CHAPTER

Electromagnetic Waves

1. An EM wave from air enters a medium. The electric

fields are $\vec{E}_1 = E_{01}\hat{x}\cos\left[2\pi\upsilon\left(\frac{z}{c}-t\right)\right]$ in air and $\vec{E}_2 = E_{02}\hat{x}\cos[k(2z-ct)]$ in medium, where the wave number k and frequency υ refer to their values in air. The medium is non-magnetic. If ε_{r_1} and ε_{r_2} refer to relative permittivities of air and medium respectively, which of the following options is correct?

(a)
$$\frac{\varepsilon_{r_1}}{\varepsilon_{r_2}} = 4$$
 (b) $\frac{\varepsilon_{r_1}}{\varepsilon_{r_2}} = 2$ (c) $\frac{\varepsilon_{r_1}}{\varepsilon_{r_2}} = \frac{1}{4}$ (d) $\frac{\varepsilon_{r_1}}{\varepsilon_{r_2}} = \frac{1}{2}$
(2018)

2. A monochromatic beam of light has a frequency $\upsilon = \frac{3}{2\pi} \times 10^{12}$ Hz and is propagating along the direction $\hat{i} + \hat{j}$ It is polarized along the \hat{k} direction. The acceptable

 $\frac{i+j}{\sqrt{2}}$. It is polarized along the \hat{k} direction. The acceptable form for the magnetic field is

(a)
$$\frac{E_0}{C} \frac{(\hat{i} + \hat{j} + \hat{k})}{\sqrt{3}} \cos \left[10^4 \frac{(\hat{i} + \hat{j})}{\sqrt{2}} \cdot \vec{r} + (3 \times 10^{12})t \right]$$

(b) $\frac{E_0}{C} \frac{(\hat{i} - \hat{j})}{\sqrt{2}} \cos \left[10^4 \frac{(\hat{i} + \hat{j})}{\sqrt{2}} \cdot \vec{r} - (3 \times 10^{12})t \right]$
(c) $\frac{E_0}{C} \frac{(\hat{i} - \hat{j})}{\sqrt{2}} \cos \left[10^4 \frac{(\hat{i} - \hat{j})}{\sqrt{2}} \cdot \vec{r} - (3 \times 10^{12})t \right]$
(d) $\frac{E_0}{C} \hat{k} \cos \left[10^4 \frac{(\hat{i} + \hat{j})}{\sqrt{2}} \cdot \vec{r} + (3 \times 10^{12})t \right]$ (Online 2018)

3. A plane polarized monochromatic EM wave is travelling in vacuum along z direction such that at $t = t_1$, it is found that the electric field is zero at a spatial point z_1 . The next zero that occurs in its neighbourhood is at z_2 . The frequency of the electromagnetic wave is 1

(a)
$$\overline{t_1 + \frac{|z_2 - z_1|}{3 \times 10^8}}$$
 (b) $\frac{3 \times 10^8}{|z_2 - z_1|}$
(c) $\frac{6 \times 10^8}{|z_2 - z_1|}$ (d) $\frac{1.5 \times 10^8}{|z_2 - z_1|}$ (Online 2018)

4. A plane electromagnetic wave of wavelength λ has an intensity *I*. It is propagating along the positive *Y*-direction.

The allowed expressions for the electric and magnetic fields are given by

(a)
$$\vec{E} = \sqrt{\frac{I}{\varepsilon_0 c}} \cos\left[\frac{2\pi}{\lambda}(y-ct)\right] \hat{i}; \vec{B} = \frac{1}{c} E \hat{k}$$

(b)
$$\vec{E} = \sqrt{\frac{2I}{\varepsilon_0 c}} \cos\left[\frac{2\pi}{\lambda}(y+ct)\right]\hat{k}; \vec{B} = \frac{1}{c}E\hat{i}$$

(c)
$$\vec{E} = \sqrt{\frac{2I}{\varepsilon_0 c}} \cos\left[\frac{2\pi}{\lambda}(y-ct)\right]\hat{k}; \vec{B} = \frac{1}{c}E\hat{i}$$

(d) $\vec{E} = \sqrt{\frac{I}{\varepsilon_0 c}} \cos\left[\frac{2\pi}{\lambda}(y-ct)\right]\hat{k}; \vec{B} = \frac{1}{c}E\hat{i}$ (Online 2018)

- 5. Magnetic field in a plane electromagnetic wave is given by B = B₀ sin(kx + ωt) jT Expression for corresponding electric field will be (Where c is speed of light.)
 (a) E = -B₀c sin(kx + ωt) k V/m
 - (b) $\vec{E} = B_0 c \sin(kx \omega t) \hat{k} \text{ V/m}$

(c)
$$\vec{E} = \frac{B_0}{c} \sin(kx + \omega t)\hat{k} \text{ V/m}$$

(d)
$$\vec{E} = B_0 c \sin(kx + \omega t) \hat{k} \, \text{V/m}$$
 (Online 2017)

6. The electric field component of a monochromatic radiation is given by $\vec{E} = 2E_0 \hat{i} \cos kz \, \cos \omega t$

Its magnetic field is then given by

(a)
$$\frac{2E_0}{c}\hat{j}\cos kz\cos\omega t$$
 (b) $\frac{2E_0}{c}\hat{j}\sin kz\cos\omega t$
(c) $\frac{2E_0}{c}\hat{j}\sin kz\sin\omega t$ (d) $-\frac{2E_0}{c}\hat{j}\sin kz\sin\omega t$
(Online 2017)

7. Arrange the following electromagnetic radiations per quantum in the order of increasing energy

B : Yellow light
D : Radiowave
(b) A, B, D, C
(d) B, A, D, C (2016)

8. Microwave oven acts on the principle of

- (a) giving rotational energy to water molecules
- (b) giving translational energy to water molecules
- (c) giving vibrational energy to water molecules
- (d) transferring electrons from lower to higher energy levels in water molecule. (Online 2016)

- 9. Consider an electromagnetic wave propagating in vacuum. Choose the correct statement.
 - (a) For an electromagnetic wave propagating in +ydirection the electric field is $\vec{E} = \frac{1}{\sqrt{2}} E_{yz}(x, t)\hat{z}$ and the

magnetic field is $\vec{B} = \frac{1}{\sqrt{2}} B_z(x, t) \hat{y}$

- (b) For an electromagnetic wave propagating in +ydirection the electric fields is $\vec{E} = \frac{1}{\sqrt{2}} E_{yz}(x, t)\hat{y}$ and
- the magnetic field is $\vec{B} = \frac{1}{\sqrt{2}} B_{yz}(x, t)\hat{z}$ (c) For an electromagnetic wave propagating in +x direction the electric field is $\vec{E} = \frac{1}{\sqrt{2}} E_{yz}(y, z, t)(\hat{y} + \hat{z})$ and the magnetic field is $\vec{B} = \frac{1}{\sqrt{2}} B_{yz}(y,z,t)(\hat{y}+\hat{z})$
- (d) For an electromagnetic wave propagating in +xdirection the electric field is $\vec{E} = \frac{1}{\sqrt{2}} E_{yz}(x,t)(\hat{y} - \hat{z})$ and the magnetic field is $\vec{B} = \frac{1}{\sqrt{2}} B_{yz}(x,t)(\hat{y}+\hat{z})$

(Online 2016)

- 10. A red LED emits light at 0.1 watt uniformly around it. The amplitude of the electric field of the light at a distance of 1 m from the diode is
 - (a) 5.48 V/m (b) 7.75 V/m (c) 1.73 V/m (d) 2.45 V/m (2015)
- 11. An electromagnetic wave travelling in the x-direction has frequency of 2 \times 10¹⁴ Hz and electric field amplitude of 27 V m⁻¹. From the options given below, which one describes the magnetic field for this wave?

(a) \vec{X} -1. = -8×65⁻⁼ ^. ^j -uz g7 π -63×65⁻⁼ -7×65⁶⁹. i

(b) \vec{X} -1.=->×65⁻⁼ ^. ^j-uz g7 π -63×65^{-;} -7×65⁶⁹.i

(c)
$$\vec{X}_{-1} = -> \times 65^{-=} \land .^{-1} - \iota z g \pi - 63 \times 65^{-=} -7 \times 65^{69}$$
.i

(d)
$$\tilde{X}$$
-1.=->×65⁻⁼ ^. -uzg63×65^{-;} -7×65⁶⁹ i
(Online 2015)

12. For plane electromagnetic waves propagating in the z direction, which one of the following combination gives the correct possible direction for field respectively?

(a)
$${}^{j} + 7^{j} \cdot \mathbf{mz} \mathbf{p} - 7^{j} - {}^{j} \cdot \mathbf{(b)} - -7^{j} - 8^{j} \cdot \mathbf{nz} \mathbf{p} - 8^{j} - 7^{j} \cdot \mathbf{(c)} - 7^{j} + 8^{j} \cdot \mathbf{mz} \mathbf{p} - {}^{j} + 7^{j} \cdot \mathbf{(d)} - 8^{j} + 9^{j} \cdot \mathbf{nz} \mathbf{p} - 9^{j} - 8^{j} \cdot \mathbf{(Dnline \ 2015)}$$

13. Match List-I (Electromagnetic wave type) with List-II (Its association/application) and select the correct option from the choices given below the lists: List-I

List-II

- (P) Infrared waves To treat muscular strain (i) (Q) Radio waves (ii) For broadcasting
- (iii) To detect fracture of bones (R) X-rays (S) Ultraviolet rays (iv) Absorbed by the ozone layer of the atmosphere

	Р	Q	R	S	
((a) (i)	(ii)	(iii)	(iv)	
((b) (iv)	(iii)	(ii)	(i)	
((c) (i)	(ii)	(iv)	(iii)	
((d) (iii)	(ii)	(i)	(iv)	(2014)

- 14. During the propagation of electromagnetic waves in a medium
 - (a) both electric and magnetic energy densities are zero (b) electric energy density is double of the magnetic energy density
 - (c) electric energy density is half of the magnetic energy density
 - (d) electric energy density is equal to the magnetic energy density (2014)
- 15. The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. The peak value of electric field strength is (a) 12 V/m (b) 3 V/m
 - (d) 9 V/m (c) 6 V/m (2013)
- 16. An electromagnetic wave in vacuum has the electric and magnetic fields \vec{E} and \vec{B} , which are always perpendicular to each other. The direction of polarization is given by \vec{X} and that of wave propagation by \vec{k} . Then
 - (a) $\vec{X} \parallel \vec{E}$ and $\vec{k} \parallel \vec{E} \times \vec{B}$ (b) $\vec{X} \parallel \vec{B}$ and $\vec{k} \parallel \vec{E} \times \vec{B}$
 - (c) $\vec{X} \parallel \vec{E}$ and $\vec{k} \parallel \vec{B} \times \vec{E}$ (d) $\vec{X} \parallel \vec{B}$ and $\vec{k} \parallel \vec{B} \times \vec{E}$

- 17. The rms value of the electric field of the light coming from the sun is 720 N/C. The average total energy density of the electromagnetic wave is (a) $3.3 \times 10^{-3} \text{ J/m}^3$ (b) $4.58 \times 10^{-6} \text{ J/m}^3$
 - (c) $6.37 \times 10^{-9} \text{ J/m}^3$ (d) $81.35 \times 10^{-12} \text{ J/m}^3$.

- **18.** An electromagnetic wave of frequency v = 3.0 MHz passes from vacuum into a dielectric medium with permitivity $\varepsilon = 4.0$. Then
 - (a) wavelength is doubled and the frequency remains unchanged
 - (b) wavelength is doubled and frequency becomes half
 - (c) wavelength is halved and frequency remains unchanged
 - (d) wavelength and frequency both remain unchanged.

```
(2004)
```

- 19. Which of the following are not electromagnetic waves? (a) cosmic rays (b) gamma rays
 - (c) β -rays (d) X-rays. (2002)
- 20. Electromagnetic waves are transverse in nature is evident bv
 - (a) polarization (b) interference (c) reflection (d) diffraction (2002)
- **21.** Infrared radiation is detected by (b) pyrometer (a) spectrometer
- (c) nanometer (d) photometer (2002)ANSWER KEY 5. (d) **2.** (b) **3.** (d) 4. (c) 6. 9. (d) 10. (d) 11. (*) 12. (b) 1. (c) (c) 7. (a) **8.** (a) 17. (b) 18. (c) 19. (c) **20.** (a) 21. (b) 13. (a) 14. (d) 15. (c) 16. (a)

C 1

1. (c) : In air, EM wave is
$$\vec{E}_1 = E_{01}\hat{x}\cos\left[2\pi\upsilon\left(\frac{z}{c}-t\right)\right]$$

= $E_{01}\hat{x}\cos[k(z-ct)]$ $\left(\because k = \frac{2\pi}{\lambda_0} = \frac{2\pi\upsilon}{c}\right]$
In medium, EM wave is $\vec{E}_2 = E_{02}\hat{x}\cos[k(2z-ct)]$

$$= E_{02} \hat{x} \cos \left[2k \left(z - \frac{c}{2}t \right) \right]$$

During refraction, frequency remains unchanged, whereas wavelength gets changed

$$\therefore \quad k' = 2k \quad (\text{From equations})$$
$$\frac{2\pi}{\lambda'} = 2\left(\frac{2\pi}{\lambda_0}\right) \text{ or } \lambda' = \frac{\lambda_0}{2}$$
Since, $v = \frac{c}{2}; \quad \frac{1}{\sqrt{\mu_0 \varepsilon_{r_2}}} = \frac{1}{2} \times \frac{1}{\sqrt{\mu_0 \varepsilon_{r_1}}}; \quad \therefore \quad \frac{\varepsilon_{r_1}}{\varepsilon_{r_2}} = \frac{1}{4}$

2. (b) : $\vec{E} \times \vec{B}$ gives direction of wave propagation. $\Rightarrow \hat{k} \times \vec{B} \parallel \frac{\hat{i} + \hat{j}}{\sqrt{2}}$ Now, $\hat{k} \times \left(\frac{\hat{i} - \hat{j}}{\sqrt{2}}\right) = \frac{\hat{j} - (-\hat{i})}{\sqrt{2}} = \frac{\hat{i} + \hat{j}}{\sqrt{2}}$

Wave propagation vector should be along $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$ and direction of magnetic field is along $\frac{i-j}{\sqrt{2}}$.

3. (d) : Electric field in electromagnetic wave is given by $E = E_0 \, \sin(\omega t_1 - k z_1)$ Also, $E' = E_0 \sin(\pi + \omega t_1 - kz_2)$ As per question, E = E' = 0 $\therefore \omega t_1 - kz_1 = (\pi + \omega t_1 - kz_2)$ $\pi = k(z_2 - z_1) = \frac{2\pi}{\lambda} |z_2 - z_1|$ $\lambda = 2|z_2 - z_1|$ $\upsilon = \frac{c}{\lambda} = \frac{3 \times 10^8}{2|z_2 - z_1|} = \frac{1.5 \times 10^8}{|z_2 - z_1|}$ 4. (c): If *E* is magnitude of electric field then $\frac{1}{2}\varepsilon_0 E^2 \times c = I$

$$E = \sqrt{\frac{2I}{c \varepsilon_0}}$$
 and $B = \frac{E}{c}$

Direction of $\vec{E} \times \vec{B}$ will be along $+\hat{j}$.

5. (d) : Given : $\vec{B} = B_0 \sin(kx + \omega t) \hat{j} T$ The relation between electric and magnetic field is,

$$c = \frac{E}{B}$$
 or $E = cB$

The electric field component is perpendicular to the direction of propagation and the direction of magnetic field. Therefore, the electric field component along z-axis is obtained as

$$E = cB_0 \sin (kx + \omega t)\hat{k}$$

6. (c) :
$$\frac{dE}{dz} = -\frac{dB}{dt}$$

 $\frac{dE}{dz} = -2E_0k \sin kz \cos \omega t = -\frac{dB}{dt}$
 $dB = + 2 E_0k \sin kz \cos \omega t dt$
 $B = +2E_0k \sin kz \int \cos \omega t \, dt = +2E_0 \frac{k}{\omega} \sin kz \sin \omega t$
 $\frac{E_0}{B_0} = \frac{\omega}{k} = c$
 $B = \frac{2E_0}{c} \sin kz \sin \omega t$ $\therefore \quad \vec{B} = \frac{2E_0}{c} \sin kz \sin \omega t \hat{j}$
7. (a) : $E_{\text{radiowave}} < E_{\text{yellow}} < E_{\text{blue}} < E_{x-\text{ray}}$
(D) (B) (A) (C)
8. (a)

9. (d) : An electromagnetic wave propagating in +x direction means electric field and magnetic field should be function of x and t.

Also,
$$\vec{E} \perp \vec{B}$$
 or $\hat{E} \perp \hat{B}$ *i.e.*
 $(\hat{y} - \hat{z}) \cdot (\hat{y} + \hat{z}) = \hat{y} \cdot \hat{y} - \hat{z} \cdot \hat{z} = 0$
10. (d) : Intensity of light, $I = u_{av}c$
Hx{ $1 f = \frac{m}{9\pi^{-7}} m p_{m} p_{m} = \frac{6}{7} \epsilon_{5} b_{5}^{7}$
 $\therefore \frac{m}{9\pi^{-7}} = \frac{6}{7} \epsilon_{5} b_{5}^{7} \{ \sim b_{5} = \sqrt{\frac{7m}{9\pi\epsilon_{5}}}^{7}$
Here, $P = 0.1$ W, $r = 1$ m, $c = 3 \times 10^{8}$ m s⁻¹
 $\frac{6}{9\pi\epsilon_{5}} = > \times 65^{>}$ N C⁻² m²
 $\therefore b_{5} = \sqrt{\frac{7 \times 536 \times > \times 65^{>}}{6^{7} \times 8 \times 65^{=}}} = \sqrt{;} = 739$: b y ⁻⁶
11. (*) : $\upsilon = 2 \times 10^{14}$ Hz
 $E_{0} = 27$ V m⁻¹
We know, $\frac{b_{5}}{X_{5}} = \text{ so } B_{0} = \frac{7 <}{8 \times 65^{=}} = > \times 65^{-=} \wedge$
 $\lambda = \frac{1}{\upsilon} = \frac{8 \times 65^{=}}{7 \times 65^{69}} = 1.5 \times 10^{-6}$ m
 $X = X_{5} - \upsilon 7\pi \left(\frac{1}{\lambda} - \upsilon\right)$
 $B = (9 \times 10^{-8} \text{ T}) \sin 7\pi \left(\frac{63 \times 65^{-;}}{63 \times 65^{-;}} - 7 \times 65^{69}\right)$
Oscillation of *B* can be along either $j < \omega^{-j}$ dire

ction. *None of the given options is correct.

12. (b) : For electromagnetic wave, direction of propagation, b and X are transverse in nature.

According to question,

 $\vec{b} \times \vec{X}$ = direction of propagation = +z direction. Only option (b) satisfies both conditions (i) $\vec{b} \cdot \vec{X} = 5$ (ii) $-\vec{b} \times \vec{X}$. directed along the z-axis.

13. (a) : Infrared waves are used to treat muscular strain. Radio waves are used for broadcasting.

X-rays are used to detect fracture of bones. Ultraviolet rays are absorbed by the ozone layer of the atmosphere.

14. (d) : In an em wave, energy is equally divided between the electric and the magnetic fields.

15. (c) : In electromagnetic wave, the peak value of electric field (E_0) and peak value of magnetic field (B_0) are related by $E_0 = B_0 c$ $E_0 = (20 \times 10^{-9} \text{ T}) (3 \times 10^8 \text{ m s}^{-1}) = 6 \text{ V/m}$

16. (a) : The direction of polarization is parallel to electric field. $\vec{X} \parallel \vec{E}$

The direction of wave propagation is parallel to $\vec{E} \times \vec{B}$.

 $\therefore \quad \vec{k} \parallel \vec{E} \times \vec{B}$

17. **(b)**:
$$u = \frac{1}{2} \varepsilon_0 E_{\rm rms}^2 + \frac{1}{2\mu_0} B_{\rm rms}^2$$

 $= \frac{1}{2} \varepsilon_0 E_{\rm rms}^2 + \frac{1}{2\mu_0} \left(\frac{E_{\rm rms}^2}{c^2} \right) = \frac{1}{2} \varepsilon_0 E_{\rm rms}^2 + \frac{1}{2\mu_0} E_{\rm rms}^2 \varepsilon_0 \mu_0$
 $= \frac{1}{2} \varepsilon_0 E_{\rm rms}^2 + \frac{1}{2} \varepsilon_0 E_{\rm rms}^2 = \varepsilon_0 E_{\rm rms}^2$
 $= (8.85 \times 10^{-12}) \times (720)^2 = 4.58 \times 10^{-6} \text{ J m}^{-3}$

18. (c) : During propogation of a wave from one medium to another, frequency remains constant and wavelength changes

$$\mu = \sqrt{\frac{\varepsilon}{\varepsilon_0}} = \sqrt{4} = 2$$

Since $\mu \propto \frac{1}{\lambda}$: Wavelength is halved.

Hence option (c) holds good.

19. (c) : β -rays are not electromagnetic waves.

20. (a) : Polarization proves the transverse nature of electromagnetic waves.

21. (b) : Infrared radiation produces thermal effect and is detected by pyrometer.

