$3X$$

Ratio of
$$X: Y: Z = X: 2X: \frac{1}{2}$$
 i.e., $2: 4: 3$
So, the formula of the compound is $C_2H_4O_3$.

2. (c) : Decomposition of NaClO₃ is given as :

 $2\text{NaClO}_3 \xrightarrow{\Delta} 2\text{NaCl} + 3\text{O}_2$ (Residue) 0.16 g
No. of moles of O₂ formed = $\frac{0.16}{32} = 5 \times 10^{-3}$

$$n_{\text{NaCl}} = \frac{2}{3}n_{\text{O}_2} = \frac{2}{3} \times 5 \times 10^{-3} = \frac{1}{300}$$

 $NaCl + Ag^+ \rightarrow AgCl + Na^+$ 1 mole of AgCl is precipitated from one mole of NaCl.

- $\therefore \quad \text{Mole of AgCl} = \frac{1}{300}$
- :. Mass of AgCl = Molar mass of AgCl × n_{AgCl} = 143.5 × $\frac{1}{2}$ ≈ 0.48 g

3. (d) : (a)
$$2NH_4NO_{3(s)} \xrightarrow{300} 2N_{2(g)} + 4H_2O_{(g)} + O_{2(g)}$$

Mol. mass
= 80 g mol⁻¹ = 28 g mol⁻¹

 $80 \text{ g of NH}_4\text{NO}_3 \text{ gives } 28 \text{ g of N}_2$

$$\therefore 1 \text{ g of NH}_4 \text{NO}_3 \text{ will give} = \frac{28}{80} \times 1 = 0.35 \text{ g}$$

(b)
$$\operatorname{Ba}(N_3)_{2(g)} \longrightarrow \operatorname{Ba}_{(s)} + 3N_{2(g)}$$

Mol. mass
= 221 g mol⁻¹

221 g of Ba(N₃)₂ gives
$$3 \times 28$$
 g of N₂
 3×28

1 g of Ba(N₃)₂ will give =
$$\frac{3 \times 26}{221} \times 1 = 0.38$$
 g

(c)
$$(NH_4)_2Cr_2O_{7(s)} \longrightarrow N_{2(g)} + 4H_2O_{(g)} + Cr_2O_{3(s)}$$

Mol. mass
= 252 g mol⁻¹
252 g of $(NH_4)_2Cr_2O_7$ gives 28 g of N₂

1 g of
$$(NH_4)_2 Cr_2 O_7$$
 will give = $\frac{28}{252} \times 1 = 0.111$ g

(d) $2NH_{3(g)} \longrightarrow N_{2(g)} + 3H_{2(g)}$ Mol. mass Mol. mass = 17 g mol⁻¹ 2×17 g of NH₃ gives 28 g of N₂ 1 g of NH₃ will give = $\frac{28}{2 \times 17} \times 1 = 0.823$ g 4. (c) : % of chlorine = 3.55 Thus, in 100 g of chlorohydrocarbon, mass of chlorine = 3.55 g 1 g of chlorohydrocarbon will contain = $\frac{3.55}{100}$ g of chlorine \therefore No. of moles of chlorine atoms = $\frac{\text{Mass}}{\text{Atomic mass}} = \frac{3.55}{100} = 1 \times 10^{-3}$ 1 mole of chlorine contains 6.023×10^{23} chlorine atoms. $1\times 10^{\text{-3}}$ mole of chlorine will contain = $1\times 10^{\text{-3}}\times 6.023\times 10^{23}$ $= 6.023 \times 10^{20}$ chlorine atoms (a) : Mass of elements in the body of a healthy human adult are : Oxygen (61.4%), carbon (22.9%), hydrogen (10%) and nitrogen (2.6%). Weight of the person = 75 kg; Mass due to ${}^{1}\text{H} = 75 \times \frac{10}{100} = 7.5$ kg On replacing ¹H by ²H, 7.5 kg mass would replace with 15 kg. \therefore Net mass gained by person = (15 - 7.5) kg = 7.5 kg 6. (d) : According to the question, $M_2CO_3 + 2HCI \longrightarrow 2MCI + H_2O + CO_2$ In this equation, number of moles of M_2CO_3 is equal to that of CO_2 . *i.e.*, $n_{M_2CO_3} = n_{CO_2}$ $\frac{\text{wt. of } M_2 \text{CO}_3}{\text{molar mass of } M_2 \text{CO}_3} = \text{CO}_2$ $\frac{1 \text{g}}{\text{Molar mass of } M_2 \text{CO}_3} = 0.01186 \text{ mol}$ Molar mass of $M_2 \text{CO}_3 = \frac{1}{0.01186} \approx 84.3 \text{ g mol}^{-1}$ 7. (a): $3\text{NaOH} + \text{FeCl}_3 \longrightarrow \text{Fe(OH)}_3 + 3\text{NaCl}_{100 \text{ mL}} 2.14 \text{ g}$ M = ?Moles of Fe(OH)₃ = $\frac{2.14}{107} = 2 \times 10^{-2}$ \therefore Moles of FeCl₃ = moles of Fe(OH)₃ = 2 × 10⁻² Now, $M = \frac{\text{no. of moles} \times 1000}{\text{volume (mL)}} = \frac{2 \times 10^{-2}}{100} \times 1000 = 0.2 \text{ M}$ 8. (b): $\frac{V \times 45}{100} + \frac{(800 - V)20}{100} = \frac{800 \times 29.875}{100}$ $\frac{9V}{20} + 160 - \frac{V}{5} = 239 \implies \frac{5V}{20} = 79 \implies V = 316 \text{ mL}$ 9. (b) : Chemical equation for the combustion of hydrocarbon is J O $_{-}$ $+\left(\begin{array}{c} +\frac{1}{9} \right) W_{7-} \rightarrow J W_{7-} + \frac{1}{7} O_7 W_{2-}$ $\begin{array}{ccc} 15 \text{ mL} & 6: \left(\begin{array}{c} +\frac{1}{9} \right) y \text{ S} \\ 0 & 0 \end{array}$ Initial 0 Final 15x mL

Now, volume of O₂ in air $=\frac{75}{655} \times 8 \ll = \ll y S$ $\therefore \quad <: = 6: \left(\begin{array}{c} +\frac{1}{9} \end{array} \right) \implies \quad +\frac{1}{9} = :$ Out of given four options, C3H8 will satisfy the above equation. 10. (d) : Combustion of hydrocarbon, $C_xH_y + \left(x + \frac{y}{4}\right)O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O$ 5 L of alkane requires 25 L of oxygen. 1 L of alkane requires 5 L $\left(=x+\frac{y}{4}\right)$ of oxygen. $\therefore x + \frac{y}{4} = 5$ which is satisfied by propane (C₃H₈). 11. (c): % of sulphur = $\frac{\text{Aatomic wt. of sulphur}}{\text{Mol. wt. of compound}} \times 100$ $8 = \frac{52}{\text{Mol wt. of compound}} \times 100$ \therefore Mol. wt of compound = 400 g mol⁻¹ **12.** (d) : Molar mass of $H_3AsO_4 = 142 \text{ g mol}^{-1}$:. Number of moles of H₃AsO₄ in 35.5 g = $\frac{35.5}{142}$ = 0.25 mol $2H_3AsO_4 + 5H_2S \xrightarrow{Conc. HCl} As_2S_5 + 8H_2O$ 2 moles of H₃AsO₄ gives 1 mole of As₂S₅ 1 mole of H_3AsO_4 gives 1/2 mole of As_2S_5 :.0.25 mol of H₃AsO₄ gives $\frac{0.25}{2}$ mol of As₂S₅ = 0.125 mol of As₂S₅ 13. (a) : No. of equivalents of acid = Normality × Volume = $0.1 \times V_{acid}$ No. of equivalents of $OH^- = No.$ of moles = 0.04 For neutralisation, No. of equivalents of acid = No. of equivalents of base $0.1 \times V_{\text{acid}} = 0.04$ $V_{\text{acid}} = \frac{0.04}{0.1} = 0.4 \text{ L} = 400 \text{ mL}$ 14. (c) : No. of milliequivalents of acetic acid initially taken $= (0.06 \text{ N}) \times (50 \text{ mL}) = 3 \text{ meg}$ No. of milliequivalents of acetic acid left in the filtrate $=(0.042 \text{ N}) \times (50 \text{ mL}) = 2.1 \text{ meg}$ No. of milliequivalents of acetic acid adsorbed by activated charcoal = (3 - 2.1) = 0.9 meqAmount of acetic acid adsorbed by 3 g of activated charcoal $= 0.9 \times 60 = 54 \text{ mg}$ Amount of acetic acid adsorbed by 1 g of activated charcoal $\frac{:9}{8} = 6 = y s$ **15.** (b) : Weight of hydrated $BaCl_2 = 61$ g Weight of anhydrous $BaCl_2 = 52$ g; Loss in mass = 61 - 52 = 9 g Assuming $BaCl_2 \cdot xH_2O$ as hydrate; Mass of H_2O_2 removed = 9 g Moles of H₂O removed = $\frac{>}{6=}$ = 53 Molecular mass of $BaCl_2 = 208$ % of H₂O in the hydrated BaCl₂ = $\frac{>}{;6} \times 655 = 693$; * $\Rightarrow 693$; = $\frac{6=}{75=+6=} \times 655$ On solving we get, x = 2 \therefore The formula of the hydrated salt is BaCl₂·2H₂O. 16. (c): $W+7X+8Y \implies WX_7Y_8$

6.0 g of A, 6.0 \times 10²³ atoms of B and 0.036 mol of C yields 4.8 g of compound AB_2C_3 . Atomic mass of A = 60 amu, Atomic mass of C = 80 amu T { \mathbf{x} q { r $W=\frac{;}{;5}=5$ % y { x, T { \mathbf{x} q { r $X=\frac{; \mathfrak{T} \times 65^{78}}{; \times 65^{78}}=6$ y { x Mole of C=0.036 mol Hence, C is the limiting reagent which is consumed completely. So according to reaction, $W+7X+8Y \longrightarrow WX_7Y_8$ 0.036 mol of *C* will form $\frac{5358;}{8} = 0.012 \text{ mol of } AB_2C_3.$ $T \{ xq \{ r \ WX_7Y_8 = \frac{c \ qust \mu}{T \{ xqo \times xn_7 \ qust \mu} \}$ $53567 = \frac{7}{T \{ xqo \times xm} \quad qust \mu \{ r WX_7 Y_8 \}}$ So, molecular wt. of $AB_2C_3 = 400$ Atomic mass of $A + 2 \times \text{Atomic mass of } B + 3 \text{ Atomic mass of } C = 400$ $60 + 2B + 3 \times 80 = 400 \implies$ Atomic mass of B = 50 amu 17. (c): Let the mass of $O_2 = x$ and that of $N_2 = 4x$ No. of molecules of $O_2 = \frac{x}{32}$; No. of molecules of $N_2 = \frac{4x}{28} = \frac{x}{7}$ Ratio $=\frac{x}{32} : \frac{x}{7} \text{ or } 7 : 32$ **18.** (b): $M_{\text{mix}}V_{\text{mix}} = M_1V_1 + M_2V_2$ $M_{\text{mix}} = \frac{M_1 V_1 + M_2 V_2}{V_{\text{mix}}} = \frac{0.5 \times 750 + 2 \times 250}{1000} = 0.875 \text{ M}$ **19.** (a) : $2Al_{(s)}^{+} + 6HCl_{(aq)}^{-} \longrightarrow 2Al_{(aq)}^{3+} + 6Cl_{(aq)}^{-} + 3H_{2(g)}^{-}$ 6 moles of HCl produced H_2 at STP = 3 × 22.4 \therefore 1 mole of HCl will produce H₂ at STP = $\frac{3 \times 22.4}{6}$ = 11.2 L **20.** (b) : 1 mole of $Mg_3(PO_4)_2$ \Rightarrow 3 moles of Mg atom + 2 moles of P atom + 8 moles of O atom 8 moles of oxygen atoms are present in = 1 mole of $Mg_3(PO_4)_2$ 0.25 mole of oxygen atoms are present in = $\frac{1 \times 0.25}{8}$ = 3.125 × 10⁻² moles of Mg₃(PO₄)₂ 21. (a) : 1 atomic mass unit on the scale of 1/6 of C-12 = 2 amu on the scale of 1/12 of C-12. Now, atomic mass of an element Mass of one atom of the element 1 amu (Here on the scale of $\frac{1}{6}$ of C-12) Mass of one atom of the element 2 amu (Here on the scale of $\frac{1}{12}$ of C-12) Numerically the mass of a substance will become half of the normal scale. 22. (b): $2BCl_3 + 3H_2 \rightarrow 6HCl + 2B \text{ or } BCl_3 + \frac{3}{2}H_2 \rightarrow 3HCl + B$ 10.8 g boron requires hydrogen = $\frac{3}{2} \times 22.4$ L 21.6 g boron will require hydrogen = $\frac{3}{2} \times \frac{22.4}{10.8} \times 21.6 = 67.2 \text{ L}$ 23. (c) : Volume increases with rise in temperature.

24. (a) : Fe (no. of moles) = $\frac{558.5}{55.85}$ = 10 moles C (no. of moles) = 60/12 = 5 moles. (atomic weight of carbon = 12)